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Preface 

This book deals with various systems of "numbers" that can be constructed 
by adding "imaginary units" to the real numbers. The complex numbers 
are a classical example of such a system. 

One of the most important properties of the complex numbers is given 
:'y the identity 

Izz'l = Izl· Iz'l· (1) 

It says, roughly, that the absolute value of a product is equal to the product 
of the absolute values of the factors. If we put z = al + a2i, z' = bI + b2i, 
then we can rewrite (1) as 

The last identity states that "the product of a sum of two squares by a sum 
of two squares is a sum of two squares." 

It is natural to ask if there are similar identities with more than two 
squares, and how all of them can be described. Already Euler had given 
an example of an identity with four squares. Later an identity with eight 
squares was found. But a complete solution of the problem was obtained 
only at the end of the 19th century. 

It is substantially true that every identity with n squares is linked to 
formula (1), except that z and z' no longer denote complex numbers but 
more general "numbers" 

where i, j, ... ,I are imaginary units. One of the main themes of this book 
is the establishing of the connection between identities with n squares and 
formula (1). 

Another question we deal with at great length is division of hypercom­
plex numbers. The operations defined in each system of hypercomplex 
numbers are three of the four "arithmetic" operations, namely, addition, 



Vi 

subtraction, and multiplication. The possibility of division depends on the 
system. Hypercomplex division systems (that is, systems with division) 
are few and far between. The real and complex numbers are, of course, 
examples of division systems. But there are others. The most remarkable 
of them are the quaternions and the Cayley numbers. The problem of find­
ing all hypercomplex division systems is still open. Some variants of this 
problem will be considered in this book. 

The first part familiarizes the reader with examples of hypercomplex 
numbers, including the quaternions and the Cayley numbers. The qua­
ternions and the Cayley numbers (as well as some other hypercomplex 
systems) are division systems in which formula (1) holds. The third part 
explains the unique role of the complex numbers, the quaternions, and the 
Cayley numbers with respect to the questions we've raised. The second part 
is an elementary exposition of the fundamental concepts of linear algebra 
and is of an auxiliary nature. 

The book is intended for students of science high schools and, less pre­
scriptively, for all persons interested in mathematics. High school seniors 
should be able to read most of the material in the first two chapters, but 
may find that the reading of the rest of the book calls for rather strenuous 
efforts. Be that as it may, the reader need not worry about prerequisites. 
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Hypercomplex Numbers 





Chapter 1 

Complex Numbers 

1.1 Introduction 
In elementary algebra we consider, in addition to the real numbers, the 
larger system of complex numbers. What makes us study the complex num­
bers is the solution of quadratic equations. Specifically, certain quadratic 
equations, for example, 

x2 + 1 = 0, (1.1) 

cannot be solved if we restrict ourselves to the real numbers, that is, there 
is no real number a such that a2 = -1. 

The history of the complex numbers goes back to the 16th century. The 
Italian mathematicians Girolamo Cardano and Raffael Bombelli introduced 
the use of the symbol A, a formal solution of eq. (1.1), as well as the 
expression bA, a formal solution of the equation 

Then the more general expression a + bA can be regarded as a formal 
solution of the equation 

(1.2) 

Expressions of the form a + bA came to be known first as imaginary 
numbers and then as complex numbers, and to be written as a + bi (the 
use of i for A goes back to the 18th century and is due to Euler). These 
numbers suffice to solve all quadratic equations. (We recall that if the 
discriminant of a quadratic equation is nonnegative, then its roots are real, 
and if the discriminant is negative, then its roots can be written in the form 
(1.2).) 
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Thus a complex number is an expression of the form 

a+ bi, 

where a and b are real numbers and the symbol i is assigned the property 
i 2 = -1. We note that the complex numbers contain all real numbers (they 
are obtained by putting b = 0) as well as all "pure imaginary" numbers 
(obtained by putting a = 0.) 

For the sake of brevity, we shall denote a complex number by the letter 
z and write 

z = a + bi. 

a is called the real part of z, and bi the imaginary part of z; i itself is 
called an "imaginary unit". The name "imaginary" should not be taken 
literally. It goes back to the time (the 16th and 17th centuries) when 
complex numbers were viewed as something unreal, and were surrounded 
by an aura of deep secrecy. In modern mathematics complex numbers are 
something quite natural and no more "imaginary" than the real numbers. 

1.2 Operations on Complex Numbers 

It is natural to define the operations of addition, subtraction, and multipli­
cation of complex numbers as follows: 

(a + bi) + (e + di) 

(a + bi) - (e + di) 

(a + bi) x (e + di) 

(a + e) + (b + d)i, 

(a-e)+(b-d)i, 

ae -t- adi + bei + bdi2 

(ae - bd) + (ad + be)i 

(in the definition of multiplication we made use of the fact that i 2 = -1). 
Incidentally, if we put b = 0 in the definition of multiplication of complex 
numbers, then we obtain the rule 

a( e + di) = ae + adi 

for multiplying a real number by a complex number. 
It is easy to verify that the laws governing the above operations are the 

same as the laws governing the corresponding operations on real numbers. 
Specifically, addition is commutative and associative: 

multiplication is also commutative and associative: 
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wd multiplication is distributive over addition: 

Zl(Z2 + Z3) = ZlZ2 + ZlZ3· 

To verify (1.3), say, we put 

(1.3) 

Then 

Zl(Z2 + Z3) = (al + bli)[(a2 + a3) + (b2 + b3)i] 

= [al(a2 + a3) - bl(b2 + b3)] + [al(b2 + b3) + bl (a2 + a3)]i, 

ZlZ2 + ZlZ3 = (al + bl i)(a2 + b2i) + (al + bli)(a3 + b3i) 

= (ala2 - b1b2 + ala3 - blb3) + (a l b2 + bl a2 + al b3 + bla3)i. 

It is easy to see that the outcomes of the two computations are the same. 

1.3' The Operation of Conjugation 
'Ve consider in some detail certain further properties of the system of com­
plex numbers. 

With each complex number 

Z = a + bi 

we associate its complex conjugate 

z = a - bi. 

It is easy to see that 

and 

that is, the conjugate of a sum is the sum of the conjugates of the sum­
mands, and the conjugate of a product is the product of the conjugates of 
the factors. We leave it to the reader to check these formulas. 

Note that 
Z + z = 2a 

and 
zz = a2 + b2

, 

that is, the sum and product of conjugate complex numbers are always real 
numbers. 
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1.4 The Absolute Value of a Complex 
N umber: An Identity with Two 
Squares 

The nonnegative real number va2 + b2 is called the absolute value of the 
complex number z and is denoted be Izl, that is, 

We have 
zz=lzI2. 

The last equation implies a certain remarkable relation. Thus, let Zl 

and Z2 be two complex numbers, then 

so that 
(1.4) 

and therefore 
(1.5) 

In other words, the absolute value of a product is the product of the absolute 
values of the factors. This is an extremely important property of the com­
plex numbers; in chapter 16 we shall give it a special name (the property 
of normability). We shall now obtain a more detailed form of (1.4). 

Put 

Then 
ZlZ2 = (ala2 - b1b2) + (a 1b2 + a2bl)i. 

This means that we can write eq. (1.4) as 

(ai + bD(a~ + b~) = (ala2 - b1b2)2 + (a1 b2 + a2bl)2. 

This is an interesting identity. A somewhat vague formulation of this iden­
tity is that the product of a sum of two squares by a sum of two squares is 
a sum of two squares. 

It is natural to ask if there are similar identities involving more squares. 
We shall see that this problem is anything but simple. It has occupied the 
minds of mathematicians for many years. It is one of the central issues 
considered in this book. We shall formulate it more precisely in chapter 3 
and solve it in part 3. 
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1.5 Division of Complex Numbers 

So far, we have said nothing about division of complex numbers. We discuss 
this next. 

Let z' and z be two complex numbers and z t o. By definition, the 
quotient z' / z is the solution of the equation 

zx = z'. (1.6) 

lIultiplying both sides of this equation by z we obtain zzx = zz', so that 

Izl2X = zz'. 

lIultiplying both sides of the last equation by 1/lz12 we have 

(1.7) 

It is easy to check that the value of x in (1.7) satisfies equation (1.6). 
We illustrate. Suppose that we wish to divide z' = 5 - i by z = 2 - 3i. 

By formula (1.7), 

z' 
z 

22 : 32 (2 + 3i)(5 - i) = 113 (13 + 13i) = 1 + i. 





Chapter 2 

Alternate Arithmetics on 
the Numbers a + bi 

2.1 Formulation of the Problem 

We made the expressions a + bi into a number system by introducing the 
:ollowing rules for their addition and multiplication: 

(a + bi) + (e + di) = (a + e) + (b + d)i, 

(a + bi)(e + di) = (ae - bd) + (ad + be)i. 

(2.1) 

(2.2) 

Formula (2.1) seems very natural. On the other hand, formula (2.2) 
does not inspire the same feeling. We shall now investigate the possibility of 
making the expressions a + bi into a reasonable number system by retaining 
.he addition rule (2.1) and replacing (2.2) by a multiplication rule that is, 
a priori, arbitrary. 

The form of the new law depends largely on the properties we expect the 
new multiplication to have. It would be awkward if the new multiplication 
.. ere given by the formula 

(a + bi) . (e + di) = ae2 + bdi, 

say. Indeed, putting b = 0, d = 0, we would then obtain the strange equality 

We shall expect the new multiplication to satisfy the following require­
ments: 
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1. Multiplication of a real number a, viewed as an element of the new 
system (a = a + Oi), by any number Z = b + ei must yield the same 
result as in the case of the complex numbers, that is, 

(a + Oi)(b + ei) = ab + aei, 

and 
(b + ei)(a + Oi) = ab + aei. 

In particular, this means that for real numbers the new multiplication 
must coincide with the usual multiplication: 

(a + Oi)(b + Oi) = ab + Oi. 

Since the analogous claim is true for addition ({2.1) implies that (a + 
oi) + (b + Oi) = (a + b) + Oi), it follows that the real numbers are 
included in the new system with their usual arithmetic. 

2. The equality 
(aZl)· (bz2 ) = (ab) . (ZlZ2) 

must hold for all real a and b. For example, (2i)(3i) = 6i2
• 

3. Multiplication must always be distributive over addition, that is, we 
must have 

and 

While these requirements do not determine the new law of multiplication 
completely, they imply a great deal. Thus, 

(a + bi)(e + di) = a(e + di) + (bi)(e + di) 

= ae + adi + bei + bdi2. 

To determine the outcome completely, it remains to determine the value of 
i2 . In particular, if we put i 2 = -1, then we obtain the familiar multipli­
cation of complex numbers. But this is certainly not the only possibility. 
After all, all that is required is that the product i . i belong to the number 
system under consideration, that is, that it be a number of the form p + qi. 
By assigning the values of p and q we will have completely determined the 
form of the multiplication law: 

(a + bi)(e + di) = (ae + bdp) + (ad + be + bdq)i. (2.3) 
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Having thus defined the object of our study, we can dispense with the 
heuristic considerations that led us to formula (2.3) and say that we inves­
tigate the system of numbers of the form a + bi with addition rule (2.1) and 
multiplication rule (2.3), where p and q are two fixed real numbers (that 
determine, so to say, the "arithmetic" of the given number system). 

A close look at formula (2.3) indicates that the new multiplication is 
commutative (ZlZ2 = z2zd. This result is somewhat surprising, for it is 
not one of the three requirements imposed on the multiplication law. It is 
also true that our multiplication is associative. In fact, 

[(a + bi)(e + di)](e + fi) = [Cae + bdp) + (ad + be + bdq)i](e + fi) 

= ((ae + bdp)e + (ad + be + bdq)fp) 

+((ae + bdp)f + (ad + be + bdq)e + (ad + be + bdq)fq)i, 

(a + bi)[(e + di)(e + fi)] = (a + bi)[(ee + dfp) + (ef + de + dfq)i] 

= (a(ee + dfp) + beef + de + dfq)p) 

+(a(ef + de + dfq) + b(ee + dfp) + beef + de + dfq)q)i. 

If we compare the results of the two computations, then we readily see 
that they are equal (to simplify the check, equal expressions appear on 
corresponding lines). 

2.2 Reduction to Three Systems 

The fact that formula (2.3) contains two arbitrary real numbers p and q 
may be taken as an indication that we have found an infinity of number 
systems. We are about to show that this is not at all so, and that each 
system can be reduced to one of the following three: 

1. numbers a + bi with i 2 = -1 (the complex numbers); 

2. numbers a + bi with i 2 = 1 (the so-called double numbers); 

3. l).umbers a + bi with i 2 = 0 (the so called dual numbers). 

The reduction process goes as follows. The equality i 2 = p + qi implies 
that i 2 - qi = p, or that 

. q 2 q2 
(z--) =p+-. 

2 4 
(2.4) 

There are three possible cases: 



12 Alternate Arithmetics 

case 1. p + q2/4 is a negative number, that is, p + q2/4 = -P, where 
k is a nonzero real number. Then 

that is, 

(-2~ + ~i)2 =-1. 

Denoting the number in parentheses by J, we have 

J2 =-1. 

(2.5) 

Since i = q/2 + kJ, it follows that every number a + bi can be written in 
the form 

. q b 
a + bz = a + b(2" + kJ) = (a + 2"q) + bkJ. 

In other words, every number a + bi can be written in the form a' + b' J , 
with J2 = -1. This means that we are actually dealing with the complex 
numbers. 

case 2. p + q2/4 is a positive number, that is, p + q2/4 = k2. Then 
instead of (2.5) we have 

Denoting the number in parentheses by E, we have 

E2 = 1. 

It follows that every number a + bi of our system can be written as a' + b' E, 
with E2 = 1. The law of multiplication of these numbers is 

(a' + b' E)(c' + d' E) = (a' c' + b'd') + (a'd' + b' c')E. 

In other words, for p + q2/4 > 0 we obtain the system of double numbers. 
case 3. p + q2/4 = O. In this case, denoting by n the number i - q/2, 

we have 
n2 = o. 

Every number a + bi in our system can be written as (a + bq/2) + bn, that 
is, in the form a + bn. The law of multiplication takes the form 

(a + bn)(c + dn) = ac + (ad + bc)n. 

This means that we are dealing with the system of dual numbers. 
In sum, we have shown that every system of numbers a + bi with the 

operation rules (2.1) and (2.3) is actually one of the following three systems: 
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1. The complex numbers a + bi, i 2 = -1; 

2. The double numbers a + bE, E2 = 1; 

3. The dual numbers a + bn, 0,2 = o. 
We have studied the properties of the complex numbers in considerable 

j,etail. Dual and double numbers are of lesser interest. Unlike the complex 
:1umbers,dual and double numbers do not, in general, admit division. We 
~ the meaning of the term "division": Given a law of multiplication, to 
=vide Zl by Z2(Z2 f; 0) is to solve the equation 

We show that in the system of double numbers it is not possible to 
:fi\ide, say, Zl = 1 (that is, 1 + OE) by Z2 = 1 + E. Indeed, if the equation 

(1 + E)x = 1 + OE 

.. ere solvable, then it would follow that (I-E2)x = I-E, that is, 0 = l-E, 

.. hich is impossible. Similarly, in the system of dual numbers it is not 
?OSSible to divide, say, 1 by n. Indeed, for every x = a + bn we have 
r·n=anf;1. 

Yve are used to the notion that a key property of numbers is that we 
an add, subtract, multiply, and divide them. This being so, we might 
~estion the appropriateness of speaking of double and dual numbers. In 
mathematics, however, systems of "numbers" (similar to double and dual 
!lumbers) in which we can always add, subtract, and multiply, but not 
necessarily divide play an important role. Systems in which division can be 
:arried out for all pairs Zl, Z2 f; 0 are called division systems. In this book 
we shall be mainly concerned with division systems. 





Chapter 3 

Quaternions 

3.1 Preliminaries 

Our construction of the complex (as well as double and dual) numbers, 
ruggests that we might go further, and consider numbers of the form 

z = a + bi + cj, 

where a, b, c are arbitrary real numbers and i and j are certain symbols. It 
is reasonable to adopt the following addition rule for these numbers: 

(a + bi + cj) + (a' + b'i + c' j) = (a + a') + (b + b')i + (c + c')j. 

The form of the multiplication rule requires some thought. Of course, we 
:lon't want a rule that would lead to awkward consequences, such as, say, 
the violation of the equality 

(a + Oi + OJ)(b + Oi + OJ) = ab + Oi + OJ, 

which states that for real numbert;! the new rule coincides with the usual 
multiplication of such numbers. Also, guided by the natural requirements 
~ated in the previous section, we require that 

1. The product of a real number k = k+Oi+Oj by a number z = a+bi+cj 
must be equal to ka + kbi + kcj; 

2. The equality 

must hold for arbitrary real numbers a, b; and 
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3. The distributive law 

must hold. 

It is not difficult to invent a multiplication rule satisfying all these re­
quirements. For example, we could adopt the rule 

(a + bi + ej)(a' + b'i + e'j) = aa' + (ab' + ba')i + (ae' + ea')j. 

While this multiplication rule is also commutative and associative (ZlZ2 = 
Z2Z1 and (ZlZ2)Z3 = Zl(Z2Z3)), it certainly does not imply the possibility of 
unrestricted division. For example, it is not possible to divide 1 by i, that 
is, the equation 

(0 + Ii + OJ)x = 1 + Oi + OJ 

has no solution. 
This is not an accident. It is possible to show that for every multi­

plication rule satisfying I, 2, and 3 there is at least one pair of numbers 
Zl, Z2(Z2 =/: 0) such that Zl cannot be divided by Z2. In other words, it is 
impossible to make a division system out of the numbers a + bi + ej ! 

On the other hand, it is possible to make a division system out of the 
numbers 

a + bi + ej + dk, (3.1) 

where k is an additional symbol. More precisely, it is possible to multiply 
the numbers (3.1) so that the requirements I, 2, 3 hold and division, the 
inverse of multiplication, can always be carried out. The most interesting 
example of such a system are the quaternions. 

3.2 The Definition of Quaternions 

The quaternions are the numbers (3.1) with the addition rule 

(a + bi + ej + dk) + (a' + b'i + e'j + d'k) 

= (a + a') + (b + b')i + (e+ e')j + (d + d')k, 

and a rather special multiplication rule. To determine the multiplication 
rule it suffices to assign the values of the products of the numbers i, j, k 
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~en two at a time: 

k 

Figure 3.1. 

i 2 = -1, P = -1, k 2 = -1, 

ij = k, ji = -k, 

jk = i, kj = -i, 

ki = j, ik = -j. 
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(3.2) 

t:gure 3.1 helps us remember this "multiplication table." In it, the numbers 
i.. j. k are represented by dots placed clockwise on the circle. The product of 
.-.u of these numbers is the third number or its negative, according as the 
::rientation of the shortest circular arc joining the first factor to the second 
io clockwise or counterclockwise. We see that this multiplication rule is not 
:::mmutative; the outcome depends on the order of the factors! 

Our multiplication table and the requirements 1, 2, 3 enable us to mul­
tiply arbitrary quaternions. Thus, let 

q = a + bi + ej + dk, 

q' = a' + b'i + e' j + d' k. 

By the rule for multiplying sums (implied by 3), we have 

qq' aa' + a(b'i) + a( e' j) + a( d 'k) + (bi)a' + (bi)(b'i) 

+ (bi)(e'j) + (bi)(d'k) + (cj)a' + (ej)(b'i) + (ej)(e'j) 

+ (ej)(d'k) + (dk)a' + (dk)(b'i) + (dk)(e'j) + (dk)(d'k). 

The terms with two of the three numbers i, j, k can be reduced using the 
:"'!quirements 1 and 2 and our multiplication table (for example, (bi)(e' j) = 
be'( ij) = be' k). The end result is 

qq' (aa' - bb' - ee' - dd') + (ab' + ba' + cd' - de')i 

+ (ae' + ea' + db' - bd')j + (ad' + da' + be' - eb')k. (3.3) 
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3.3 Associativity of Multiplication of 
Quaternions 

In spite of the fact that multiplication of quaternions is not commutative, 
computations involving quaternions are not as hard as might at first appear. 
What helps is that multiplication of quaternions is associative, that is, 

(3.4) 

We verify this next. 
Each of the quaternions qa (a = 1,2,3) is the sum of four terms (qa = 

aa + baj + caj + dak). It follows that the left side of (3.4) is the sum of 
4 x 4 x 4 = 64 terms of the form 

where Ul is one of the summands in ql, U2 in q2 and U3 in q3. Similarly, the 
right side of (3.4) is the sum of 64 terms 

Ul(U2U3). (3.6) 

If we can show that each of the terms (3.5) is equal to some term (3.6), 
then we'll have proved (3.4). 

Thus, to verify (3.4) it suffices to verify it for the special case when 
ql, q2, q3 are any three of the four quaternions a, b i, cj, d k. Since we can 
pull out numerical coefficients, we need only verify (3.4) for the four qua­
ternions l,i,j,k; for example, instead of showing that «bi)(cj))(b'i) = 
(bi)«cj)(b'i», it suffices to show that (ij)i = i(ji). 

If one of the quaternions q1, q2, q3 is 1, then (3.4) is obviously true. Thus 
it suffices to verify (3.4) when q1, q2, q3 are any of the quaternions i, j, k. 
There are 27 such equalities. Some of them are 

(ii)i = i(ii), (ii)j = i(ij), (ij)i = i(ji), (ij)k = i(jk). 

Using table (3.2) we can easily check all 27 equalities. This proves the 
associativity of the multiplication of quaternions. 

We shall see that the system of quaternions resembles the system of 
complex numbers in many very important respects. We have just checked 
that the multiplication of quaternions is associative. But the similarities 
between the two systems are far greater. As already indicated, the quater­
nions admit division. Then there is the possibility of defining the absolute 
value of a quaternion so that "the absolute value of a product is the product 
of the absolute values" of the factors. 

What is behind these similarities is the possibility of defining on the 
quaternions an operation of conjugation whose properties are analogous to 
those of the conjugation of complex numbers. 
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3.4 Conjugation of Quaternions 

By analogy with the complex numbers, we make the following definition. 
By the conjugate of the quaternion 

q = a + bi + cj + dk, 

~ mean the quaternion 

if = a - bi - cj - dk. (3.7) 

h is clear that the sum of conjugate quaternions is a real number. The 
~aternion multiplication rule 3 implies that the product qif is also real. In 
fact, 

Continuing the analogy with the complex numbers, we call the nonneg­
ative number 

va2 + b2 + c2 + d2 

the absolute value ofthe quaternion q and denote it by Iql. Then (3.8) can 
be written as 

This formula is the same as the one for complex numbers. 
Remark. If q' is a "pure imaginary" quaternion, that is, if q' = bi + 

:j + dk, then 

Conversely, if the square of a quaternion is real and less than or equal to 
aero, then that quaternion is pure imaginary. (In fact, if q = a+bi+cj +dk, 
then q2 = (a+q')(a+ q') = a2 + q,2 +2aq' = a2 _b2 - c2 _d2 +2aq'. If the 
13:,1: expression were a real number and a t= 0, then q' = O. But then q = a 
and q2 is not::; 0.) It follows that quaternions of the form bi + cj + dk -
and only such quaternions - can be characterized by the condition that 
their squares are real numbers::; o. With this in mind, we can give the 
iJllowing alternate description of the operation of conjugation: let q be a 
rwaternion and let q = a + q' be its unique representation such that the 
f.ftJare of the quaternion q' is real and::; O. Then if = a - q'. This remark 
will be used in chapter 17. 

Direct verification shows that conjugation has the properties 

(3.9) 
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(the conjugate of a sum is the sum of the conjugates of the summands), 
and 

(3.10) 

(the conjugate of a product is the product of the conjugates of the factors 
in reverse order). The reader will recall that analogous equalities hold for 
complex numbers. The one difference is that whereas for complex numbers 
we can write ZlZ2 for Z2Z1 (multiplication of complex numbers is commu­
tative), the quaternion products ihii1 and iiI ii2 are, in general, different. 

To verify (3.10) it suffices to check it in those cases in which q1 and q2 
are any two of the three quaternions i, j, k. Then the verification is easily 
accomplished by using the table (3.2). For example, 

and so on. 

Vi=-1=-1, 
ij=k=-k, 

and Vi = (-i)( -i) = i 2 = -1, 

and ]I = (-j)(-i) = ji = -k, 

3.5 The Quaternions as a Division System 
There is a basic difference between division of quaternions and division of 
complex numbers. The reader will recall that for complex numbers the 
quotient of Z1 by Z2 is the solution of the equation Z2X = Z1. But multipli­
cation of quaternions is noncommutative, and so it is necessary to consider 
not one but two equations: 

(3.11) 

and 
(3.11') 

We call the solution of the first of these equations the left quotient of q1 
by q2 and denote it by XI. Similarly, we call the solution of the second 
equation the right quotient of q1 by q2 and denote it by X r . (Of course, for 
complex numbers the two inverses coincide.) 

To solve the equations (3.11) and (3.11') we use the approach used ear­
lier in connection with complex numbers. We multiply both sides of (3.11) 
on the left by ii2 and then by Iq;1 2 • The result is 

1 
x = Iq212 ii2q1. 

Substitution in (3.11) shows that this expression is a solution. Hence 

1 _ 
x/ = Iq212 q2q1. 
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Similarly, 
1 

Xr = Iq212 qlii2' 

By way of an example, we compute the left and right quotient of k by 
1 + i + k: 

Xl = ~(1 - i - k)k = ~(k + j + 1), 

Xr = ~k(1 - i - k) = ~(k - j + 1). 

In sum, we have established the two most important properties of the 
system of quaternions: 

1. Multiplication of quaternions is associative; 

2. The quaternions are a division system. 

3.6 Absolute Value of a Product 

One other important property of quaternions is that the absolute value of 
a product is the product of the absolute values of the factors. Its proof is 
the same as for complex numbers. It makes use of the equality qlq2 = ihiil 
and the associativity of quaternion multiplication. The proof follows. 

3.7 The Four-Square Identity. General 
Formulation of the Problem of the Sum 
of Squares 

The equality 
!qlq2!2 = !ql!2 !qZ!2, (3.12) 

spelled out in detail; leads to an interesting identity. Thus, let 

ql = a + bi + cj + dk, q2 = a' + b'i + c'i + d'k. 

Then qlq2 is the expression on the right side of (3.3). If we reverse sides 
in (3.12), then we can write it as 

(a2 + ,,2 + (;2 + d2)(a'2 + b,2 + c12 + d 12
) (3.13) 

= (aa' - bb' - cc' - dd')2 + (ab' + ba' + cd' - dc')2 

+(ac' + ca' + db' - bd')2 + (ad' + da' + be' - cb'? 
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We recall that for complex numbers the equality IZ1Z212 = IZl121z212 
yields the analogous identity 

(3.14) 

which we said is to the effect that the product of the sum of two squares 
is again a sum of two squares. Similarly, (3.13) may be said to assert that 
the product of the sum of four squares by a sum of four squares is again a 
sum of four squares. 

The above identities suggest the following problem: For what values of 
n are there identities stating that "the product of a sum of n squares by a 
sum of n squares is a sum of n squares"? 

For n = 1 we have the immediate positive answer 

As we know, for n = 2 and n = 4 the answer, while not at all obvious, is 
again positive. But what about n = 3,5,6 and so on? As noted earlier, 
for a long time the problem was not fully answered. We owe a complete 
answer to the German mathematician A. Hurwitz who showed in 1898 that 
identities of the required kind exist for n = 1,2,4,8 and for no other values 
ofn. 

To avoid possible misunderstandings concerning "the problem of the 
sum of squares" we restate it with greater precision. 

Let a1,a2, ... ,an and b1,b2 , •.. ,bn be two strings of letters. Bya bi­
linear form in these letters we mean a sum such that each summand is a 
product of a letter in the first string and a letter in the second string. For 
example, the expression 

is a bilinear form. "The problem of the sum of squares" can be stated 
precisely as follows: For what values of n one can find n bilinear forms 
<1>1, <1>2, ... , <1>n such that 

(ar + a~ + ... + a~)(bi + b~ + ... + b~) = <1>i + <1>~ + ... + <1>~. (!) 

Clearly, the identities (3.13) and (3.14), which we found in connection 
with our study of quaternions and complex numbers, are of the required 
type. After a minor change of notation, the identities in question can be 
rewritten as 
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and 

The Four-Square Identity 

(ai + a~ + a~ + a~)(bi + b~ + b~ + b~) 
= (al bl - a2b2 - a3b3 - a4b4)2 + (al b2 + a2bl + a3b4 - a4b3)2 

+(al b3 + a3bl + a4b2 - a2b4)2 + (a l b4 + a4bl + a2b3 - a3b2)2. 
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In chapter 6 we shall consider the division system known as Cayley 
numbers and obtain from them an identity (!) for n = 8. In this way we 
shall have obtained (!) for n = 1,2,4,8. In Part 3, after discussing all the 
necessary preliminaries, we shall prove the previously mentioned Hurwitz 
theorem which asserts the impossibility of (!) for other values of n. 





Chapter 4 

Quaternions and Vector 
Algebra 

I> The discovery of quaternions in the middle of the 19th century provided 
the impulse for a variety of researches in mathematics and physics. In 
particular, quaternions gave rise to vector algebra, one of the most fruitful 
areas of mathematics. In this section we shall describe the connection 
between the calculus of quaternions and the operations on vectors in 3-
space. 

4.1 The Number and Vector Parts of a 
Quaternion 

We recall certain issues which the reader learned in geometry. Consider 
a rectangular coordinate system in space with unit vectors i, j, k on the 
coordinate axes (Figure 4.1). Then any sum of the form bi + cj + dk, 
where b, c, d are real numbers, represents a vector joining the origin 0 of 
the coordinate system to the point M with coordinates b, c, d. 

Now consider the quaternions. We may regard each quaternion 

q = a + bi + cj + dk 

as a formal sum of the real number a and the vector bi + cj + dk. We 
shall call a the number (or real) part of q, and bi + cj + dk its vector (or 
imaginary) part. 

N ow consider the vector quaternions 
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and their product 

We have: 

z 

Figure 4.1. 

-(b1b2 + C1C2 + d1d2) + (c1d2 - d1C2)i 

+(d1b2 - b1d2)i(b1C2 - c1b2)k. 

Real part of qlq2 = -(b1b2 + C1C2 + d1d2). 

Imaginary part of 

4.2 Scalar Product of Vectors 

( 4.1) 

(4.2) 

Each of the expressions (4.2) and (4.3) has a definite geometric sense. We 
are about to show that the sum b1b2 + C1C2 + d1d2 is equal to Iqlllq21 cos!p, 
that is, the product of the lengths (or absolute values) of the vectors ql 
and q2 by the cosine of the angle between them. Such products turn up 
in mathematics with extraordinary frequency. We refer to such a product 
as "the scalar product of the vectors ql and q2." (We emphasize that the 
scalar product is a number and not a vector.) We denote it by (ql, q2). 
Thus, by definition, 

We prove that 
( 4.4) 

Consider the triangle in Figure 4.2 determined by the vectors ql and q2. 
One of its vertices is at the origin. The remaining vertices are the points 
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z 

Figure 4.2 . 

. \11 , M2 (the endpoints of the vectors ql,q2) with coordinates bl , Cl, dl and 
b2 , C2, d2, respectively. We have 

so that 

OM; = bi + ci + di, 
aMi = b~ + c~ + d~, 

MIMi = (b l - b2)2 + (Cl - C2)2 + (dl - d2)2, 

MIMi = OM? + aMi - 2(blb2 + ClC2 + dld2). 

By the law of cosines, 

MIMi = OM? + aMi - 20Ml . OM2 . cos <p, 

where <p is the angle at a (the angle between the vectors ql and q2). Equat­
ing the expressions for MIMi we see that 

which was to be proved. 
Thus the real part of the product of the vector quaternions ql, q2 is the 

negative of their scalar product. 
We observe that if the nonzero vectors ql and q2 are perpendicular, then 

their scalar product is zero (<p =~, cos<p = 0). But then the real part 
of tl:e product is zero and qlq2 is a "pure" vector. Of course, the converse 
is also true: if qlq2 is a pure vector, then the scalar product of ql and q2 
is zero. But then, assuming that ql, q2 :f: 0, that is, that <p is defined, it 
follows that cos <p = 0 and ql, q2 are perpendicular. Also, if ql and q2 are 
perpendicular, then qlq2 = -q2ql' This follows readily from formula (4.1) 
if we bear in mind that the real part of qlq2 is zero. 
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4.3 Cross Product of Vectors 

The geometric interpretation of the vector part of the product qlq2, that 
is, of the right side of (4.3), is more difficult. We call it the cross product 
of the vectors ql and q2 and denote it by [ql, q2]. Thus [ql, q2] = (c1d2 -
d1C2)i + (d1b2 - b1d2)i + (b1C2 - c1b2)k. 

It turns out that the vector [ql, q2] is perpendicular to each ofthe vectors 
ql and q2 and that its length is equal to Iqlllq21 sin <p, that is, the area S of 
the parallelogram on the vectors ql and q2. 

We know that in order to prove the perpendicularity of the vectors 
[ql> q2] and ql it suffices to show that the real part of the product of these 
quaternions is zero or, what amounts to the same thing, that their product 
is a pure vector. Now (4.1) and (4.4) imply that [ql>q2] = qlq2 + (ql,q2), 
so that 

ql[ql, q2] = ql(qlq2 + (ql, q2)) 

= qrq2 + (ql, q2)ql = -lqll2q2 + (ql> q2)ql. 

(N ote that in the computation process we replaced qr by -lqlI2. This is . 
justified by formula (4.1), which implies that qi = -(bi + ci + di) + Oi + 
OJ + Ok = -lqlI2.) The expression on the right is a sum of two vectors, and 
thus a vector. A similar argument establishes the perpendicularity of the 
vectors [ql> q2] and q2· 

It remains to compute the length of the vector [ql> q2]. Its square is 
equal to 

(c1d2 - d1C2)2 + (d1b2 - b1d2)2 + (b1C2 - c1b2)2, 

which can be rewritten as 

The last expression is Iqll2 Iq21 2 - (ql, q2)2 or, bearing in mind the definition 
of the scalar product, 

Thus, as was to be shown, the square of the length of the vector [ql> q2] is 
equal to IqlI2Iq212sin2<p., that is, S2. 

The properties of the vector [ql, q2] just established (the fact that it is 
perpendicular to both ql and q2 and that its length is S) do not determine 
it uniquely. In fact, there are just two such vectors, and they are oppositely 
directed (Figure 4.3). The description of the vector [ql, q2] is completed 
by the statement that the orientation of the triple ql, q2, [ql, q2] in space is 
the same as that of the triple i, j, k. By this we mean the following: If we 
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Figure 4.3. 

look at the plane of the vectors ql and q2 from the tip of the vector [q1, q2], 
then we see that the orientation of the smallest rotation from ql to q2 is 
the same as the orientation of the smallest rotation from i to j, determined 
by viewing the plane of i and j from the tip of k (Figure 4.4). 

In sum, for the multiplication of pure vector quaternions we have the 
formula 

Here (q1, q2) is the scalar product ofthe vectors ql and q2, and [ql, q2] is their 
cross product. We see that the scalar and cross products are ''fragments'' 
of quaternion multiplication. 

The operations of scalar and cross product (together with vector addi­
tion and multiplication of vectors by scalars) are the basis of vector algebra 
- a branch of matherri-atics with numerous applications in mathematics 
and in physics (especially mechanics). The reader may be familiar with 
some of these applications (work is the scalar product of the force vector 
by the displacement vector, and so on). It should be noted that a clear pre­
sentation of vector algebra appeared much later than the first papers on the 
theory of quaternions (the papers of the English mathematician Hamilton, 
the founder of quaternion theory, appeared in the 1850s, whereas the basic 
aspects of vector algebra were formulated by the American mathematician 
and physicist Gibbs in the 1880s). 
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o 

i 

Figure 4.4. 

4.4 The Geometric Interpretation of the 
Multiplication of a Quaternion by a 
Pure Vector Quaternion 

Owing to the fact that quaternion multiplication involves the scalar and 
cross product of vectors, quaternions are a remarkable tool for the solution 
of certain problems in mechanics and geometry. Below we state a very 
difficult problem which can be solved by means of quaternions in a manner 
that is at once very simple and beautiful. Before we can do this, however, we 
must explain the geometric significance of the multiplication of a quaternion 
by a pure vector quaternion. 

Let 
q = a + bi + cj + dk 

be a quaternion whose absolute value is 1. Then 

a
2 + b2 + c2 + d2 = 1. 

Put 
q=a+q', 

where q' is the vector bi + cj + dk. Since /a 2/ + /q'/2 = 1, there exists a 
unique anglerp, 00 ::; rp ::; 1800 , such that 

a=cosrp, /q'l=sinrp. 
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Figure 4.5. 

Clearly, q' = Iq'l p, where p is a vector of unit length. Hence 

q = cos tp + psin tp. 

We emphasize that every quaternion q of absolute value 1 can be so rep­
resented (with p a vector of unit length) and that this representation is 
unique. 

We multiply the quaternion q by a vector quaternion v that is perpen­
dicular to p but otherwise arbitrary. We have 

qv = (cos tp + psin tp)v = v costp + pv sin tp. 

Since q and v are perpendicular, the real part of pv is zero and its vector 
part is [p, v], that is, a vector oflength Ipl·lvl· sin ~ = Ivl, perpendicular to 
p and v and oriented with respect to p and v in the same way as the vector 
k with respect to i and j. Denote this vector by v. Then we can say that 
i3 is the result of rotating v through 7r /2 about p. To avoid any ambiguity 
we stipulate that the orientation of the rotation about p is to be the same 
as the orientation of the smallest rotation from i to j about k.1 We have 

qv = v cos tp + v sin tp. 

A glance at Figure 4.5 shows that the vector qv is obtained from v by a 
rotation through tp about the vector p. 

Thus, if p is a vector of length 1 and v is any vector perpendicular to p, 
then by multiplying v on the left by the quaternion q = cos tp + psin tp we 
rotate it about p through the angle tp. 

Up to a point, this fact may be regarded as the geometric sense of 
multiplication (on the left) by q. What is disappointing is that the vector 
r is not arbitrary but perpendicular to p. 
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Figure 4.6. 

4.5 Representation of an Arbitrary 
Rotation in Space by Means of 
Quaternions 

By using a more complicated action on v we can obtain a quaternion repre­
sentation of a rotation about p of an arbitrary vector v. Specifically, instead 
of the product qv we must consider the more complex expression 

Here q-1 is the inverse of the quaternion q, that is, qq-1 = 1. It is easy to 
see that 

q-1 = coscp - psincp 

(in fact,(coscp+psincp)(coscp-psincp) = cos2 cp-p2 sin2 cp = cos2 cp+ 
sin2 cp = 1). 

We shall show that the vector qvq-l is the result of rotating the vector 
v about the vector p through 2cp. 

First assume that v is perpendicular to p. Then 

qvq-1 = qv( cos cp - psin cp) = qv cos cp - (qv)p sin cpo 

We know that qv is again a vector perpendicular to p. Hence (qv)p = 
-p( qv). Earlier we saw that the quaternion p( qv) is the vector obtained by 
rotating qv about the vector p through 7r/2 (Figure 4.6). As before, we 
denote it by qv. Thus 

qvq-1 = qv cos cp + qv sin cpo 

The expression on the right is the vector obtained by rotating qv about p 
through the angle cpo If we bear in mind that the vector qv is obtained from 
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t" by the same rotation, then it is clear that qvq-l is the result of rotating 
t" about P through the angle 2<p. 

Before considering the general case we observe that if the vector v is a 
multiple of p, v = AP, then clearly, qv = vq and 

-1 -1 qvq =vqq = v. 

Now let v be an arbitrary vector. We decompose it into two components, 
r = vl + V2, where Vl is a vector perpendicular to P and V2 is proportional 
to p. Then 

qvq-l = qVlq-l + qV2q-l = qVlq-l + V2, 

We see that the component Vl is rotated about p through the angle 2<p 
and the component V2 remains unchanged. But then v is rotated about p 
through the angle 2<p. 

We have shown that the rotation about p through the angle 2<p takes the 
rector v into the vector qvq-l, where 

q = cos <p + psin <p. 

With this in mind, we say that the indicated rotation corresponds to 
the quaternion q. 

4.6 The Problem of "Composition" of 
Rotations 

In the beginning of section 4.4 we promised to illustrate the application of 
quaternions by using them to solve a difficult geometric problem. We do 
this next. 

Consider a rotation through an angle 2<Pl about an axis determined by 
a unit vector Pl. This rotation is followed by a rotation through an angle 
2'P2 about an axis determined by a unit vector P2. We are required to find 
the axis and angle of the resultant rotation. 

We know that the first rotation takes any vector v into the vector Vl = 
ql vql l

, where ql = cos <Pl + Pl sin <Pl. The second rotation takes Vl into 

(here we have used the equality (q2qd- l = q1lq2"1, implied by the equality 
(q2qd(qllq2"1) = 1). Thus, the successive application of the two rotations 
takes the vector v into the vector 
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Put differently, the result of successive application of two rotations cor­
responding to the quaternions ql and q2 is the rotation corresponding to the 
quaternion q2ql. 

Since we have a rule for multiplying quaternions, we can easily compute 
q2ql. Then we put it in the form 

(4.5) 

with p a unit vector. The resultant rotation is a rotation about p through 
the angle 21/J. It is certainly true that by using quaternions we have solved 
our problem with ease! 

We illustrate by means of an example. Suppose the first rotation is 
about the x-axis through the angle 7r /2 and the second rotation is about the 
y-axis through the same angle. The quaternion corresponding to the first 
rotation is ql = cos ~+i sin ~ = ~(l+i), and the quaternion corresponding 

to the second rotation is q2 = ~(1 + j). Hence 

To put this quaternion in the form (4.5) we note that its real part is ~ = 
cos 7r /3. Hence 

7r [1 (. . k]. 7r 
q2ql = cos "3 + .j3 t + J - sm "3 

It follows that the resultant is the rotation about the vector p = ~(i+j-k) 
through the angle 27r /3. <l 



Chapter 5 

Hypercomplex Numbers 

5.1 Definition of a Hypercomplex Number 
System 

Complex, double, and dual numbers, as well as quaternions, are all instances 
of hypercomplex number systems. Now that the reader is familiar with the 
simplest examples of such systems he will find it easier to appreciate their 
more general definition. 

Consider expressions of the form 

(5.1) 

where n is a fixed integer, ao, aI, a2, ... an are arbitrary real numbers and 
i" i 2 , ••• , in are certain symbols (that we shall sometimes refer to as "imag­
inary units"). By definition 

ao + ali l + ... + anin = bo + bli l + ... + bnin , 

if and only if 
ao = bo, al = bI, ... , an = bn. 

For the sake of brevity, we shall denote the expressions (5.1) by means 
of single, boldface letters a, b, c, u, v, w, etc .. An exception to this rule is 
the use of ao for expressions of the form 

ao + Oil + Oi 2 + ... + Oin. 

We shall add, subtract, and multiply the expressions (5.1). Addition 
and subtraction are defined by the formulas 

(ao + ali l + ... + anin) + (bo + bli l + ... + bnin) = 
= (ao + bo) + (al + bl)i l + ... + (an + bn)in, 
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(ao + ali l + ... + anin) - (bo + bli l + ... + bnin) 

= (ao - bo) + (al - bl)i l + ... + (an - bn)in . 

Multiplication is defined as follows. 
We prescribe a "multiplication table," that is, we assign to each "prod­

uct" iaifj a "value" of the form (5.1); here nand /3 are integers from 1 to 
n. (Clearly, the number of such products is n· n = n 2 .) In other words, 

(5.2) 

where the choice of the real numbers Po, Pl, ... ,Pn is uniquely determined by 
the choice ofthe subscripts n, /3. To stress the dependence ofthe coefficients 
in (5.2) on the choice of n, /3 we write Pafj,i for Pi. Hence 

This notation, while somewhat awkward, takes care, at once, of all cases. 
The choice of the numbers Pafj;y determines the multiplication table. There 
are n 2(n + 1) such numbers (n + 1 numbers for each of the n 2 choices of 
the pairs n, /3). 

For example, in the case of the complex numbers the multiplication 
table consists of the single equality 

i . i = -1 + Oi. 

In the case of the quat ern ions , the table contains nine equalities, and can 
be written down as follows: 

i 3 k 

i -1 k -3 

3 -k -1 i 

k j -z -1 
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It is clear that each of the nine entries in the table stands for one of the 
equalities (5.3). For example, 

i . j = k = 0 + Oi + OJ + 1k. 

Given the multiplication table, we define the product 

to be the result of using the distributive law (each summand in the first 
sum is multiplied by each summand in the second sum and the results are 
added). Each term (aaia) . (b{3i{3) is rewritten as aab{3(iai{3), and iai{3 is 
replaced in accordance with formula (5.3). After reduction we obtain an 
expression of the form (5.1). 

The expressions (5.1) with addition and multiplication defined as above 
are called a hypercomplex number system of dimension n + 1 and the ex­
pressions (5.1) themselves are called hypercomplex numbers. It is clear that 
each hypercomplex number system is completely determined by its multi­
plication table. 

Here are some properties of the multiplication table valid in all hyper­
complex number systems. 

1. The product of a real number a, viewed as the hypercomplex number 
a + Oil + ... + Oin, by any number bo + bli l + ... + bnin is obtained 
by multiplying each of the coefficients bo, bl , ... ,bn by a: 

(a + Oil + ... + Oin)(bo + bli l + ... + bnin) 
= abo + abli1 + ... + abnin, 

and 

(bo + bli l + ... + bnin)(a + Oil + ... + ~in) 
= abo + abli 1 + ... + abnin. 

In particular, 
1· v = v and v . 1 = v, 

where v is any hypercomplex number. 

2. If u and v are hypercomplex numbers then 

(au)(bv) = (ab)(uv), 

where a and b are any real numbers. 
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3. The left and right distributive laws hold 

u(v + w) = uv + UW, 

(v + w)u = vu + WU. 

It is clear that properties 1, 2 and 3 are implied by our multiplication 
rule. We stress that they hold in all hyper complex number systems. 

5.2 Commutative Systems, Associative 
Systems, and Division Systems 

Other "nice" properties of multiplication, such as commutativity 

uv = vu 

and associativity 
(uv)W = u(vw), 

do not necessarily hold in all hypercomplex systems. A system in which for 
any two elements 1£ and v, 

uv = vu 

is called a commutative system. Of the systems considered so far, the 
systems of complex, double and dual numbers are commutative and the 
system of quaternions is not. 
I> It is easy to see the connection between commutativity and the proper­
ties of the numbers Pap in the multiplication table. If a system is commu­
tative, then 

that is, 

Therefore 

Pa/3,O = P/3a,O, Pa/3,l = P/3a,l, ... , Pa/3,n = P/3a,n, (5.4) 

where 1 :5 0:, {3 :5 n. Conversely, if all these equalities hold, then, clearly, 
the sxstem is commutative. In other words, the system is commutative 
if and only if the numbers Pa{J,"( that determine the multiplication table 
satisfy the relations (5.4). <l 
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A system in which for all triples of numbers u, v, w 

(uv)w = u(vw), 

is called an associative system. (The property of associativity is usually 
part of the definition of a hypercomplex system. In this sense, our definition 
represents a break with tradition.) 
t> We leave it to the reader to determine the relations among the Po:/3."( 
that make a hypercomplex system associative. <l 

The systems of complex, double, and dual numbers, as well as the sys­
tem of quaternions, are associative. A simple example of a nonassociative 
system is the system of numbers a+bi+ci with the following multiplication 
table. 

i 2 = 0, j2 = 0, ji = 0, ij = j. 
In this case, (ii)j =J i(ij). 

Addition, subtraction, and multiplication are defined for all hypercom­
plex systems. Not so division. 

We say that a hypercomplex system is a division system (or that it 
admits division) iffor all u and v with v :I ° the equations 

V:l: =u 

and 
:l:V=u 

are uniquely solvable (for :1:). The solution of the first equation is called 
the left quotient of u by v, and the solution of the second equation is called 
the right quotient of u by v. In general, the two quotients are different. 

The complex numbers and the quaternions are examples of division 
systems. Their dimensions are 2 and 4, respectively. It is remarkable that 
the only possible dimensions of a hypercomplex division system are 2,4, 
and 8. (We shall have more to say about this below.) This suggests that, 
in the multitude of hypercomplex systems, division systems are few and far 
between. In particular, the (3-dimensional) system of numbers of the form 
a + bi + cj, with any multiplication table whatever, is not a division system. 





Chapter 6 

The Doubling Procedure. 
Cayley Numbers 

We shall talk about a remarkable system of hypercomplex numbers called 
Cayley numbers. 

Like the complex numbers and the quaternions, the Cayley numbers are 
a division system, that is, they admit not only addition, subtraction and 
multiplication, but also division. Also, the Cayley numbers enable us to 
take a step forward toward the solution of "the sum of squares problem" 
formulated at the end of chapter 3, in the sense that we obtain the identity 
\!) for n = 8. 

Each Cayley number consists of eight terms. It follows that we need 
seven units i 1 , i 2 , ••• ,i7 to write down each Cayley number. In other 
words, the Cayley numbers are expressions of the form 

where aO,al,a2,a3,a4,aS,a6,a7 are arbitrary real numbers. 
The rule of multiplication of Cayley numbers is rather involved and we 

won't state it for a while. Instead, we'll describe a procedure that enables 
us to construct the Cayley numbers out of the quaternions in a very nat­
ural way. We shall call it the doubling procedure and say that the Cayley 
numbers are the result of "doubling" the quaternions. We shall see that 
the doubling procedure (also called the Cayley-Dickson procedure for the 
mathematicians Arthur Cayley and Leonard Dickson who first investigated 
it) can be used not only to obtain the Cayley numbers from the quater­
nions, but also the quaternions from the complex numbers and the complex 
numbers from the real numbers. 
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6.1 Another Approach to the Definition of 
the Quaternions 

Using the fact that ij = k we can write any quaternion 

q = a + bi + cj + dk 

in the form 
q = (a + bi) + (c + di)i, 

or 
q = %, + z2i, 

where z, = a + bi, z" = c + di. 
With this way of writing the quaternions we consider their multiplica­

tion. 
In addition to q we take a quaternion r, 

and consider the product 

qr (Zl + z"i)(w, + w2i) 

Z,W, + Z,(W"j) + (z2i)W1 + (z"i)(w"i) 

z, w , + z, w 2i + z"iw, + z"iw"i (6.1) 

(we removed parentheses because quaternion multiplication is associative). 
We note that since ii = -ji, we have (a + bi)j = j(a - bi), that is, 

zj = jz. 

Also, it is easy to check that any two elements z and w of the form a + bi 
commute: 

zw = W%. 

With these properties in mind, we can rewrite the second term on the right 
side of (6.1) as W"Z,j, the third as z2wd, and the fourth as %"W2P or as 
-W2 Z". It follows that 

(6.2) 

An important point about the representation of a quaternion in the form 
q = Z, + z"j is that, since i 2 = -1, all quaternions of the form a+bi may 
be viewed as complex numbers. This and formula (6.2) justify the following 
conclusion. 
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We can define the quaternions as expressions of the form Zl + z:d where 
Zl' and z,. are complex numbers and j is a symbol, that are multiplied as 
in (6.2). 

This is an essential remark that will enable us to understand the dou­
bling procedure for hypercomplex numbers. 

6.2 The Doubling of a Hypercomplex 
System. Definition of the Cayley 
Numbers 

We introduce a number of definitions. Let U be a hypercomplex system of 
elements of the form 

with some multiplication rule. We call the element 

the conjugate of u. 
Now we define U(2), the doubled U, as the hypercomplex system of 

dimension 2n whose elements are expressions of the form 

(6.3) 

where U l and u,. are arbitrary elements in U and e is some new symbol. 
The elements of U(2) are added according to the natural rule 

(U 1 + u,.e) + (Vl + v,.e) = (u 1 + VI) + (U,. + v,,)e, (6.4) 

and multiplied in accordance with the rule 

(u l + u,.e)(v i + v,.e) = (UIVl-V2U,.) + (V,.u I + u,.v!)e (6.5) 

(the bar denotes conjugation in U). 
The reader may be surprised by the fact that in defining the system U(2) 

we have ignored the usual method of writing hypercomplex numbers and 
the use of a multiplication table for the determination of multiplication. 
As we are about to explain, we have lost nothing and gained brevity and 
transparency. 

The usual form ofim element of U(2) is 
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This determines the pair of elements ttl' tt2 in U given by 

and thus the element(6.3) (which may be regarded as a brief code for (6.6», 
and conversely. Beyond that, the definition of multiplication (6.5) is shorter 
and clearer than a definition in terms of a multiplication table. Of course, 
formula (6.5) can be used to obtain the multiplication table of the "imagi­
nary units" iI, i 2 , .•• ,i2n+l . We won't produce such a table in general but 
will give it in detail below for the Cayley numbers. 

Now that we have defined the doubling procedure it is easy to see that 
what we did in the beginning of this chapter is obtain the quaternions by 
doubling the complex numbers. We leave it to the reader to show that 
doubling the real numbers yields the complex numbers. 

As stated earlier, the main purpose of this chapter is to construct the 
system of Cayley numbers. We can now define the Cayley numbers as 
the system obtained by doubling the quaternions. All the properties of the 
Cayley numbers flow naturally from this definition. They will be studied 
in detail in the next section. 

6.3 The Multiplication Table of the Cayley 
Numbers 

By definition, Cayley numbers are numbers of the form 

where ql and q2 are arbitrary quaternions, that are multiplied in accordance 
with the rule 

We consider the connection between this definition of tl;l.e Cayley num­
bers and their representation in the form 

ao + aliI + a2i2 + a3i3 + a4i4 + a5i5 + a6i6 + a7i7. (6.8) 

More precisely, we construct the multiplication table of the "imaginary 
units" il, ... , i 7. 

The quaternions ql and q2 corresponding to the-representation (6.8) are 

ql = ao + ali + a2i + a3k , q2 = a4 + a5i + ad + a7k. 
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For greater uniformity, we shall write (6.8) as 

a + bi + cj + dk + AE + BI + CJ + DK, 

where a, b, c, d, A, B, C, D are the earlier letters ao, at, ... , a7 and i, j, k, E, 
I, J, K are new symbols for the imaginary units i l , i 2 , ••• , i 7 • 

Now the quaternions ql and q,. are written as 

ql = a + bi + cj + dk, q,. = A + Bi + Cj + Dk. 

Beginning with{6.7) we can, as noted earlier, construct the multiplica­
tion table for the units i, j, k, E, I, J, K. For example, if in (6.7) we put 
q" = T,. =0, then 

(ql + Oe)(rl + Oe) = q1r1 + Oe. 

Thus the Cayley numbers ql and r 1 multiply like quaternions. It follows 
that the multiplication table for the units i, j, k is the same as for the 
quaternions: 

i" = -1, j2 = -1, k 2 = -1, 

ij = k, ji = -k, 

jk = i, kj = -i, 
ki = j, ik = - j. 

This gives 9 of the 49 products (there are 7 . 7 = 49 products of the 7 
units). Instead of a table of the remaining 40 products we give a mnemonic 
scheme for remembering the whole table. First there is the collection of 
seven triples: 

I J -k i E I 

i j kI -1 K 1 E J 

k E K 

To remember them, note that the triples in the left frame are obtained 
from the triple i, j, k by putting a minus sign in front of one symbol and 
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J 

Figure 6.1. 

capitalizing the other two. In all triples in the right frame the middle 
symbol is an E and the other two symbols are the same exc~pt for the 
type. To multiply them, let a, f3, r denote anyone of the 7 triples. Put 

and 

af3 = r, 
f3r = a, 
r a = f3, 

f3a = -r, 
rf3 = -a, 
ar = -f3, 

that is, a,f3,r multiply like the quaternions i,j,k. 

t> Figure 6.1 provides a good illustration of our rule. It shows a triangle 
with vertices I, J, K whose medians meet the sides at i, j, k and intersect 
at E. There are three "imaginary" units on each line. The units i, j, k also 
lie on a "line" (represented by the circle). In all, there are 7 "lines" and 
three units on each line. Apart from sign, the product of two units is the 
unit "collinear" with them. 

It is of interest to point out that in order to obtain a correct multipli­
cation scheme for the units i, j, k, E, I, J, K it suffices to place (in this 
figure) i, j, k on any line, mark one of the remaining points E, and place 
I,J,K on the lines iE,jE,kE, respectively. <l 
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6.4 Conjugation of Cayley Numbers. 
Absolute Values of Cayley Numbers 

Let 
u = a + bi + cj + dk + AE + BI + CJ + DK (6.9) 

be any Cayley number. By its conjugate we mean the Cayley number 

u = a - bi - cj - dk - AE - BI - CJ - DK. 

If instead of (6.9) we use the short representation 

u = ql + q2 e, 

where 
ql = a + bi + cj + dk, q2 = A + Bi + Cj + Dk, 

then the conjugate Cayley number is given by 

Now we compute the product of any Cayley number u and its conjugate 
U. It turns out that, just as in the case of complex numbers and quaternions, 
this product is a real number (that is, a Cayley number of the form a + 
Oi + OJ + ... + OK). In fact, 

uu = (ql + q"e)(ql - q2e ) = (qlql + q2q,,) + (-q2ql + q,.ql)e. 

Bearing in mind that for quaternions qq = qq = Iq12, we see that 

(6.10) 

The square root of Iqll2 + Iq,,12 is called the absolute value or norm of 
the Cayley number u and is denoted by lui. Note thlj.t if u is given in the 
form (6.9), then the square of its absolute value is 

(6.11) 

In view of the definition of the absolute value we have 

uu = lul2
• (6.12) 

If we bear in mind that the squares of the absolute values of the Cayley 
numbers u and u are equal (in fact, both are equal to (6.11)), then we also 
have 
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6.5 The Absolute Value of the Product of 
Cayley Numbers 

The system of Cayley numbers shares many of the properties of the systems 
of complex numbers and quaternions. One such property is that the abso­
lute value of the product of Cayley numbers is the product of the absolute 
values of the factors: 

luvl = lullvl, (6.13) 

or, equivalently, 
(6.14) 

We prove (6.14) by direct computation of \uv\" and \U\2\V\2" If we 
apply formula (6.10) to the product 

uv = (q, + q"e)(r , + r"e) = (q,r, - 1'2q,,) + (r2q, + q,,1'de, 

then we obtain 

luvl" = (q,r , -1'2q,,)(q, r , - r2q,.) + (r"q, + q"1'd(r,,q, + q"rd, 

or, in view of the property of conjugation for quaternions, 

\uv\,. = (q , r l -1'2q2)(rliil - ii2T,,) + (T,.Ql + Q,.rt)(iil1'2 + T1 ii2)· 

On the other hand, 

lul"lvl" = (q,iil +q"ii2)(T1 1' l +r,,1'2). 

If we compare the two expressions, then we see that they differ by the sum 
S of four terms, 

s = r,.q1 r 1 ii2 + q,.1'liil1'2 - q, r 1 ii2T,,-1'2q21'liil· 

Therefore we must show that S = 0 for any four quaternions ql) Q2, rl) r,," 
We begin with the obvious observation that S = 0 if r" is real. On the 

other hand, if r,. is a pure imaginary quaternion, then 1'2 = -r" and 

S = r,,(q, r 1 ii2 + q,.1'liil) - (q , r , q2 + q,.1'1Qdr 2" 

The expression in parentheses is a sum of two conjugate quaternions and 
therefore equal to some real number c. Hence 

S = T 2 C - cr,. = o. 
It remains to note an obvious property of S: if it vanishes for r" = a and 
r" = b, then it also vanishes for r,. = a + b. Since every quaternion is a 
sum of a real number and a pure imaginary quaternion and for each of these 
S = 0, it follows that S is always equal to zero. 
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6.6 The Eight-Square Identity 

The identity 
(6.15) 

established in the previous section presents a new contribution to the solu­
tion of "the problem of the sum of squares" posed at the end of chapter 3. 
Indeed, if we write it out in detail (and read it from right to left), then this 
identity states that "the product of sums of eight squares is again a sum of 
eight squares." In fact, if 

u = a+ bi+cj + dk+AE+BI+CJ +DK, 

v = a' + b'i + e' j + d'k + A' E + B'I + C' J + D' K, 

and 

then the identity (6.15) takes the form 

(a 2 + ... + D2)(a'2 + ... + D'2) = <I>~ + <l>i + ... + <I>~. 

Of course, we must make use of the multiplication of Cayley numbers to 
express <1>0, <1>1, •.• , <1>7 in terms of a, ... , D, a', ... , D'. This tedious task 
yields the identity: 

(a 2 + b2 + e2 + d2 + A2 + B2 + C2 + D2) 

x(a'2 + b'2 + e'2 + d'2 + A'2 + B'2 + C'2 + D'2) 

= (aa' - bb' - ee' - dd' - AA' - BB' - CC' - DD')2 

+( ab' + ba' + ed' - de' - A' B + B' A + C'D - D' C? 
+( ae' + ea' - bd' + db' - A' C + C' A - B'D + D' B)2 

+( ad' + da' + be' - eb' - A'D + D' A + B' C - C' B)2 

+(A'a - B'b - C'e - D'd + Aa' + Bb' + Ce' + Dd')2 

+(A'b + B'a + C'd - D'e - Ab' + Ba' - Cd' + De')2 

+(A'e+ C'a - B'd + D'b - Ae' + Ca' + Bd' - Db')2 

+(A'd + D'a + B'e - C'b - Ad' + Da' - Be' + Cb')2. 

It is of interest to note that it was the search for an eight-square identity 
that led the English mathematician Cayley to the discovery of the Cayley 
numbers! 
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6.7 The Non-associativity of Cayley 
Numbers. The Alternative Property 

We said earlier that the Cayley numbers share many, but not all, of the 
properties of quaternions and complex numbers. Thus, whereas multipli­
cation of complex numbers and quaternions is associative, multiplication of 
Cayley numbers is not associative. For example, 

(ij)E ~ i(jE). 

Indeed, (ij)E = kE = K, and i(jE) = iJ = -K. 
Obviously, the nonassociativity of multiplication of Cayley numbers 

does not mean that for any three such numbers u, v, w we have (uv)w ~ 
u( vw ). In fact, we will show that the following equalities hold for any two 
Cayley numbers u, v: 

(uv)v = u(vv), (6.16) 

and 
v(vu) = (vv)u. (6.17) 

We can regard formulas (6.16) and (6.17) as a weak form of associativity. 
Systems in which these two formulas hold are called alternative systems. 

Note that instead of proving (6.16) and (6.17) it suffices to prove 

(uv)v = u(vv), (6.16') 

and 
v(vu) = (vv)u. (6.17') 

Indeed, if we replace v in these equalities by -v + 2a, where a is the real 
part of the Cayley number v, then we can easily obtain (6.16) and (6.17). 

We prove (6.16'). A similar proof establishes (6.17'). 
Put u = q1 + q"e, v = 1'1 + 1'"e. Then 

(uv)v = «q1 + q"e)(1'1 + 1'"e»(rl - 1'"e) 
= «q11'1 - r2q2) + (r2q1 + q2rl)e)(h - 1'2 e) 

«q1r 1-r2q2)rl + r2(r2q1 + q2 r I) 

+ « -1'2)(q1 1'1 -r2q,,) + (1'"q1 + q2rd1'1)e 

= (11'11" + Ir"I")Q1 + (11'11" + 11'"12)Q,,e 

= (11'11" + Ir"I")(Q1 + Q"e) = Ivl"u. 

On the other hand, vv = Ivl", so that 

u(vv) = Ivl2u. 

This implies (6.16'). 
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6.8 The Cayley Numbers Are a Division 
System 

Like the complex numbers and the quaternions, the Cayley numbers are a 
division system. Let u and v be any two Cayley numbers and v :j: O. We 
recall that the left quotient of u by v is the solution of the equation 

VZ = u, (6.18) 

and the right quotient of u by v is the solution of the equation 

zv = u. (6.19) 

We solve (6.18). Just as in the case of the quat ern ions , we multiply 
both sides of (6.18) on the left by v. This yields 

v(VZ) =vu, 

or, in view of (6.17'), 

Hence 
Z = vu/lvl"'. 

Direct substitution (and the use of (6.17')) shows that this value of z sat­
isfies (6.18). In other words, the left quotient of u by v is 

A similar argument shows that the right quotient is 

Zr = uiiflvl 2
• 

(the proof requires the use of formula (6.16')). 
Thus we have shown that the Cayley numbers are indeed a division 

system. 





Chapter 7 

Algebras 

7.1 Heuristic Considerations 

Let us go back to the concept of a hyper complex system. According to the 
definition in chapter 5, a hypercomplex system of dimension n + 1 is the 
set of expressions 

(hypercomplex numbers) with a natural rule of addition and a certain rule of 
multiplication. The latter is determined by prescribing a table of products 

(7.1) 

of the "imaginary units" i 1 , i 2 , ••• , in, and stipulating that the product of 
two hyper complex numbers is obtained by using the distributive laws, and 
by replacing (aaia)(bf3if3) by aabf3(iaif3) and iaif3 by the right side of (7.1). 

We consider the case when all numbers Paf3,O (the ''free terms" in for­
mula (7.1)) are zero. In that case the product of two imaginary units i a, if3 
is again a combination of imaginary units. 

Let A denote the set of hypercomplex numbers of the form 

(7.2) 

(without the free terms). It is clear that the sum of two such numbers 
is again a number of the form (7.2). By what has been said about the 
products i aif3, it follows that the product of two numbers o~~e form (7.2) 
is also a number of that form. Thus the set A is closed under addition 
and multiplication. This allows us to consider A as an intfCpe dent system 

~ 
.nth two operations, addition and multiplication. In general, A is not a 
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hypercomplex system in the sense of our use of the word (the case when A 
can be regarded as such will be discussed below). 

The main difference between the system A and a hypercomplex system 
is that the latter contains an element e such that 

e"a=a"e=a 

for all a (the e in question is the element 1 + Oi 1 + ... + Oin) and the former. 
in general, does not. A closely related difference is that in a hypercomplex 
system it makes sense to speak of the product of a real number k by any 
element a (by definition, this is the product of k = k + Oil + ... + Oin and 
a) whereas in A the symbol ka is meaningless. The latter difference can 
easily be set aside by simply defining the product of a real number by an 
element of A by means of the formula 

In this way, the set A (on which one has already defined addition and mul­
tiplication) becomes an object called an n-dimensional algebra, or simply 
an algebra (not to be confused with the branch of mathematics bearing the 
same name!). 

7.2 Definition of an Algebra 

By an n-dimensional algebra we mean the set of expressions of the form 

(7.2) 

(where all a2, ... ,an are arbitrary real numbers and i" i", ... ,in are cer­
tain symbols) with the following operations: 

1. multiplication by a real number 

2. addition 

(ali l + a2i 2 + ... + anin) + (bli l + b2i2 + ... + bnin ) = 
= (al + bI)il + (a2 + b2)i2 + ... + (an + bn)in ; (7.4) 

3. multiplication given in terms of a table of products 
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where a and j3 are integers from 1 to n (the table is used to find the 
product 

just as in the case of hypercomplex numbers). 

Our definition makes it clear that an n-dimensional algebra is com­
pletely determined by its "multiplication table" (7.5), that is, by the choice 
of n 3 numbers Po:/3(y' In principle, these numbers are not subject to any 
restrictions; each choice determines a certain algebra. 

7.3 A Hypercomplex System as a Special 
Case of an Algebra 

For the sake of clarity, we "extracted" the concept of an algebra from that of 
a hypercomplex system. This fact notwithstanding, it must be emphasized 
that the concept of an algebra is more general than that of a hypercomplex 
system in the sense that every hypercomp/ex system can be regarded as an 
algebra of the same dimension. A detailed explanation follows. 

Let A be an algebra with elements 

and multiplication table 

(a,j3 are numbers from 1 to n), in which the unit i 1 has the property 

(7.6) 

for all a from 1 to n. Together with this algebra we consider the hyper­
complex system of elements 

with the multiplication table 

(U', j3 are numbers from 1 to n). We shall say that this hypercomplex system 
corresponds to the algebra A. 
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Using the multiplication table, we can find the product of any two ele­
ments of our algebra: 

(aliI + a2i 2 + ... + anin)(b1i1 + b2i2 + ... + bnin) 

= cli1 + C2i 2 + ... + cnin . 

If we "clear away" i l in the last equality, then we obtain the relation 

(al + a2i 2 + ... + anin)(b1 + b2i2 + ... + bnin ) 

= Cl + C2i2 + ... + cnin, 

which coincides with the law of multiplication in the corresponding hy­
percomplex system. It follows that by starting with an algebra satisfying 
condition (7.6) and "clearing away" the symbol i 1 in the representation 
of its elements, we obtain a hypercomplex system of the same dimension. 
Moreover, since the numbers Pa{J,; for a > 1,,B > 1 are arbitrary, we can 
obtain in this way all hypercomplex system. For example, consider the 
two-dimensional algebra with the multiplication table 

Clearly, this algebra satisfies condition (7.6). If in the product 

(aliI + a2i2)(bli1 + b2i2) = (a1b1 - a2b2)i1 + (a1b2 + a2bl)i2 

of two elements of A we strike out ii, then the multiplication table reduces 
to 

i,.i,. = -1, 

and the multiplication rule becomes 

which shows that we are dealing, essentially, with the system of complex 
numbers. 

7.4 Commutative Algebras, Associative 
Algebras, and Division Algebras 

The terminology introduced in chapter 5 to designate certain properties of 
hyper complex systems carries over without changes to algebras. Thus an 
algebra is said to be commutative if for any two of its elements a and b we 
have 

ab = ba, 
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and associative if for any three of its elements a, b, c we have 

(ab)c = a(bc). 

(It is of interest to note that early in the development of the theory of alge­
bras the property of associativity seemed so natural that the term "algebra" 
meant "associative algebra".) Finally, an algebra A is called a division al­
gebra if each of the equations 

ax = b (7.7) 

and 

ya = b, (7.8) 

where a and b are any elements of A and a ¥ 0, is uniquely solvable. In 
that case, the element x satisfying (7.7) is called the left quotient of b by 
a, and the element y satisfying (7.8) is called the right quotient of b by a. 

It is easy to see that division algebras have the property that if a product 
ab is zero, then either a or b is zero. In fact, if a ¥ ° then b = 0, for ° is 
a solution of ax = ° and such solutions are unique. 

In chapter 9 we shall prove the converse proposition: If A is an algebra 
such that ab = ° implies that either a or b is zero, then A is a division 
algebra. 

If e is an element of an algebra A such that 

ae = a and ea = a 

for all a E A, then e is called an identity of A, and A is said to be an algebra 
with an identity element. As noted earlier, all hypercomplex systems are 
algebras with identities. 

The simplest algebra with an identity is the one-dimensional algebra 
with the multiplication table 

In this algebra the multiplication rule is 

Effectively, this rule coincides with the multiplication of real numbers. That 
is why we shall call this algebra the algebra of real numbers. 
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7.5 Examples 
We consider examples of algebras that are not hypercomplex systems. 
Example 7.1 The n-dimensional null algebra. The multiplication table of 
this algebra has a particularly simple form: 

for all 0:, f3 from 1 to n. It follows that the product of any two elements is 
zero. 

Example 7.2 We consider the 2-dimensional algebra with the multiplica­
tion table 

tlt~ = t~, 

i 2 i 1 -t2 , 

Here the multiplication rule is 

(ali l + a2i2)(blil + b2i 2) = (alb l + a2b2)il + (a l b2 - a2bl)i2. 

Notwithstanding the similarity between this multiplication and the mul­
tiplication of complex numbers, this algebra is different from the algebra 
of complex numbers. We leave it to the reader to show that this algebra 
has no identity element ( and so cannot be a hypercomplex system). A 
more difficult exercise is proving the interesting fact that this algebra is a 
division algebra. 

Example 7.3 The algebra of 3-dimensional vectors with the cross product 
multiplication. This algebra consists of elements of the form 

bi + cj + dk, 

multiplied in accordance with the table 

Hence 

i2 = 0, j2 = 0, k 2 = 0, 

ij = k, ji = -k, 
jk = i, kj = -i, 
ki = j, ik = -j. 

(bi + cj + dk)(b'i + c'i + d'k) 

= (cd' - de')i + (db' - bd')j + (be' - eb')k. (7.9) 
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9 

Figure 7.1. 

I> Consider a rectangular coordinate system in ordinary euclidean space. 
Let i, j, k be three unit vectors whose directions coincide with those of the 
coordinate axes (Figure 7.1). With the usual conventions for the sum of 
two vectors and the product of a number and a vector, the expression 

q = bi + cj + dk 

represents a vector in space. The operation (7.9) is called the cross product 
(its geometric sense is discussed in chapter 4). It plays an important role 
in geometry and in physics. <l 

7.6 An Important Example: The Algebra 
of n x n Matrices 

The dimension of this algebra is n 2 . We could introduce n2 imaginary units 
it, i", ... ,in" but it is more convenient to use another numbering scheme 
in which, instead of a number Q' taking on the values from 1 to n 2, we use 
the "number" Q', j3 where Q' and j3 take on independently the values from 
1 to n (so that the number of pairs Q' and j3 is n 2). Hence the notation 
ia{3 for an imaginary unit. The imaginary units can be ordered any way we 
wish. We choose the following ordering: 

Thus the elements of our algebra are given by expressions of the form 
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A auiu + a12i12 + ... + alni1n 

+ a21 i 21 + ani22 + ... + a2ni2n 
(7.10) 

This notation emphasizes the fact that each element A of our algebra is 
determined by a table 

with n 2 entries. Such tables are called matrices; more specifically, n x n 
matrices, or square matrices of order n (the order is the number of rows 
or columns of the square table). In what follows, we shall use the compact 
notation 

A = (~~~ :~~ :~: ) 
an! a n 2 ann 

and suppose that the elements of our algebra are matrices. 
Next we prescribe the multiplication table of the units i a {3 - the key to 

the "personality" of our matrix algebra. We put 

(7.10) 

or, briefly, 
i a )..i)..{3 = i a {3' 

Here 0'., /3, >.. range over the integers 1, ... ,n. By definition, all the remaining 
products of imaginary units are zero. The two "halves" of our definition 
can be combined in the single rule 

(7.11) 

where {j)"JJ is defined to be 1 if >.. = J.L and 0 if >.. f. J.L. 
We shall now try to determine the entries in the product of two elements 

A and B of our algebra, that is, to compute 

( 

auiu + ... + alni 1n ) ( 

+ ~.2.1~~~ .: ....... ~ ~.2~.i:2.n. + 
+ anl'lnl + ... + ann~nn + 

buiu + ... + b1ni1n 
b21 i 21 + ... + b2ni 2n 
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The result is some element C: 

( 

c11i11 + C12i12 + ... + clni1n .. . 
C = + ~~~~~~ .~.~~2.'.2.2. ~: :: ~ .~2.n.'.2~. 

+ cn1in1 + Cn 2i n2 + ... + cnninn 
) 

Consider a typical summand c a {3ia{3 in C. The multiplication table (7.10) 
shows that this summand involves only the products 

and so is equal to 

In other words, 

Ca {3 = aal b1{3 + aa2b2{3 + ... + aanbn{3. 

It is not difficult to remember this formula: To obtain the element Ca {3 

of the matrix C take the o:-th row 

of the matrix A and the fJ-th column 

bnf3 

of the matrix B, form the product of each row element by the corresponding 
column element, and sum these products. The result is the element Ca {3 of 
the matrix C. 

Given two matrices A and B, this rule enables us to compute a third 
matrix C which it is natural to call the product of the matrices A and B. 
In other words, to multiply two elements A and B of our algebra we must 
multiply their corresponding matrices A and B. For example, if 

then 

AB = ( 1·6 + 2 . (-3) 1· (-4) + 2 . 3) (0 2) 
3 ·6 + 4· (-3) 3· (-4) + 4 . 3 = 6 0 . 
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Matrix multiplication plays an extremely important role in mathemat­
ics. The modest scope of this book rules out a detailed study of this opera­
tion. We limit ourselves to proving that matrix multiplication is associati11e" 
or to put it differently, the algebra of matrices is associative. 

For proof it suffices to show that the equality (AB)C = A(BC) holds if 
for A, B, C we take arbitrary imaginary units of our matrix algebra (com­
pare the similar argument used to prove the associativity of quaternioD 
multiplication in chapter 3). In other words, we must prove that 

Now by (7.11), the left side is equal to (b)..l'i o{3)i w"(l or, again by (7.11), to 
b)..l'li{3vio-y- Similarly, the right side is equal to io).,(b{3viWY)' or to b{3vli)"l'io'Y. 
Clearly, the two outcomes are equal. 

7.7 Characterization of Multiplication in 
an Arbitrary Algebra 

The material in this section is of an auxiliary nature and will be used only 
in chapters 16 and 18. 

The following properties of the operation of multiplication are direct 
consequences of the definition of an algebra: 

1. (a + b)e = ae + be, a(b + c) = ab + ae, 

2. ka· b = k(ab), a· kb = k(ab). 

These properties characterize the multiplication operation in the sense clar­
ified by the following proposition. 

Consider the set A of expressions of the form 

with the operation (7.3) of multiplication by a number, the operation (7.4) 
of addition, and a certain operation a 0 b having the properties 1 and 2 
above, that is 

(a + b) 0 c = a 0 c + b 0 c, a 0 (b + c) = a 0 b + a 0 c, 
ka 0 b = k(a 0 b), aokb = k(a 0 b). 

Then the set A is an algebra whose multiplication operation is a 0 b. 
To prove this result we must check that a 0 b is a multiplication in the 

sense of the definition of an algebra given in section 7.2. 
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Consider the expression ia 0 if3. This is a certain element of A, that is, 

Properties 1 and 2 imply that 

aob (ali l + ... + anin ) 0 (bli l + ... + bnin ) 

I)( aaia) 0 (bf3if3)] Jb L aabf3( ia 0 if3) 
a,f3 a,f3 

(7.12) 

(here the equality marked with ! is justified by property 1 and the equal­
ity marked !! is justified by property 2). At this point, all we need do 
to compute a 0 b is replace ia 0 if3 by the corresponding element (7.12), 
multiply aabf3 by this element, and carry out reductions. But this is just 
the procedure used in defining the multiplication of the elements in any 
algebra A. 





Part II 

N-Dimensional Vectors 
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We turn once more to the definition of an n-dimensional algebra. Its 
most difficult component is, undoubtedly, the operation of multiplication. 
Is there anything significant left if this operation is suppressed? Well, what 
is left is a collection of elements that are uniquely represented in the form 

with a natural rule of addition 

(ali l + a2i 2 + ... + anin) + (bli l + b2i2 + ... + bnin ) 

= (al + bl)i l + (a2 + b2)i2 + ... + (an + bn)in 

and an equally natural rule of multiplication of an element by a real number: 

While the material at our disposal does not look very promising, it turns 
out that it is possible to use it as the basis for a comprehensive theory. In 
fact, there is a whole branch of mathematics, called linear algebra, built 
around these two operations. Linear algebra has a rich content and is 
frequently utilized both is mathematics and in its many areas of application. 
The present chapter is an introduction to some aspects of linear algebra and 
will provide the basis for the study of the theory of algebras in part 3. 





Chapter 8 

The N-Dimensional 
Vector Space An 

8.1 Basic Definitions 
Definition 8.1 By an n-dimensional vector we mean an object of the form 

(8.1) 

where aI, a2, ... ,an are arbitrary real numbers and 

.. . 
Z"Z", ... ,Zn 

are n different symbols to which we assign no special meaning. 

We shall explain the reason for calling the expressions (8.1) vectors. If 
n = 2, then (8.1) reduces to 

(8.2) 

If we think of i 1 and i2 as two fixed vectors in a plane, then the expression 
in (8.2) is again a vector in that plane2 (Figure 8.1). Also, if the vectors 
i 1 and i2 are not collinear, then every vector in the plane can be uniquely 
represented in the form (8.2). 

Definition 8.2 Two n-dimensional vectors 

and 
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Figure 8.1. 

are said to be equal if and only if 

The reason for this definition was mentioned earlier: if i l and i2 are two 
non collinear "basis" vectors in the plane, then every vector in the plane has 
a unique representation (8.2). 

Definition 8.3 Two n-dimensional vectors are added according to the rule 

(ali l + ... + an in) + (bli l + ... + bnin ) 

= (al + bl)i l + ... + (an + bn)in , 

and multiplication of an n-dimensional vector by a real number is deter­
mined by the rule 

k(ali1 + a2i2 + ... + anin ) = kali1 + ka2i2 + ... + kanin. 

This definition is also inspired by the corresponding definitions for geo­
metric vectors. 

We shall denote vectors briefly by boldface lowercase letters a, b, c, and 
so on. Equality of vectors a and b will be denoted in the usual manner: 

a= b. 
J 

It is easy to see that addition of vectors has the properties 

a+b=b+a 
(a + b) + c = a + (b + c) 

(commutativity) , 
(associativity) , 
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and multiplication of a vector by a scalar has the properties 

k(la) = (kl)a, 

(k + l)a = ka + lao 

We shall call our system of vectors an n-dimensional vector space and 
denote it by An. 

The vector 
O'i1 + Oi2 + .. , + Oin 

is called the zero vector and is denoted by O. It is clear that for any vector 
a 

and 
Oa = o. 

8.2 The Concept of Linear Dependence 
When studying some problems we usually deal not with a single vector 
but with a whole system of n-dimensional vectors. Then we usually denote 
them by the same letter (say, a) with different subscripts. Thus 

a 1 - 5i1 + 3i2 + 5i3 + 3i4 , 

(8,3) 

a3 i 1 + Oi 2 + 3i3 - 2i4 , 

is an example of a system of three 4-dimensional vectors. 
Let 

be a system of n-dimensional vectors. We take arbitrary numbers 

and form the vector 

'Ve say that the vector a is a linear combination of the vectors a 1 , a 2 , ••• , 

am with coefficients k1 , k2, ••• , km . 

Example 8.1 Express the linear combination 

a 1 - 3a2 + 2a3 

of the vectors a" a 2 , a3 in (8.3) as a vector of the form k1i1 + k2i2 + k3i3 + 
k4i 4 . 
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Solution 8.1 Since 

5i3 + 3i4 , 

12i3 9i4 , 

6i3 4i4 , 

it follows that 

a l - 3a2 + 2a3 = Oil + Oi2 - li3 - lOi4 . 

We introduce one more key definition. 

Definition 8.4 A system of vectors 

(8.4) 

is said to be linearly dependent if some linear combination of these vectors 
is equal to the zero vector, 

(8.5) 

and at least one of the coefficients S1, S2, .•• , sp is not zero. In the opposite 
case (that is, if no such linear combination exists) we say that the system 
(8.4) is linearly independent. 

A direct consequence of this definition is that a system consisting of a 
single vector is linearly dependent if the vector in question is the zero vector 
(indeed, if SIal = 0 and 81 i 0, then a l = 0). 

In case of a system of two vectors, linear dependence means that there 
are numbers 81,82, not both zero, such that 

Suppose that 81 i O. Then our equality implies that 

where k = -82/81. Two vectors so related are said to be proportional. 
Now consider a system of p linearly dependent vectors and suppose, for 

definiteness, that 81 in (8.5) is different from zero. Then 

a l = k2a 2 + k3a3 + .. , + kpap, 

that is, the vector a l is a linear combination of the other vectors in the 
system. 

This argument shows that a linearly dependent system consists of one 
vector (and then it is the zero vector), or one of its vectors is a linear 
combination of the others. 
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8.3 Another Definition of Linear 
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We shall find it convenient to use another formulation of the concept of 
linear dependence: the system (8.4) is linearly dependent if and only if 
a 1 = 0 or one of its vectors is a linear combination of its predecessors. 

We shall show that our two definitions of linear dependence are equiv­
alent. 

If a l = 0, then the system is linearly dependent for, in that case, the 
linear combination 1 . at + Oa2 + ... + Oap is equal to the zero vector and 
the first coefficient is different from zero. If one of the vectors is a linear 
combination of its predecessors, 

;hen the system is linearly dependent, for the linear combination k l a , + 
... + ki-lai-l - 1ai + Oai+l + ... + Oap is zero (that is, the zero vector) 
md the coefficient of aj is not zero. 

Conversely, suppose that our system is dependent, that is, (8.5) holds 
and at least one of the coefficients Sl, 82, ... ,8p is not zero. Consider the 
last of the nonzero coefficients. If that is 81, then 81 a l = o. But then 
a l = o. If that is Sj with i > 1 then, by adding the vector -Sjaj to our 
equality and multiplying both sides by -1/ Sj, we obtain an equality of the 
form 

that is, we shall have expressed the vector ai as a linear combination of its 
predecessors. 

8.4 The Initial Basis 

It is natural to denote the vector 

3.5 i l - This means that the symbol i l , originally devoid of any particular 
meaning, has now been identified with one of the vectors. Similarly, we 
identify 

.nth i 2 , and so on. 
The vectors 
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just defined have the property that every vector in An can be expressed as 
a linear combination of them. In fact, consider any vector a E An. This 
vector is some formal sum 

(8.6) 

In view of definitions 8.2 and 8.3 we can write 

aliI + a2i2 + ... + anin = al(li1 + Di2 + ... + Din) 

+a2(Di l + li2 + ... Oin) + ... + an(Oi1 + Oi2 + ... + lin), 

which means that the vector a is a linear combination of the vectors i 1 ,i2 , 

.. . ,in with the coefficients aI, a2, .. . , an. This means that we may now 
regard the formal sum (8.6) as a genuine linear combination of vectors. 

The vectors iI' i", ... ,in form a so-called basis of the space An. In the 
next section we shall give a precise definition of this term. By way of an 
anticipatory remark we wish to note that there are infinitely many bases, 
and that the basis i" i", . .. , in is in no way distinguished. 
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A Basis of The Space An 

9.1 Definition of a Basis 
A finite system of vectors 

(9.1) 

in called a basis of the space An if it has the following two properties: 
1. every vector a E An is a linear combination of these vectors, 

(9.2) 

2. the representation (9.2) of a is unique, that is, given a representation 

a = hal + 12a2 + ... + lpap, 

we can conclude that 

We shall prove that the vectors of a basis are linearly independent. 
Suppose that the vectors (9.1) are linearly dependent. By definition, 

there is a linear combination of these vectors that is equal to zero, 

(9.3) 

and not all of the coefficients Sl, S2, ••. ,sp are zero. By adding the equali­
ties (9.2) and (9.3) we obtain 

a = (k1 + sl)a1 + (k2 + s2)a2 + ... + (kp + sp)ap, 

that is, a different representation of a as a linear combination of the vec­
tors (9.1). But this contradicts the definition ofa basis. 
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9.2 Obtaining Other Bases 

One example of a basis is the system 

of initial basis vectors. It is obvious that these vectors satisfy the conditions 
1 and 2 in section 9.1. This is far from being the only basis of the space 
An, however. What follows are two ways of obtaining bases from a given 
basis. 

1. Multiply anyone of the basis vectors by a nonzero number. 

For example, by multiplying the first of the vectors in (9.1) by some 
nonzero number k we obtain the system of vectors 

(9.1') 

which is obviously a basis. 

2. Replace one of the basis vectors by the sum of that vector and another 
of the basis vectors .. 

For example, by replacing the vector al by the sum a l + a 2 we obtain 
the new system 

(9.1") 

which is again a basis. In fact, let a be some vector. Then, for some 
real numbers kl, ... ,kp, equality (9.2) holds. But then 

that is, a is a linear combination of the vectors (9.1"). Also, the 
uniqueness of the representation of a in terms ofthe basis vectors (9.1) 
readily implies the uniqueness of its representation in terms of the 
vectors (9.1/1). Hence (9.1") is al~o a basis of the space An. 

t> It is natural to ask how one finds all bases of the space An. What we 
have in mind is a procedure for obtaining from any basis all the others. In a 
sense, the following proposition answers this question. In this proposition, 
the term "elementary transformations" refers to the above two ways of 
obtaining bases from a given basis. 

It is possible to go from any basis to any other basis by means of a finite 
number of elementary transformations. 

In particular, it is possible to obtain all bases of the space An byapply­
ing (arbitrary numbers of) all possible elementary transformations to the 
basis of the initial basis vectors. 
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The proof of this proposition is not difficult but we shall not give it 
here. Actually, it is not so much this proposition that interests us here but 
rather its consequence which asserts that: 

Every basis of the space An consists of n vectors. 
Given the above proposition, the proof of its consequence just formu­

lated is obvious, for an elementary transformation preserves the number of 
vectors in any system of vectors. 

Below we give an independent proof of the last proposition. <I 

9.3 The Number of Basis Vectors 

We shall now prove the following theorem. 
Theorem 9.1 Every basis of the space An consists of n vectors. 

Since the initial basis i
" 

i 2 , ••• ,in consists of n vectors, all we need 
show is that any two bases contain equal numbers of vectors. 

Before embarking on the proof we make the following observation. 
Suppose that the system of vectors 

au a", ... , a p 

is complete, by which we mean that any vector a can be written as a linear 
combination of these vectors. Take any nonzero vector b and adjoin it to 
our complete system as a new first vector. The new system of vectors 

b, a
" 

a", ... ,ap 

is linearly dependent (for the completeness of the initial system implies an 
equality ofthe form b-k1al-k2a2- ... -kpap = 0). According to section 3 
of chapter 8, the new system contains a vector ai that can be written as 
a linear combination of its predecessors. We claim that if we eliminate the 
"superfluous" vector ai , then the resulting system is again complete. 

This is almost obvious. Indeed, any vector a can be written as a lin­
ear combination of the vectors a

" 
a,., ... , ap • If we replace in this ex­

pression the "superfluous" vector ai by its representation in terms of a 
linear combination of its predecessors b, a

" 
a", ... ,ai-l, then we shall 

have expressed the vector a as a linear combination of the p vectors 
b, au a", ... , ai-u ai+" ... , ap. 

Now the proof of theorem 9.1 is quite short. Thus, let 

(9.4) 

and 
b" b2 ., • •• , bq (9.5) 
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be two bases. We wish to show that p = q. 
Suppose that p # q and assume, for definiteness, that p < q. Adjoia 

the vector b, as a first vector to the system (9.4) and eliminate from it the 
"superfluous" vector. By what was proved above, the new system 

call it (9.4'), is complete. 

b,,~, 
p-I 

Adjoin the vector b" as a first vector to the system (9.4') and eliminate 
from the resulting system the "superfluous" vector. This yields a new 
complete system 

and so on. 

b",bl'~' 
p-2 

Note that none of the adjoined vectors b
" 

b", ... can be a "superfluous" 
vector. This is so because these vectors belong to a basis (namely, (9.5)). 
This means that at each step of our process we eliminate one of the vectors 
a"a", ... ,ap • 

After p steps we will have eliminated all the vectors a l , a", ... ,ap and 
arrived at the presumably complete system 

But this is impossible, for the vector bp +1' say, cannot be written as a linear 
combination of these vectors. This contradiction proves our theorem. 

9.4 The Number of Vectors in a Linearly 
Independent System 

We proved above that the vectors of a basis are linearly independent. It 
follows trivially that the space An contains linearly independent systems 
of n vectors. It is natural to ask whether there are in An systems of more 
than n linearly independent vectors. It turns out that this is not the case. 
In fact, we have 
Theorem 9.2 If the system 

al' a", ... , a p 

of vectors in An is linearly independent, then p :::; n. If p = n, then the 
given system is a basis of the space An. 
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Proof. Denote the given system for brevity by S. We shall construct a 
basis of the space An by adjoining to the system S vectors from an arbitrary 
basis 

Consider the vector e 1 • If it can be written as a linear combination of 
the vectors in S, then we ignore it. If not, then we adjoin it to S (as a 
last vector). In either case, we call the new system S' (we have S' = S or 
S'=8Ue1 ). 

N ow we consider e,.. If it can be written as a linear combination of the 
yectors in S', then we ignore it. Otherwise we adjoin it to S'. In either 
case we call the new system S" (we have 8" = S' or S" = S' U e,.). After 
n such steps we end up with a system sen). This system has the following 
properties: 

1. Every vector a E An is a linear combination of vectors in S( n). This 
is so because the vector a is a linear combination of the vectors 
e 1 , e,., ... ,en which, in turn, are linear combinations of vectors in 
sen) (the latter foHows from the way we constructed sen»~. 

2. None of the vectors in sen) can be written as a linear combination of 
its predecessors (this again follows from the manner of construction 
of s(n»). This means that the system sen) is linearly independent. 

3. The representation of any vector a as a linear combination of the 
vectors in Sen) is unique. Otherwise, the difference of two represen­
tations of a would yield a relation of linear dependence connecting 
vectors in S( n) . 

Properties 1 and 3 show that the system sen) is a basis of the space An. 
By theorem 9.1, the number of vectors in sen) is n. Since sen) contains 
the vectors a" a,., .. . , ap, it follows that p::; n. If p = n, then our initial 
system is a basis. This completes the proof. 

9.5 A Consequence of Theorem 9.2 
Pertaining to Algebras 

In chapter 7 we promised to prove that in an algebra A has the property 
that ab = ° implies a = ° or b = 0, then A is a division algebra. We 
couldn't prove this proposition then but we prove it now. 

Suppose that we wish to solve the equation 

ax = b, (9.6) 



80 A Basis of The Space An 

where a =f o. We choose a basis 

e1,e", .. . ,en 

in the vector space A. Upon multiplication of the basis vectors on the left 
by a we obtain the system of n vectors 

ae1,ae", ... ,aen• (9.7) 

We prove that these vectors again form a basis. 
By Theorem 9.2, it suffices to show that the vectors (9.7) are lin­

early independent. Suppose that this is false. Then there exist numbers 
kl, k2' ... ,kn not all zero such that 

Hence 
a(k1e1 + k2e" + ... + knen ) = o. 

By assumption, one of the factors in the last equation must be o. Since 
a =f o,it follows that 

This contradicts the linear independence of the vectors e., e 2 , • •• , en. 
Thus the vectors (9.7) form a basis. Write b as a linear combination of 

the vectors in (9.7), 

If we rewrite this as 

then we see that the element 

is a solution of (9.6). This solution is unique. In fact, if z' were another so­
lution, then by forming the difference of the equations az = band az' = b 
we would obtain 

a(z - z') = 0, 

which implies that z - z' = 0, that is, z = z'. 
A similar argument proves the existence and uniqueness of the solution 

of the equation 
za = b. 
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9.6 Coordinates of a Vector Relative to a 
Basis 
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The last question we want to touch on in this section is that of the coordi­
nates of a vector relative to a given basis of the space An. 

Thus, let 

be a basis of the space An, and let 

be the representation of a vector P E An relative to this basis. The numbers 
kl' k2, ... ,kn are called the coordinates of the vector p relative to the given 
basis. 

The equality 

(klal + .. , + knan) + (hal", + lnan) 

= (kl + It)al + ... + (kn + In)an , 

implied by the properties of vector addition and multiplication of a vector 
by a number, shows that when vectors are added, then their corresponding 
coordinates are added. Similarly, the equality 

shows that when a vector is multiplied by a number, then its coordinates 
3.re multiplied by that number. In other words, the rules of addition of 
\-ectors and multiplication of a vector by a number are the same for the 
initial basis i 1 , i 2 , ••• ,in as well as for any other basis at, a 2 , ••• , an. 
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Subspaces 

There are certain subsets of the space An whose properties justify our 
regarding them as independent spaces Ap,p ~ n. We call such subsets 
subspaces of An. 

10.1 Definition of a Subspace 
Let P be a nonempty set of vectors in An. We shall call it a subspace of 
the space An if 

1. a E P and bE P imply that a + b E P; 

2. a E P implies that ka E P for any real number k. 

In other words, a subspace is a set of vectors containing all linear com­
binations ka + Ib + sc + ... of vectors a, b, c, ... in it. 

Trivial examples of subspaces are the so-called null space, consisting of 
the zero vector, and the space An. But there are many other subspaces. In 
the next section we shall explain the structure of any subspace of An. 

Suppose that P is a subspace that is not the null space. Let al E 
P, a l =f o. If all the vectors of P are multiples of al, then we are finished. 
Otherwise we adjoin to al a vector a2 in P that is not a multiple of al. 
If all the vectors in P are linear combinations of al and a2, then we are 
finished. Otherwise we adjoin to a

" 
a 2 a vector a3 in P that is not a linear 

combination of al and a2, and so on. This process yields a system of vectors 
none of which is a linear combination of its predecessors. This means that 
at each step we are dealing with a linearly independent system of vectors. 
By theorem 9.2 ofthe preceding chapter this process must end after at most 
n steps. In other words, we obtain a system of linearly independent vectors 

(10.1) 
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in P such that 

1. every vector in P is a linear combination of these vectors, and 

2. this linear combination is unique. (In fact, if we had two such linear 
combinations for a vector a E P, then their difference Sla1 + S2a2 + 
... + spap would be equal to 0 and at least one of the coefficients 
Sl, S2, ... ,sp would be different from zero. But this would contradict 
the linear independence of the vectors (10.1).) 

We see that the subspace P consists of all vectors of the form 

and that there is just one such representation for every vector a E P. This 
allows us to regard P as a p-dimensional vector space Ap with initial basis 
a" a", . .. , ap. Of course, the theorems proved earlier for vector spaces 
hold in this space. In particular, each of its bases consists of p vectors. The 
number p is called the dimension of the subspace P. We saw that p cannot 
exceed n. If p = n, then the system (10.1) is a basis of An (see once more 
theorem 9.2 of the preceding chapter), so that P coincides with An. 

We wish to emphasize the following immediate consequence of the above: 
every subspace P coincides with the totality of linear combinations of certain 
p vectors a" a", ... , ap. 

10.2 Examples 

We illustrate the concept of a subspace in the case of the 3-dimensional 
space A3 . 

Let P be a nonnull subspace of A3 . A basis of P contains at most three 
vectors. It follows that a basis of P has one of the following three forms: 

In the first case, P consists of all multiples ka1 of a1 (Figure 10.1). In 
the second case P is the set of all vectors of the form k1a1 + k2a2, and so 
consists of all vectors coplanar with a1 and a2 (Figure 10.2). In the third 
case, P consists of all vectors of the form k1al + k2a2 + k3a3, that is, of all 
vectors in A3 (Figure 10.3). 
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Figure 10.1. 

Figure 10.2. 

Figure 10.3. 





Chapter 11 

Lemma on Homogeneous 
Systems of Equations 

This chapter is of an auxiliary nature. In it we consider a subject seemingly 
unrelated to vectors, namely, the subject of systems of linear equations. 
More accurately, we shall prove a lemma pertaining to systems of homoge­
neous linear equations. This lemma will help us establish important results 
to be considered in the sequel. 

A linear equation is called homogeneous if its free term is zero. In other 
words, a homogeneous linear equation in n unknowns Xl, X2, ... , Xn has the 
form 

A system consisting of homogeneous linear equations is itself called ho­
mogeneous. A homogeneous system of m equations in n unknowns has the 
form 

alXl + a2X2 + ... + anXn = 0 - 1st equation, 
blXI + b2X2 + ... + bnxn = 0 - 2nd equation, 

(11.1) 

An obvious solution of a homogeneous system is the so-called null so­
lution. 

Xl = 0, X2 = 0, ... , Xn = O. 

Frequently it is important to know if a homogeneous system has non null 
solutions. A partial answer to this question is provided by the following 
lemma. 
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Lemma 11.1 A homogeneous system in which the number of equations is 
smaller than the number of unknowns always has a nonnull solution. 

The proof is by induction on the number m of equations in the sys­
tem (11.1). 

If m = 1, then we have a single equation in more than one unknown. It 
is clear that such an equation has a nonnull solution. 

We assume that our lemma holds for systems with m - 1 equations and 
prove it for systems of m equations. 

If the coefficients aI, bl , ..• ,dl of Xl are all zero, then our system has 
nonnull solutions. An example of such a solution is 

Xl = 1, X2 = 0, ... , Xn = O. 

Now suppose that al is not zero. (Note that this is a harmless assump­
tion that may require, at most, the rearranging of the equations of our 
system.) 

We transform our system as follows. We multiply the first equation by 
-h/al and add it to the second equation. The result is a new system, 
equivalent to the first, whose second equation has the form 

(the coefficient of Xl is 0). By adding appropriate multiples of the first 
equation to the remaining equations of the system, if any, we end up with 
a homogeneous system of the form 

(ILl') 
d~X2 + ... + d~xn = 0, 

that is equivalent to the starting system. The boxed part of the sys­
tem (ILl') is a homogeneous system of m -1 equations in n -1 unknowns. 
Since m < n, 

m -1 < n-1, 

so that the boxed system has fewer equations than unknowns. Also, the 
boxed system has m-1 equations. But in view of the induction assumption, 
the boxed system has a non null solution 
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By adjoining to it the value of Xl obtained from the first equation of the 
system (11.1'), namely, 

we obtain a nonnull solution of the system (ILl'), and thus of original 
system (11.1). This proves our lemma. 





Chapter 12 

Scalar Products 

All the concepts studied thus far in this part are based on two operations 
on vectors: addition of vectors and multiplication of vector by a number. 
If we consider geometric vectors (that is, directed segments in the plane 
or in space), then there are many concepts, such as length of a vector, 
perpendicular vectors, and so on, for which we have so far not provided 
sensible analogues in An. This we do next. 

12.1 The Scalar Product of Geometric 
Vectors 

Let :l: and y be two vectors in the plane emanating from the origin O. Let 
the coordinates of:l: and y be, respectively, XI, X2 and Yl, Y2. Then 

:l: Xl i l + X2i2, 

y yli l + Y2 i 2, 

where i
" 

i2 are unit vectors whose orientations are those of the coordinate 
axes (Figure 12.1). 

Let X and Y be the endpoints of our vectors. Then the coordinates of 
X are Xl> X2 and the coordinates of Yare Yl> Y2. 

The formula for the distance between two points yields the relations 

Xy2 (Yl - Xl)2 + (Y2 - X2)2, 

OX2 xi + x~, 
Oy2 yi + y~, 
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x 

o 

Figure 12.1. 

from which it follows that 

OX2 + Oy2 - Xy2 = 2(XIYl + X2YZ). (12.1) 

Bearing in mind Pythagoras' theorem, we easily conclude on the basis 
of (12.1) that x and yare perpendicular if and only if 

XIYl + X2Y2 = o. 
A similar argument applied to vectors in space yields the analogous 

perpendicularity condition 

XIYl + X2Y2 + XaYa = O. 

Formula (12.1) suggests that we associate with each pair of vectors x, y 
in the plane the number 

(12.2) 

and in space the number 

(12.2') 

In each case the number is called in geometry the scalar product of the 
vectors x and y and is denoted by (x, y) . 

We note that the length of a vector can be expressed by means of the 
scalar product. In fact, in the plane 

Ixl = JXI + x~, 
and in space 

In either case, 
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12.2 

General Definition 

General Definition of the Scalar 
Product 
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Here are some of the simple properties of the scalar product of vectors in 
the plane and in space: 

(1) (z, z) 2:: o. (z, z) = 0 only if z = 0; 

(2) (z, y) = (y, z); 

(3) (z, ky) = k(z, y), where k is any real number; 

(4) (z, y + z) = (z, y) + (z, z). 

The first three properties follow directly from the definition of the scalar 
product. The last property is not difficult to prove. Here is its proof for 
the case of vectors in space: 

(z,y+z) Xl(Yl + z!) + X2(Y2 + Z2) + X3(Y3 + Z3) 

(X1Yl + X2Y2 + X3Y3) + (X1 Zl + X2 Z2 + X3 Z3) 

(z, y) + (z, z). 

We now come to the key issue of this section - the extension of the 
definition of the scalar product to the case of n dimensions. No matter how 
this is done it is desirable that properties (1) - (4) should hold. This guides 
the following definition. 
Definition 12.1 Suppose that with any two vectors z and y in the space 
An there is associated a number (z, y) such that the properties (1), (2), (3), 
and (4) hold. Then we say that a scalar product is given in An and call 
(:I:, y) the scalar product of the vectors z and y. 

12.3 One Way of Introducing a Scalar 
Product 

Our definition leaves open the question of the very possibility of introducing 
a scalar product in the space An. That this can be done, and how it can 
be done, is suggested by the expressions (12.2) and (12.2'). Specifically, let 
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be a basis in An. With any two vectors 

Z xla1 + X2a2 + ... + xnan , 

Y Yla1 + Y2 a 2 + ... + Ynan, 

in An we associate the number 

(z, y) = XIYl + X2Y2 + ... + XnYn· (12.3) 

It is not difficult to show that (z, y) satisfies the requirements (1)-(4), and 
is therefore a scalar product. 

Let 
a~, a~, ... , a~ 

be another basis in An. Let the coordinates of z and y relative to this basis 
be x~, x~, ... , x~ and y~, y~, ... , y~, respectively. Then the equality 

defines another scalar product in An. But, in general, it is not true that 

(z,y) = (z,y)'. 

In other words, there are many scalar products in the space An. Neverthe­
less, as we shall show below, the indicated manner of introducing a scalar 
product is general in the following sense: No matter how one introduces 
a scalar product in the space An there is a basis (in fact, there are many 
bases) in which formula (12.3) holds. 

12.4 Length of a Vector. Orthogonal 
Vectors 

Given a scalar product, we define the length of a vector and the perpen­
dicularity of two vectors by analogy with the two- and three-dimensional 
cases. Thus, by the length, or norm, of an n-dimensional vector we mean 
the number 

(note that, in view of property (1), the number under the square root sign is 
nonnegative), and we say of two vectors z and y that they are perpendicular, 
or orthogonal - in symbols, z .l.. y - if their scalar product is zero. In 
other words, 

z .l.. y means that (z, y) = O. 
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12.5 Expressing a Scalar Product in Terms 
of Coordinates 

First we supplement properties (3) and (4) by the properties 

(3') (kx, y) = k(x, y); 

(4') (x + y, z) = (x, z) + (y, z). 

Property (3') follows from the chain of equalities 

(kx, y) = (y, kx) = key, x) = k(x, y), 

each of which is justified by some scalar product property. Similarly, (4') 
follows from the chain of equalities 

(x +y,z) = (z,x +y) = (z,x) + (z,y) = (x,z) + (y,z). 

Combining properties (3) and (3') we obtain 

(3") (kx,ly) = H(x, y). 

Further, (4) and (4') imply that 

(Xl + X2 + ... + xP ' Y1 + Y2 + ... + yq) = L:;,/x;, Yj), 

that is, the scalar product of two sums is the sum of the scalar products 
of each of the summands of the first sum by each of the summands in the 
second sum. This and property (3") justify the following rule for obtaining 
the scalar product of two linear combinations: 

(klX1 + k2x" + ... + kpxp, 11Y1 + 12y" + ... + lqYq) = 

= 'L k;lj (x;,Yj). 
i,j 

(12.4) 

Now we can easily obtain an expression for the scalar product (x, y) in 
terms of the coordinates of x and y. Specifically, let 

a 1 , a", ... , an. (12.5) 

be a basis of the space An and let 

x xla1 + X2a" + ... + xnan , 

Y Yla 1 + Y2 a " + ... + Ynan, 
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be any two vectors in An. By formula (12.4) 

The quantities 

(z, y) = LXiYj(a;, aj). 
i,; 

gij = (ai, aj) 

Scalar Products 

are constants depending on the choice of basis. Once a basis has been 
selected, the scalar product is given by the expression 

(z,y) = LgijXiYj. 
i,j 

(12.6) 

We shall apply this very useful result to prove many important propositions. 

12.6 Existence of a Vector Orthogonal to p 
Given Vectors, p < n 

We wish to find a vector z perpendicular to a given vector y, that is, a 
vector such that (z, y) = O. In view of (12.6), the coordinates Xl, X2, ... , Xn 

of the vector must satisfy the equation 

LgijXiYj = O. 
i,j 

Since the gij and the Yj are given numbers, the left side of our equa­
tion reduces to an expression of the form al Xl + a2x2 + ... + anxn . This 
means that our equation is a linear homogeneous equation in the variables 
Xl, X2, ••• , X n · 

If the vector z is to be orthogonal to p given vectors 

then its coordinates must satisfy a system of p linear homogeneous equa­
tions. By the lemma in chapter 11, such a system must have a nonzero 
solution provided that p < n. This implies the following theorem. 
Theorelll 12.1 let 

y" Y2"'" yp 

be p given vectors in the space An. If p < n, then there exists a nonzero 
vector z perpendicular to all the given vectors.3 

This theorem has many consequences. We shall consider just one of 
them that will play an important part in the sequel. 
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u 

i ki 

Figure 12.2. 

Corollary 12.1 IfP is a subspace o/the space An and P f:. AnI then there 
exists a nonzero vector x E An orthogonal to all vectors in P. (We say, 
briefly, that x is orthogonal to the subspace P.) 

The proof is almost obvious. Let 

y" y", ... , Yp 

be a basis in P. Since P f:. An, we have p < n. But then there is a vec­
tor x i 0 that is orthogonal to the vectors y" y", ... ,yp. In turn, x is 
orthogonal to every linear combination of these vectors, 

(x, klYl + k2 y" + ... + kpYp) 

= kl(x, Yl) + k2 (x, y,,) + ... + kp(x, yp) = 0, 

and therefore to all of P. 

12.7 Decomposition of a Vector into Two 
Components 

We are about to prove in An a fact that is geometrically obvious in the 
plane as well as in space. 

Let i be a nonzero vector. Any vector a can be decomposed into a sum 
of two vectors of which one is a multiple of i and the other is perpendicular 
to i (Figure 12.2.) 

a = ki + u, u 1- i. 

To prove this assertion we must prove the existence of a number k such 
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that the vector u = a - ki is orthogonal to i, that is, such that 

Equivalently, 

But then 

(a-ki, i)=O. 

(a,i) = k(i,i). 

k 
_ (a,i) 
- (i,i)' 

(Note that i ¥ 0, so that (i, i) =P 0.) 



Chapter 13 

Orthonormal Basis. 
Orthogonal 
Transformation 

13.1 Definition of an Orthonormal Basis 

We know that there are infinitely many bases in the space An. Before the 
introduction of the scalar product in An we had no reason for singling out 
my of them. After the introduction of the scalar product, however, the 
so-called orthonormal bases playa special role. 

A basis 

:s said to be orthonormal if any two of its vectors are orthogonal, 

(ai,aj)=O (i,j=1, ... ,n; i=l=j), 

md each of its vectors has length 1, 

(a;,a;)=1 (i=1, ... ,n). 

(13.1) 

(13.2) 

In ordinary 3-dimensional space an orthonormal basis consists of a triple 
)f pairwise orthogonal unit vectors (Figure 13.1). 

(The word "orthonormal" is composed of the words "orthogonal" and 
llormalized." A vector is said to be normalized, or a unit vector, if its 
:-=ngth is 1.) 

What makes an orthonormal basis special is the simplicity of the ex­
?ression for the scalar product in such a basis. Specifically, if our basis 



100 Orthonormal Basis. Orthogonal Transformation 

Figure 13.1. 

is orthonormal, that is, if the equalities (13.1) and (13.2) hold, then the 
expression 

(z,y) = LXiYj(ai,aj) 
i,j 

for the scalar product of two vectors reduces to 

(13.3) 

that is, the scalar product of two vectors expressed in an orthonormal basis 
reduces to the sum of the products of the corresponding coordinates of the 
two vectors. 

13.2 Existence of Orthonormal Bases 

While we have established an important property of orthonormal bases we 
don't know whether such bases exist. We prove their existence next. 

First a remark. Let a be a nonzero vector. Then the vector 

a' = a/lal 

has length one. Indeed, 

(a', a') = (a,a)/Ial" = 1. 

The transition from a to a' is called the normalization of the vector a. 
The existence of an orthonormal basis follows readily from a theorem 

proved in the previous chapter. Take a nonzero vector b1 • Let al be 
the result of normalization of b1 • Take a nonzero vector b" orthogonal to 
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al. Let a2 be the result of normalization of b,.. Take a nonzero vector 
b3 orthogonal to al and a2. Let a3 be the result of the normalization of 
b3 , and so on. Finally we obtain a vector an orthogonal to the vectors 
an a 2 , • •• , an-to By theorem 9.2, the system of n vectors 

is linearly independent. Suppose not. Then one of our vectors would be a 
linear combination of its predecessors. Specifically, suppose that 

~Iultiplying both sides of this equality by a3 we obtain 

(a3 , a3 ) = o. 
But this is impossible, for (a3 , a3 ) = l. 

We note that by proving the existence of an orthonormal basis we have 
:Ulfilled a promise made in the previous chapter to demonstrate the exis­
:mce of a basis in which the scalar product is given by formula (13.3). 

13.3 A Method for Obtaining All 
Orthonormal Bases 

> The study of orthonormal bases gives rise to a number of interesting 
:;uestions. One of them is the question of the transition from one orthonor­
:::::tal basis to another. In chapter 9 we said that there is always a chain 
:f elementary transformations that lead from one basis to another. This 
JSSertion applies, in particular, to orthonormal bases. But what spoils 
:lllngs here is that the result of applying an elementary transformation to 
U1 orthonormal basis is, in general, not an orthonormal basis. This can be 
~medied as follows. 

Let at, a 2 , ••• ,an be an orthonormal basis. By an elementary ortho­
":'Insformation of a basis we mean 

1. multiplication of a basis by (-1). (Clearly this transformation takes 
an orthonormal basis into an orthonormal basis); 

2. the replacement of any two basis vectors ai, aj(i =p j) by vectors 
a~, aj given by the formulas 

I • 
ai = cos a ai - SIll a aj, 

I • 
aj = SIll a ai - cos a aj, 

where a is any real number. 
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We state without proof a theorem that explains the role of elementary 
orthotransformations. 

Theorem 13.1 Given any two orthogonal bases there is a chain of ele­
mentary orthotransformations leading from one to the other. <1 

13.4 Orthogonal Transformations 

The reader is probably familiar with the concept of a transformation (some 
transformations are studied, for example, in high school geometry courses). 
We are about to study certain transformations of the n-dimensional vector 
space An. 

If a rule is given that associates with any vector a E An a vector a' E An, 
then we say that there is given a transformation of the space An and write 

a' = F(a). 

Here F denotes the rule for obtaining a' from a. 
A transformation F is said to linear if it has the following two properties: 

(1) F(x + y) = F(x) + F(y), 

(2) F(h) = kF(x). 

Here x and yare any two vectors and k is any number. If we denote the 
vectors F(x) and F(y) by x' and y', then we can restate these conditions 
as follows: the transformation F maps the triple of vectors x, y, x + yonto 
the triple x', y', x' + y', and the pair x, kx onto the pair x', kX'. In other 
words, a transformation is linear if it doesn't "disturb" either the sum of 
two vectors or the product of a vector by a number. It is clear that a linear 
transformation does not disturb linear combinations: 

F(klXl + k2X2 + ... + kpxp) 
= k1F(xI) + k2F(x2) + ... + kpF(xp). 

Suppose that An is a space with a scalar product. Then the linear trans­
formations of special interest are those that "preserve" the scalar product 
in the sense that 

(F(x), F(y)) = (x, y) for any x, YEAn. 

Such transformations are called orthogonal. 
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It is clear that orthogonal transformations preserve the length of any 
vector x, that is, 

IF(x)1 = Ixl· 
This follows from the fact that the length of a vector is expressed in terms 
of the scalar product: 

The property of preservation of the length of any vector may be taken 
as the defining property of an orthogonal transformation. This follows from 
the fact that the scalar product can be expressed in terms of lengths. In 
fact, the obvious identity 

implies that 

(x + y, x + y) = (x, x) + (y, y) + (x, y) + (y, x) 

2(x, y) (x + y, x + y) - (x, x) - (y, y) 

Ix + yl" - Ixl" - Iyl"· 

Orthogonal transformations have many important properties. We men­
tion one of them. 

Let a 1 , a2 , ••• ,an be an orthonormal basis and F an orthogonal trans­
formation of An. Then the vectors 

a~ = F(a 1 ), a~ = F(a,,), ... , a~ = F(an) 

also form an orthonormal basis of An. In other words, orthogonal transfor­
mations map orthonormal bases onto orthonormal bases. 

Indeed, the orthogonality of the transformation F implies that 

(ai, aj) = (a~, aj) 

for all i, j from 1 to n. This means that the vectors a~, a~, ... ,a~ satisfy 
the relations 

(a~,aD=1, (a~,aj)=O (i#j). 
But then they also form an orthonormal basis (see the argument at the end 
of section 2). 

13.5 The Inverse of an Orthogonal 
Transformation 

First we establish the fact that if F is an orthogonal transformation and b 
is any vector in An, then the equation 

F(x) = b (13.4) 
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has a unique solution. 
This can be proved as follows. Let a 1 , a", ... ,an be an orthonormal 

basis. Then the vectors a~ = F(ad, a~ = F(a2), ... , a~ = F(an), also 
form an orthonormal basis. If the vector b is given by 

then the vector 

is a solution of equation (13.4). Indeed, the linearity of F implies that 

This proves that equation (13.4) has a solution. Its uniqueness is easy to 
establish, for if 

F(Zl) = band F(z,,) = b, 

then F(zt) = F(Z2), so that, F(Zl - z,,) = o. But then IZ1 - z21 = o. 
that is, Zl = Z2. 

If with each vector bEAn we associate the vector z that is the solu­
tion of equation (13.4), then we obtain a new transformation F- 1 called 
the inverse of F. Another way of putting this is that every orthogonal 
transformation has an inverse. 

It is natural to ask if the inverse of an orthogonal transformation is itself 
orthogonal. We shall prove that this is indeed the case. 

The linearity of F-1 is an easy consequence of the linearity of F: if F 
maps the triple of vectors z, y, z + y onto the triple z', y', z' + y', then 
F-l maps the triple z', y', z' + y' onto the triple z, y, z + y, and if F 
maps the pair z,kz onto the pair z',kz', then F-l maps the pair z',kz' 
onto the pair z, kz. To see that F- 1 preserves scalar products note that 
the equality 

(z, y) = (z', y') 

implies the equality 

Since the transformation F- 1 is linear and preserves scalar products, it is 
orthogonal. 

We see that the inverse of an orthogonal transformation is orthogonal. 
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13.6 

"How Many" Orthogonal Transformations? 

"How Many" Different Orthogonal 
Transformations Are There? 
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I> It is natural to ask ifthere are orthogonal transformations and how large 
is the class of such transformations. The following proposition will help us 
answer these questions. 

Let 
a 1 , a", ... ,an and a~, a~, ... , a~ 

be two orthonormal bases. Then there exists a unique orthogonal transfor­
mation that maps the first of these bases onto the second. 

We define the required transformation as the transformation F that 
associates with any vector 

the vector 
F(a) = kla~ + k2a; + ... + kna~ 

and show that it is orthogonal. 
The linearity of F is obvious. It remains to show that F preserves scalar 

products. Let 

(13.5) 

be any two vectors in An. Then 

(13.6) 

Since the basis au a", ... , an is orthonormal, (13.5) implies that 

(z, y) = X1Yl + X2Y'2 + ... + XnYn' 

Since the basis a:, a~, ... ,a~ is also orthonormal, (13.6) implies that 

(F(z), F(y)) = X1Yl + X2Y2 + ... + XnYn' 

But then 
(z,y) = (F(z),F(y)), 

that is, the transformation F is orthogonal. 
That there is just one orthogonal transformation that maps the first 

basis onto the second follows from the linearity of F. Specifically, the effect 
of a linear transformation on any vector is uniquely determined by its effect 
on the vectors of a basis. 
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This proposition justifies the following conclusion: it is possible to estab­
lish a one-to-one correspondence between the class of orthonormal bases and 
the class of orthogonal transformations. To do this fix some orthonormal 
basis Bo and associate to any orthonormal basis B the (unique) orthogonal 
transformation that maps Bo onto B. This shows that there are "as many" 
orthogonal transformation as there are orthonormal bases. <l 



Part III 

The Exceptional Position 
of Four Algebras 
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Certain algebras occupy a special position in the infinitude of algebras. 
They are the algebras C, Q and 0 of complex numbers, quaternions, and 
Cayley numbers. There are many ways of describing the distinguishing fea­
tures of these algebras but they all come down to the following: compared 
with other algebras, these three algebras are closest to what is, in a sense, 
their original foundation - the algebra 'Il of real numbers. Examples of 
this closeness are: 

1. The algebras 'Il, C, and Q are the only division algebras with asso­
ciative multiplication (briefly, 'Il, C, and Q are the only associative 
division algebras). A somewhat more precise version of this proposi­
tion is known as Frobenius' theorem. 

2. The algebras 'Il, C, Q, and 0 are the only division algebras in which 
the following formulas hold: (uv)v = u( vv) and v( vu) = (vv)u 
(briefly, 'Il,C, Q, and 0 are the only alternative division algebras). 
This proposition is known as the generalized Frobenius theorem. 

3. The algebras 'Il, C, Q, and 0 are the only algebras with an identity in 
which it is possible to define a scalar product such that the norm of 
a product is the product of the norms of the factors. 

This is the substance of Hurwitz's theorem. 
To put it differently, there is a certain hierarchy of algebras. Its very 

foundation is the algebra of real numbers. Its closest neighbor is the alge­
bra of complex numbers in which multiplication retains the most important 
properties of the multiplication of real numbers such as commutativity, as­
sociativity, invertibility (this is an allusion to the possibility of division), 
and the existence of a mul~iplicative identity. Then comes the algebra of 
quaternions, in which multiplication is no longer commutative. Then comes 
the algebra of Cayley numbers, in which the multiplication is "alternative" 
rather than associative, but which is still a division algebra with a multi­
plicative identity. Other algebras do not enjoy such a "minimal package" 
of properties. Of course, this does not make them less interesting or im­
portant. It is simply that we happen to be concerned with what may be 
called the proximity of an algebra to the algebra of real numbers. 

A final remark. In part 1 we formulated the "problem of the sum of 
squares," which consists in finding all identities of the form 

(13.7) 

(see chapter 3). Starting with the "norm property" (the norm of a product 
is the product of the norms ofthe factors) ofthe algebras 'Il, C, Q, and 0, we 
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constructed in part 1 concrete examples of such identities for n = 1,2,4,8. 
In the present part we shall show that the number n in the identity (13.7) 
can take on just these four values. The proof of this fact is very much a 
consequence of Hurwitz's theorem, so that the "heroes" of the problem of 
the sum of squares are once more the algebras R, C, Q, and O. 

In this part we make precise and prove all the facts mentioned above. 



Chapter 14 

Isomorphic Algebras 

According to the definition in chapter 7, any n-dimensional algebra consists 
of elements that are uniquely representable in the form 

and are added and multiplied by real numbers according to natural rules. 
In other words, an n-dimensional algebra is, first of all, an n-dimensional 
vector space. Beyond that, there is given a multiplication table of the 
(initial) basis elements i" i 2 , • •• , in, that is, a table of n 2 relations 

iai j3 = k aj3 ,l i 1 + k aj3 ,2 i 2 + ... + k aj3 ,n i n 

\CY.,(3= 1,2, ... ,n), 
(14.1) 

where k a {3,-y are certain real numbers. Given the rules of multiplication of 
the basis elements, we multiply any two elements 

of the algebra by following the usual rule of multiplication of sums and then 
taking into consideration the relations (14.1). 

In sum, we can say that an n-dimensional algebra is an n-dimensional 
vector space with a multiplication table (14.1) of the basis elements. 

It would seem that two n-dimensional algebras with different multipli­
cation tables should be regarded as different algebras. But this would not 
be entirely appropriate for reasons that follow. ' 

Consider an n-dimensional algebra with initial basis i 1, i 2 , ••• ,in and 
multiplication table (14.1). If we select in A another basis i:, i~, .. . , i~ 
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then, of course, we shall have some other multiplication table 

.,., I ., I" I" 
'to/'t{3 = O/{3,l'tl + 0/{3,2't2 + ... + O/{3,n't n 

(a,/3= 1,2, ... ,n). 
(14.2) 

Now consider some algebra A' with initial basis i~, i~, ... ,i~ and multipli­
cation table (14.2). Should we regard A' as different from A ? In purely 
formal terms the answer is obviously yes. On the other hand, A' is es­
sentially just the algebra A referred to a different basis, and there is every 
reason to regard the difference between the two algebras as inessential. This 
point of view is reflected in the concept of an isomorphism. 

Definition 14.1 Two n-dimensional algebras are said to be isomorphic if 
they have bases with identical multiplication tables. 

Of course, the sameness of the multiplication tables need not imply the 
same designations for the corresponding basis elements; the basis elements 
of one algebra may be denoted as C

" 
C2 , ••• ,Cn and those of the other 

as d
" 

d2 , ••• , dn . But the coefficients of the linear combination of the 
c's representing a product cO/c{3 must be the same as the corresponding 
coefficients of the d's representing the product dO/d{3. 

For example, if 

then 
d 3 d 2 = 3d, - 7d5 · 

In mathematics two isomorphic algebras are not regarded as different. 
Rather, they are thought of as two different copies of the same algebra. This 
means that the answer to the problem of finding all algebras with a certain 
special property must have the form: an algebra with the required property 
is isomorphic to one concrete algebra, or another, or a third, and so on. 

In part 1 we introduced the concept of a hypercomplex system and 
then the broader concept of an algebra. Now that we have at our disposal 
the concept of an isomorphism, we can make the relation between these 
concepts completely clear. In chapter 7 we showed that every hypercomplex 
system may be viewed as an algebra in which the first initial basis element 
is replaced by the identity element of the algebra, that is, 

.. .. . 
1" 'to/ = 'to/'t, = 'to/ 

for all a. Now we can supplement this with a kind of converse: Ev­
ery algebra with an identity is isomorphic to some hypercomplex system. 
In fact, given an algebra with an identity 1 we can choose in it a basis 
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i: , i~, ... ,i~ with i: = 1. Then we obtain a multiplication table in which 
i: i~ = i~i: = i~ for all a, that is, the multiplication table of some hyper­
complex system M. It follows that the initial algebra is isomorphic to the 
hypercomplex system M. 

We conclude with an example that illustrates the role of the concept 
of isomorphism. We can now describe the result of chapter 2 by saying 
that every 2-dimensional algebra with an identity is isomorphic to one of 
the three algebras of complex, double, or dual numbers. This is the precise 
rendering of the statement in section 2.2 to the effect that "every system 
of numbers a + bi with the operation rules 1 to 3 reduces to one of the 
following three ... " "Reduces to" is now replaced by "is isomorphic to." 





Chapter 15 

Subalgebras 

In part 1 we have more than once encountered the phenomenon of one 
algebra being part of another. For example, the algebra of real numbers 
is part of the algebra of complex numbers, which is part of the algebra of 
quaternions, which itself is part of the algebra of Cayley numbers, and so 
on. In such cases we use the term "sub algebra" instead of "part." 

Definition 15.1 A set P of elements of an algebra A is called subalgebra 
of A if 

1. P is a subspace of the vector space A; 

2. P is closed under the multiplication in A, that zs, if a E P and 
bE P,then ab E P. 

The first requirement is equivalent (see chapter 10) to the condition that 
P is the totality of linear combinations 

of some elements a 1 , a 2 , ••• , ap • The latter may be taken to be linearly 
independent. Then they form a basis of the subspace P (and their number 
does not exceed n). 

To satisfy the second condition it suffices that all products 

aexa{3 (a, f3 = 1,2, ... ,p) 

of the basis elements are again in P, that is, that 

(15.1) 
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Our definition implies that a sub algebra may be regarded as an alge­
bra in its own right with initial basis at, a", ... ,ap and multiplication 
table (15.1). 

We give examples of subalgebras. 

1. In the algebra of quaternions the subspace with basis 1, j is a subal­
gebra. More generally, any subspace with basis 1, q, where q is not a 
multiple of 1, is a subalgebra. Each ofthese sub algebras is isomorphic 
to the algebra of complex numbers. 

2. In the algebra of Cayley numbers the subspace with basis 1, i, E, I 
is a subalgebra. This sub algebra is isomorphic to the algebra of 
quaternions (the multiplication of the elements of this basis is the 
same as the multiplication table of the elements of the quaternion 
basis 1,i,j,k). Similar examples are furnished by spaces with bases 
1, a, b, ab, where a and b are any two imaginary units from the initial 
basis 1, i, j, k, E, I, J, K of the algebra of Cayley numbers. 

3. In the algebra of matrices of order n the matrices with zero in tho: 
first k rows, k fixed, from a sub algebra. A more complicated exampl-: 
is furnished by the subspace of all "chessboard" matrices, that i5 
matrices in whi.ch the elements aij with i + j an odd integer are zerc 
For example, for n = 3 these are the matrices of the form 

We leave the verification of this fact to the reader. 



Chapter 16 

Translation of the 
"Problem of the Sum of 
Squares" into the 
Language of Algebras. 
N ormed Algebras 

We recall the formulation of the problem of the sum of squares posed in 
part 1. It is required to find out for what values of n and for what n bilinear 
forms 

q)1(Xl,X2, ... ,Xn ; Yl,Y2,···,Yn), 
q)2(Xl,X2, ... ,Xn ; Yl,Y2,···,Yn), 

we have the identity 

( 2 2 2)( 2 2 2);,;.2;,;.2 ;,;.2(1) X1 +X2+···+ Xn Yl+Y2+···+Yn = 'l'l +'l'2+···+'l'n . 

In part 1, the study of certain concrete algebras (the algebras of com­
plex numbers, quaternions, and Cayley numbers) enabled us to construct 
examples of the identity (!) for n = 2,4,8. But we said nothing about the 
construction of an arbitrary identity (!). We consider this issue next. 
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16.1 

N ormed Algebras 

The Connection between (!) and a 

Certain Algebra A 
First we note that with every identity (!) there is associated a certain 
algebra defined in the following manner. We consider the n-dimensional 
vector space whose elements are the vectors 

The product of two elements 

and 
y = y1i1 + Y2 i 2 + ... + Ynin 

in that space is defined by the formula 

(16.1) 

(16.2) 

In view of the linearity of the forms cI>1, cI>2, ... ,cI>n with respect to the 
variables Xl, X2, ... , Xn as well as the variables Yl, Y2, ... , Yn it is clear that 
the following equalities hold: 

b" y = k(:.:y) :.: . ky = k(:.:y), 
(:':1 + :.:,,)y = :':lY + :':"y, :':(Y1 + y,,) = :':Y1 + :.:y,," 

But then the multiplication rule (16.2) actually defines a certain algebra 
(see section 7.7). Let this algebra be denoted by A. From what we said 
above it follows that the algebra A is completely determined by the identity 
(!). 

16.2 The Possibility of Introducing a Norm 
in the Algebra A 

We wish to find out what property of the algebra A is a reflection of the fact 
that forms cI>1, cI>2, ... ,cI>n are not entirely arbitrary but satisfy the identity 
(!). 

To this end we introduce in the algebra A a scalar product (:.:, y) defined 
in terms of the coordinates of the vectors:.: and y relative to the basis 
i" i 2 , ••• ,in by means of the rule 

(:.:, y) = X1Yl + X2Y2 + ... + XnYn· (16.3) 
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In particular, 
( ) _ 2+ 2+ + 2 :1:,:1: - Xl X2 ... Xn · 

We note that by defining the scalar product in this way we make the basis 
i" i 2 , • •• ,in orthonormal. Indeed, 

(ia, ia) = 1, 

(ia, i,B) = 0, 

for a, j3 = 1, ... , n, a"# j3. This is so because the only nonzero coordinate 
of the vector ia is its a - th coordinate (it has the value 1), and the only 
nonzero coordinate of i,B is its j3 - th coordinate. 

Now that we have introduced in the algebra A a scalar product, we 
can give the identity (!) a new interpretation. It is easy to see that the 
expression on the right side of the identity is the "scalar-product square" 
(:l:Y, xy) of the element :l:Y, and the left side is the product of the scalar­
product squares (:1:,:1:) and (y, y). This means that we can write (!) as 

(16.4) 

By defining the norm of an element X by the formula 

we can rewrite (16.4) as 
(16.4') 

(the norm of a product is the product of the norms of the factors). 
N ext we make the following 

Definition 16.1 We say that an algebra A is normed if we can define in 
it a scalar product such that the identity (16.4) holds. 

Examples of normed algebras are the by now familiar algebras of com­
plex numbers, quaternions, and Cayley numbers. That these are normed 
algebras follows from the fact that formula (16.4') holds in them. 

In order to satisfy all the requirements of the definition of a normed 
algebra we need only introduce a scalar product such that 1:1:1 = V(:I:, :1:). 
For complex numbers such a scalar product is given by the formula 

(z, z') = XIYl + X2Y2, 

where z = Xl + Yl i, z' = X2 + Y2i, and for the algebra of quaternions it is 
given by the formula 

(q, q') = XIYl + X2Y2 + X3Y3 + X4Y4, 

where q = Xl + X2i + x3i + x4k, q' = Yl + Y2i + Y3i + Y4k. There is an 
analogous definition of a scalar product for the algebra of Cayley numbers. 
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16.3 Conclusion 

We have shown that to every identity (!) there corresponds a certain 
normed algebra A. In that algebra the product of two elements x == 
xlil + ... + xnin' Y == yli l + ... + Ynin is defined by the formula 

(16.5) 

and the scalar product by the formula 

(x, y) == XlY1 + X2Y2 + ... + XnYn· 

In the algebra A the elements i
" 

i 2 , ••• ,in form an orthonormal basis. 
Also, the identity (!) expresses the condition of normability relative to that 
basis. 

It is easy to see that the converse of this proposition holds. Specifically, 
let us select in a given normed algebra A an orthonormal basis ill i 2 , • •• , in. 

If we write down the rule of multiplication relative to this basis, then we 
obtain n forms <1>1, <1>2, •.. , <l>n, and if we write down the normability con­
dition for the algebra A, then we obtain the identity (!) with the forms 
<1>1, <1>2, .•. ,<I>n on the right side. 

In sum, we arrive at the following conclusion. 
All n-tup/es of forms <1>1, <1>2, ..• ,<I>n satisfying the identity (!) can be 

obtained in the following manner: We take any normed n-dimensional al­
gebra A and choose in it an orthonormal basis ill i 2 , •• • , in> Then we write 
down the law of multiplication in the algebra A in the form (16.5). 

It follows that the problem of determining all identities (!) reduces to 
two problems: 

1. finding all normed algebras. 

2. writing down the multiplication law for each of these algebras relative 
to all orthonormal bases. 

We shall consider the first of these problems in the next two chapters. 
We shall use the solution of the first problem to obtain a survey of all 
identities (!). 



Chapter 17 

Normed Algebras with an 
Identity. Hurwitz's 
Theorem 

17.1 Formulation of Hurwitz's Theorem 

In the previous chapter, in discussing the "problem of the sum of squares," 
we concluded that it was necessary to find all normed algebras. In this con­
nection we prove a theorem, first established by the German mathematician 
A. Hurwitz in 1896, which does not give us a complete survey of normed 
algebras but disposes of a large part of the difficulties associated with this 
problem. 

Hurwitz's theorem. Every normed algebra with an identity is iso­
morphic to one of fol/owing four algebras: the real numbers, the complex 
numbers, the quaternions, and the Cayley numbers. 

The requirement that the algebra has an identity is essential and cannot 
be left out. We shall see later that there exist algebras without identities, 
and none of them can be isomorphic to one of the algebras mentioned in 
the theorem, all of which have identities. 

The proof of Hurwitz's theorem is quite long. That is why we first 
present the overall scheme showing the ideas of the proof and fill in the 
details later. 
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17.2 

Hurwitz's Theorem 

Sketch of the Proof of Hurwitz's 
Theorem 

Let A be a normed algebra with an identity. We recall that a normed 
algebra is an algebra in which one can define a scalar product such that 

(ab, ab) = (a, a)(b, b). (17.1) 

Let 1 be the identity of the algebra A. Every element a E A can be uniquely 
represented as a sum of two terms4 one of which is proportional to 1 and 
the other orthogonal to 1. Thus 

a = k1 + a', 

where k is a real number and a' .1 1. We introduce in the algebra an 
operation of conjugation whose effect on an element a is given by 

ii = k1 - a' . 

In particular, if a is proportional to 1, then ii = a, and if a is orthogonal 
to 1, then ii = -a . Clearly, 

ii=a 

and 

Now we are ready to present the ideas underlying the proof of our the­
orem. 

Let U be a subalgebra of the algebra A containing 1 and different from A. 
Let 1, in i", . .. , in be a basis of U such that in i", .. . , in are orthogonal 
to 1. Then the conjugate of an element ao1+al i l + .. . +anin is the element 
ao1 - ali l - ... - anin . This shows that if u is an element of A, then so 
is its conjugate u. 

According to chapter 12, there exists a nonzero vector orthogonal to U. 
A suitable numerical multiple of it is a unit vector e orthogonal to U. We 
shall show that the set of elements of the form 

is closed under multiplication, anq thus a subalgebra of U. Let U + U f. 
denote this subalgebra. We shall prove that: 
Assertion 17.1 The representation of an element of U + Ue in the form 
(17.2) is unique; 
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Assertion 17.2 The product of two elements of the form (17.2) is given 
by 

(17.3) 

Juxtaposing these facts and th~ doubling procedure described in chap­
ter 6 we arrive at the conclusion that the subalgebra U + U e is isomorphic 
to the doubled subalgebra U. 

The rest of the proof is relatively simple. Before turning to the last 
phase of the proof we remark on a certain aspect of conjugation in the 
algebra A. 

Since it contains an identity element 1, the algebra A contains the 
sub algebra of elements of the form k1. This subalgebra is isomorphic to 
the algebra of real numbers. We denote it by 'R. If in the preceding 
argument we replace U by 'R, then e will be a unit vector orthogonal to 1. 

By formula (17.3) 
e2 = (0 + le)(o + Ie) = -1-

This implies that the square of a vector a' orthogonal to 1 is .h, where 
A ~ o. It is easy to show that, conversely, if the square of an element is 
A1 and A ~ 0, then this element is orthogonal to 1.

5 Thus the elements 
orthogonal to 1 , and only these elements, are characterized by the fact 
that their squares are equal to A1, where A ~ O. This enables us to give 
the following alternative description of conjugation in A: Let 

k1 + a', where a,2 = A1, A ~ 0, 

be the unique representation of an element a E A. Then a = k1 - a'. 
We are now ready to present the last, quite transparent, part of the 

proof. 
Consider once more the sub algebra 'R. If'R:f; A, then there is a unit 

vector e orthogonal to 'R. Consider the sub algebra C = 'R + 'Re. Since it is 
the doubled algebra 'R, it is isomorphic to the algebra of complex numbers. 
From what was said about conjugation in the algebra A it follows that 
for the elements of C conjugation coincides with the usual conjugation of 
complex numbers. 

If the sub algebra C does not coincide with A, then we can once more find 
a unit vector e' orthogonal to C. We consider the subalgebra Q = C + Ce', 
the result of doubling C. This algebra is isomorphic to the algebra of qua­
ternions. Our earlier characterization of conjugation in A implies that for 
the elements of Q conjugation coincides with conjugation in the algebra of 
quaternions. 

If the subalgebra Q is not all of A, then we again choose a vector e" 
orthogonal to Q and consider the subalgebra 0 = Q + Qe" which is the 
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result of doubling Q and is therefore isomorphic to the Cayley numbers 
(chapter 6). This algebra must coincide with A for, as we shall show, any 
subalgebra containing 1 and not equal to A is associative. Since multiplica­
tion of Cayley numbers is not associative, the subalgebra 0 must coincide 
with the whole algebra A. 

In turn, if the algebra A is not isomorphic to one ofthe algebras n, C, Q, 
then it is isomorphic to the algebra O. But this is the assertion of our 
theorem. 

We see that our theorem will have been proved if we prove the assertions 
17.1 and 17.2, and the assertion: 

Assertion 17.3 Every subalgebra containing 1 .and different from A is as­
sociative. 

17.3 Two Lemmas 

First we establish two lemmas: We suggest that the reader familiarize 
himself with the statements and leave their proofs to a second reading. 
Lemma 17.1 the following identity holds in any normed algebra: 

(17.4) 

We note that this identity connects four elements a l , a", b
" 

b" of the 
algebra A. 

Proof. Put for a in the fundamental identity (17.1) the sum a l + a". 
We have 

or 

(a l b, a l b) + (a"b, a"b) + 2(a, b, a"b) 

= (au a,)(b, b) + (a", a,,)(b, b) + 2(au a,,)(b, b). 

By the fundamental identity, the first and second terms on the left are 
equal, respectively, to the first and second terms on the right. Hence 

(17.5) 

To obtain the required result we must replace b in (17.5) by b, + b". 
Then we have 
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or 

(alb., a,.bl ) + (alb,., a,.b,.) + (alb., a,.b,.) + (alb,., a,.bl ) 

= (a., a,.)(b., bl ) + (a., a2)(b,., b,.) + 2(a., a,.)(b., b,.). 

By (17.5), the first and second summands on the left are equal, respectively, 
to the first and second summands on the right. Cancellation yields the 
identity (17.4). 

Lemma 17.2 The following identity holds in a normed algebra with iden­
tity: 

(ab)b = (b, b)a. (17.6) 

In other words, the element (ab)b is always proportional to a and the 
proportionality coefficient is (b, b). 

Proof. First we note that it suffices to prove the identity (17.6) for 
the case when b .L 1. Indeed, let b' be an element of the algebra A. If we 
represent it in the form 

b' = k1 + b, 

with b.L 1, then b = -b, and 

(ab')b' =(a(h + b»(h - b) = k2a - (ab)b = k2a + (ab)b. 

If we assume that for~ula (17.6) holds for the vector b, then we have 

(ab')b' = k2a + (b, b)a = [k2 + (b, b)]a = (b' , b' )a,6 

that is, formula (17.6) holds for b'. 
Thus we shall prove (17.6) under the assumption that b.L 1 (or, equiv­

alently, b = -b). Also, we shall write ..\ for (b, b). 
Consider the element 

c = (ab)b - ..\a. 

We must show that c = 0 or~ equivalently, that 

(c, c) = O. 

In view of the properties of scalar products we have 

(c, c) = «a, b)b, (ab)b) + ..\2 (a, a) - 2..\«ab)b, a). (17.7) 

The right side is a sum of three terms. Using the fundamental identity (17.1) 
we can easily simplify the first summand: 

«ab)b, (ab)b) = (ab, ab)(b,b) = (a, a)(b, b)2 = ..\2(a, a). 
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To simplify the third summand we use the identity (17.4). First we write 
it as 

(a,b"a"b,,) = 2(a"a")(b,,b,,) - (a,b", a"b, ). 

In the last identity we put 

and obtain 
«ab)b,a) = 2(ab,a)(b,1) - (ab,ab). 

Since b ..L 1, the first summand on the right is zero, and the second is 

-(ab, ab) = (ab, ab) = (a, a)(b, b) = A(a, a). 

Hence 
«ab)b, a) = A(a, a). 

Now we can rewrite (17.7) and obtain 

(c, c) = A2~a, a) + A2(a, a) - 2A2(a, a) = 0, 

which is what we wished to prove. 
A consequence of Lemma 17.2. We now deduce from the iden­

tity (17.6) another identity that will playa very important role in what 
follows. 

or 

If we replace b in (17.6) by :I: + y, then we obtain 

(a(:I: + y»(x + y) = (:I: + y,:I: + y)a, 

(a:l:)x + (ay)y + (a:l:)Y + (ay)x 

= (:1:, :I:)a + (y, y)a + 2(:1:, y)a. 

In view of (17.6), the first and second summands on the left are equal, 
respectively, to the first and second summands on the right. Hence 

(a:l:)y + (ay)x = 2(:l:y)a. 

This is the identity we wished to establish. 
£> Putting a = 1 in (17.6) we obtain 

bb = (b, b) 1. 

This and (17.6) yield 
(ab)b = a(bb). 

(17.8) 
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Hence 
(ab)b = a(bb). 

A similar argument proves that 

b(ba) = (bb)a. 

The last two formulas show that the algebra A is alternative. <l 

17.4 Conclusion of the Proof 
It remains to prove the assertions 17.1, 17.2, and 17.3. We recall that 
there U denotes a sub algebra of the algebra A that contains 1 and does not 
coincide with A, and e is a unit vector orthogonal to U. 

First we show that the subspaces U and Ue are orthogonal, that is, 
1.£1 1. u 2 e for any two elements 1.£1 E U, 1.£2 E U. 

We use lemma 17.1. If we put in (17.4) a l = 1.£" b l = 1.£2' a 2 = e, 
b2 = 1, then we obtain 

(1.£11.£2' e) + (1.£" u 2 e) = 2(1.£" e)(u2 , 1). 

Now we need only bear in mind that U is a subalgebra, so that 1.£,1.£2 is in 
U. But then 1.£1 1. e, 1.£11.£2 1. e. It now follows from the last equality that 

(uU u 2 e) = 0, 

that is, 1.£1 1. 1.£2 e. This means that the subspaces U and U e are orthogonal, 
as claimed. 

Now we easily prove assertion 17.1: The representation of any element 
in U + Ue in the form 1.£1 + u 2 e is unique. In fact, suppose that 

Then 
1.£1 - 1.£: = (u~ - u 2 )e. 

This means that the element v = 1.£, - u~ is in the subspaces U and Ue. 
Since these subspaces have just been shown to be orthogonal, (v,v) = 0, 
and therefore v = o. This implies that 1.£, - 1.£: = 0, and (u~ - u 2 )e = o. 
Also, in view of the fundamental identity (17.1), ab = 0 implies that a = 0 

or b = o. In our case (u~ - u 2 )e = 0 and e i- 0 imply that u~ - 1.£2 = o. 
Hence 1.£1 = u: and 1.£2 = u~. This completes the proof of assertion 17.l. 

Next we prove assertion 17.2, that is, the correctness of formula (17.3). 
To this end we shall prove that if 1.£ and v are elements of the subalgebra 
U, then 

(ue)v = (uv)e, (0:) 
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u(ve) = (vu)e, 

(ue)(ve) = - vu. 

«(3) 

(,) 
With these relations at our disposal we can easily prove formula (17.3). In 
fact, 

If we transform the last three terms on the right in accordance with the 
formulas (0:), «(3), and (r), then we obtain the equality 

that is, formula (17.3). 
To prove (0:), «(3), and (,) we make use of the identity (17.8): 

(aa:)y + (ay)z = 2(a:, y)a. (17.8) 

If we put in this identity 

a = u, a: = e, y =v 

and bear in mind that v ..1 e, then we have 

(ue)v + (uv)e = o. 

Since e = -e( for e ..11), we obtain the formula (0:). 
To prove «(3), put in (17.8) 

a = 1, a: = u, y = ve. 

Since ve = -ve (ve..1 U, so that ve ..1 1), it follows that 

u(ve) - (ve)u = o. 

Using (0:) we obtain 
I 

u(ve) = (ve)u = (vu)e. 

To prove (,) we use the following obvious remark: If this formula hold5 
for v = c and v = d, then it also holds for v = c + d. Since every element 
v can be written as a sum of two terms one of which is proportional to 1 

and the other orthogonal to 1, it suffices to prove (,) in two cases: when 
v = k1 and when v ..1 1. 
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If v = k1, then formula (,) becomes 

k(ue)e = -ku, 

an identity whose validity is implied by the identity (17.6). 
Now suppose that v..L 1 (so that v = -v). If in (17.8) we put 

a = U, :l: = e, Y = -ve, 

then we have 
(ue)(ve) - (u(ve))e = -2(e, ve)u. 

By the identity (17.5), (e, ve) equals (1, v)(e, e), that is, zero. Further, by 
((3), the second term on the left equals -((vu)e)e = -vu =vu. But then 

(ue)(ve) = - vu, 

which is what we wished to prove. By proving (a), (j3), (,) we have proved 
assertion 17.2. 

In order to complete the proof of our theorem we must prove assertion 
17.3: Every subalgebra U of the algebra A that contains 1 and is not A is 
associative, that is, 

(uv)w = u(vw) 

for any three elements u, v, win U. 
To show this we again use (17.8). Putting in (17.8) 

a = ve, :l: =w, y = ue, 

we have 
((ve)w)(-ue) + ((ve)(ue))w = 0, 

or, using (a) and (,), 
u(vw) - (uv)w = o. 

This completes the proof of Hurwitz's theorem. 





Chapter 18 

A Method for 
Constructing All N ormed 
Algebras and Its 
Implications for the 
Problem of the Sum of 
Squares 

18.1 A Method for Constructing New 
N ormed Algebras 

First we describe a special method for constructing many normed algebras 
starting with a normed algebra A. 

Let A and B be two orthogonal (that is, norm-preserving) transforma­
tions on A. In the vector space A we define a new multiplica.tion 0 given 
by the formula 

u 0 v = A(u)B(v). (18.1) 

This definition states that the new product of two elements u and v is 
equal to the old product of their transforms A( u) and B( v). 

It is easy to see that the new operation satisfies the following rela.tions: 
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and 
(u1 + u 2 ) 0 v = U 1 0 V + U 2 0 v, ku 0 v = k(u 0 v). 

The first two of these relations are implied by the linearity of the trans­
formation B and the last two by the linearity of the transformation A. 
These relations show that the new operation is indeed a multiplication (see 
section 7.7). 

The vector space of the algebra A with the new multiplication is denoted 
by Ao. Thus A and Ao are copies of the same vector space furnished with 
different multiplications. 

The algebra A is furnished with a scalar product (z, y). It turns out 
that, like the old algebra A, the new algebra Ao is normed with respect to 
this scalar product. In fact, formula (18.1) implies that 

lu 0 vi = IA(u)B(v)1 = IA(u)IIB(v)1 = lullvl; 

here we made use of the fact that the original algebra A is normed and the 
transformations A and B are orthogonal, that is, that 

IA(u)1 = lui and IB(v)1 = Ivl· 

18.2 Construction of All Normed Algebras 

The above method enables us to obtain many normed algebras from a given 
normed algebra. For this we need only substitute in formula (18.1) different 
pairs of orthogonal transformations. We are familiar with four remarkable 
normed algebras: the real numbers, the complex numbers, the quaternions. 
and the Cayley numbers. It is not unreasonable to ask whether all normed 
algebras can be obtained from these four by means of the method jus: 
described. It turns out that the answer to this question is affirmative. Since 
by Hurwitz's theorem, these four algebras are the only riormed algebras wit:' 
an identity, we must prove the following theorem. 
Theorem IS. 1 Every normed algebra Ao can be obtained from a normE~ 
algebra A with an identity by the introduction of a new multiplication ri; 
formula (18.1) (in that formula 0 denotes the multiplication in the algebrr~ 
A o .) 

For proof take an element e of norm 1 in Ao, and consider the transfor­
mation that maps an element z in Ao onto ZOe. Such a transformation 
(multiplication by e on the right) is called a right translation by e in the 
algebra Ao. We denote it by A. Thus 

A(z) = zoe. 
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It is easy to see that the transformation A is orthogonal. In fact, the 
equalities 

IA(z)1 = Iz 0 el = Izllel = Izl 
show that the transformation A preserves the norm of every element z. 

Similarly, we can introduce a second transformation 

B(z)=eoz 

- a left translation by an element e in the algebra Ao - and show that it is 
also orthogonal. 

The orthogonality of the transformations A and B implies (see chapter 
13) the existence of inverse transformations A-I and B- 1 as well as their 
orthogonality. 7 

We use these transformations to introduce a new multiplication in the 
vector space of the algebra Ao. If z and yare two elements in A o, then 
their new product is defined by the formula 

(18.2) 

We denote the resulting algebra by A. 
The equality (18.2) expresses the new multiplication in term of the old. 

But we can easily use (18.2) to express the old multiplication in terms of 
the new: Putting 

we have 
A(u)B(v) = u 0 v. 

Thus if we regard A with the operation uv as the initial algebra, then 
the algebra Ao , given from the very beginning, can be obtained from it by 
replacing its multiplication by the new multiplication u 0 v in accordance 
with the formula 

u 0 v = A(u)B(v). 

To complete the proof we need only show that the algebra A has an identity. 
We claim that the element e = e 0 e plays the role of the identity in 

the algebra A. In fact, consider the products 

ze and ey. 

For the first of these prod ucts we have 
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By definition of the inverse transformation, the element u = B- 1 (e) is the 
(unique) solution of the equation 

B(u) = e, 

or, equivalently, of the equation eo u = eo e. From this it follows (by 
uniqueness) that this element is e. Further, v = A-l(:I:) means that :I: = 
A(v), that is, v 0 e = :1:. But then 

:l:e = A-l(:I:) 0 B-l(e) = v 0 e = :1:. 

Similarly, 

We have shown that e is the identity of the algebra A. This completes 
the proof of our theorem. 

To recapitulate: All normed algebras can be obtained from the four fa­
miliar algebras n, C, Q, and 0 by the introduction of a new multiplication 
via formula (18.1). In a sense, this may be viewed as a method for obtaining 
all normed algebras. 

18.3 The Number n in the Identity (!) 

One ofthe consequences ofthis theorem is that the dimension of any normed 
algebra is equal to one of the numbers 1,2,4,8 (these are the dimensions of 
the algebras of real numbers, complex numbers, quaternions, and Cayley 
numbers). 

We note that there is a definite connection between normed algebras 
and identities of the form 

( 2 2 2)( 2 2 2) 
Xl + x 2 + ... + xn Yl + Y2 + ... + Yn 

= <l>i + <I>~ + ... + <I>~. (!) 

This connection (see chapter 17) consists in the fact that by taking a 
normed algebra, selecting in it an orthogonal basis, and writing down the 
multiplication rule in this basis, we obtain n forms <1>1, <1>, •.. ,<I>n satisfying 
the identity (!). Furthermore, all identities (!) can be obtained in this 
manner. In view of this connection we arrive at the following fundamental 
conclusion: 

The number n in the identity (!)can take on only the four values 1,2,4, 
and 8. 
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18.4 Survey of All Identities (!) 

I> From the theorem just proved we can deduce far more than just the 
number of squares in the identity (!). In fact, if we know how to construct 
all normed algebras, then we also have a method of describing all identities 
(!). We shall show that all such identities can be obtained in the following 
manner. 

Choose one of the values 2, 4, 8 of n. In the corresponding one of the 
three algebras C, Q, 0 select three orthonormal bases 

If::c and yare general vectors expressed in terms of the first and second of 
these bases, respectively, and their product xy is expressed in terms of the 
third basis, that is, if 

x = Lxaea, Y = LYf3kf3, ::cy = Lq,,,),i,,),' 
a f3 ")' 

then the forms q,,,),(Xl,'" ,Xn ; Yl,"" Yn) satisfy the identity (!).8 More­
over, all identities (!) can be obtained in this way. 

That our procedure always leads to forms satisfying (!) is apparent from 
the equality 

(L xaea)(LYf3 k f3) = L q,")'i")'. 
a f3 ")' 

Taking norms on both sides we obtain an identity (!), as claimed. 
Conversely, we shall show that all identities (!) can be obtained from 

multiplications of the form 

::c 0 y = A(x)B(y) 

(A and B are orthogonal transformations) by expressing the products with 
resp ect to orthonormal bases i 1 , i~, ... , in. In other words, the forms 
q,l, q,2, ... , q,n associated with a given identity come from an equality 

ACLXaia)B(L:Yf3i f3) = Lq,,,),i,,),' C18.3) 
a f3 ")' 

The linearity of the transformations A and B implies that 

A(Lxaia) = LXaA(ia), B(LYf3 i f3) = LYf3B(if3). 
a a f3 f3 
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Denote A(ia) by e a and B(i{3) by k{3. Then (18.3) takes the form 

(Exaea)(LY{3k{3) = LI1>1'i1" 
a {3 l' 

Bearing in mind that the bases e 1 , e", ... , en and k 1 , k 2 , ••• , k n are or­
thonormal, we conclude that the forms <Pt, 11>2, ... , I1>n are obtained in the 
manner asserted in our theorem. 

For mathematically more advanced readers the same survey of the iden­
tities (!) can be described differently. Given one of the permissible values 
1,2,4,8 of n we choose n forms <Pt, 11>2,"" I1>n and alter them as follows: 
Replace the variables Xl, X2, . .• , Xn in l1>i by new variables x~, x~, ... , x~ 
related to them by an orthogonal transformation A. Apply a similar op­
eration, involving another orthogonal transformation B, to the variables 
Y1, Y2, ... , Yn' Then apply to the forms 11>1, <P2, ... ,l1>n a third orthogonal 
transformation C. 

Call two identities (!) equivalent if they are obtained from one another 
in the indicated manner. Then we can say that, for a given value of n = 
1,2,4,8, there is, up to equivalence, just one identity (!). <l 

18.5 Examples of 2- and 4-Dimensional 
Algebras and of the Associated 
Identities (!) 

We know that there is just one normed 2-dimensional algebra with identity, 
namely, the algebra C of complex numbers. Since conjugation of complex 
numbers, that is, the mapping 

is an orthogonal transformation of the algebra C (for Ixl = Ix!), we can 
obtain at least three new algebras by replacing the usual multiplication of 
complex numbers with the multiplications 

xy, 
xy, 

x@y xy. 

In this way we obtain three new normed algebras C1 , C2 , C3 • 

(18.4) 

It is a useful exercise for the reader to show that any normed 2-dimen­
sional algebra is isomorphic to one of the algebras C,C1 ,C2 ,C3 and no two 
of the latter are isomorphic. 
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We shall now give examples of identities <!) associated with these alge­
bras. 

Using the basis 1, i in the algebra CI we have 

xy = (Xl - X2i)(YI + Y2i) 

(XIYI + X2Y2) + {XIY2 - X2YI)i, 

so that the corresponding identity is 

We see that this identity is somewhat different from the familiar identity 

(18.5) 

associated with the same basis 1, i in the algebra C. 
To obtain an identity that departs more radically from (18.5) we use 

the orthonormal basis (easily shown to be one) 

e , = ~(1 + i) and e2 = ~(1 - i) 

in C. Expressed in terms of this basis the multiplication rule takes the form 

1 
J2(UIV2 + VIU2 + UIVI - u2 v 2)el 

1 
J2{UIV2 + VIU2 - UIVI + u2 v 2)e2. + 

The corresponding identity is 

(ui + uD(vi + v~) [~(UIV2 + VIU2 + UIVI - U2V2W 

+ [~(UIV2 + VIU2 - UIVI + U2V2W· 

Next we turn to 4-dimensional normed algebras. We know that, in this 
case, the only normed algebra with identity is the algebra Q of quaternions. 
Just as in the case of the complex numbers, conjugation effects an orthogo­
nal transformation of the algebra Q. Therefore, in addition to Q, there are 
at least three more normed algebras QI, Q2, Q3 with multiplications given 
by the formulas (18.4). In the 4-dimensional case, however, there are other 
normed algebras, such as the algebras with multiplication operations given 
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by the formulas 

azyb, 

azyb, 

azjjb, 

azjjb, 

where a and b are two fixed quaternions. 
We leave it to the reader to prove that every normed 4-dimensional 

algebra is isomorphic to an algebra of this type. 
As an example, we consider the first of the above multiplications with 

a = z, b = j. We obtain an algebra Q with the multiplication rule 

z 0 y = (iz)(yi). 

We shall obtain the identity associated with this algebra in the basis 1, i, 
j, k. We have 

z 0 y (i(xo + Xli + X2j + X3k))«yO + yli + Y2j + Y3 k )j) 
(xoi - Xl + X2 k - x3j)(yoi + ylk - Y2 - Y3 i ) 
(X1Y2 - X2Yl + XOY3 + X3YO) 

+ (-XOY2 - X2YO + X1Y3 - X3Yl)i 
+ (-X1Yo - XOYl + X3Y2 - X2Yl)j 
+ (xoYo - X1Yl - X2Y2 - X3Y3)k. 

Hence the corresponding identity is 

(X~ + xi + x~ + x~)(Y5 + yr + y~ + y~) 
= (X1Y2 - X2Yl + XOY3 + x3yo)2 + (-XOY2 - X2YO + X1Y3 - X3yI)2 

+( -X1YO - XOYl + X3Y2 - X2yt}2 + (xoYo - XIYl - X2Y2 - X3Y3)2. 

We do not give examples of the identity (!) for n = 8 (other than the 
standard identity in section 6.6), for they are cumbersome and, if needed, 
can be obtained without essential difficulties. 
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Frobenius' Theorem 

19.1 Formulation of Frobenius' Theorem 

One of the classical problems of the theory of algebras is that of finding 
all division algebras. In spite of the fundamental nature of the problem 
(and the fact that many problems in other areas of mathematics-such 
as topology-hinge on its solution), it is still not completely solved. An 
important result was obtained rather recently. It is to the effect that the 
dimension of such. an algebra must be equal to one of the numbers 1, 2, 4, 
8. While this shows that the dimensions of division algebras are small, we 
still have no complete overview of these algebras. 

A considerably simpler problem is that of finding the division algebras 
satisfying additional natural conditions. Thus in 1878 the German mathe­
matician Frobenius established the following remarkable result. 

Frobenius' theorem. Every associative division algebra is isomorphic 
to one of the following: the algebra of real numbers, the algebra of complex 
numbers, and the algebra of quaternions. 

Subsequently, the following, more general result, which may be called 
thergeneralized Frobenius theorem, was established. Its statement follows. 

The generalized Frobenius theorem. Every alternative division 
algebra is isomorphic to one of the following four algebras: the real numbers, 
the complex numbers, the quaternions, and the Cayley numbers. 

We recall that an algebra is alternative if the following identities hold 
for any two of Its elements a and b: 

(ab)b = a(bb), 

(bb)a = b(ba). 
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It is clear that every associative algebra is alternative, so that Frobenius' 
theorem follows from the generalized Frobenius theorem. On the other 
hand, the algebra of Cayley numbers is alternative but not associative, so 
that the two theorems are actually different. 

To prove these two theorems we first list certain properties of associa­
tive division algebras. Then we use these properties to prove Frobenius' 
theorem. This done, we give the proofs of these properties. In the last 
paragraph of this chapter we give a proof of the generalized Frobenius the­
orem based on Hurwitz's theorem~ 

19.2 Three Properties of Associative 
Division Algebras 

Let A denote an associative division algebra. We claim that the algebra A 
has the following properties. 
Assertion 19.1 The algebra A has an identity. 

Assertion 19.2 If an element a E A is not proportional to 1 then the set 
of elements Ca of the form 

(n + f3a 

forms a subalgebra isomorphic to the algebra of complex numbers. 

Assertion 19.3 If two elements al E A, a2 E A do not belopg to the same 
subalgebra Ca then the set Qa i,a2 of elements of the form 

forms a subalgebra isomorphic to the algebra of quaternions. 

In the process of proving assertion 19.3 we shall show that if b i and b2 

are two elements whose squares are -1, then 

(19.1) 

where A is a real number. 

19.3 Proof of Frobenius' Theorem 

Using properties of assertions 19.1, 19.2, and 19.3 it is an easy matter to 
prove Frobenius' theorem. Thus let A be an associative division algebra. 
By assertion 19.1, the algebra A has an identity. The elements of the form 
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k1 form a sub algebra n isomorphic to the algebra of real numbers. If n is 
not all of A then, by assertion 19.2, A contains a subalgebra Ca isomorphic 
to the complex numbers. If Ca is not all of A then, by assertion 19.3, A 
contains a sub algebra Qa,b isomorphic to the quaternion algebra. If Qa,b 
coincides with A, then we are done. Assume that this is not the case. Then 
A contains an element e not in Qa,b, and we shall show that A cannot be 
a division algebra. 

In the quaternion algebra Qa,b we choose a basis 1, i, j, k with the 
"standard" multiplication table 

i2 = j2 = k 2 = -1, 

ij = -ji = k, jk = -kj = i, ki = -ik = j, 

and write e as p1 + qe, where e2 = -1 (e is the "imaginary unit" of the 
complex algel:fra Cc ). 

Next we rewrite the element ie using the associativity of A and relation 
(19.1). We have 

ie = (jk)e = j(ke) = j( -ek+A'1) = -(je)k+A'j 

= -(-ej+)."1)k+A'j = ei - )."k + A'j, 

and hence 
ie - ei =A'j - A"k. 

On the other hand, again by (19.1), 

ie + ei = A1II1. 

Adding the last two equalities we see that ie is an element of Qa b: So is 
ie = i(p1 + qe). If e' E Qa,b, then the product ie' is also an el~ment of 
Qa,b. Thus the product of i by any element in A is an element of Qa,b. But 
this is impossible, for A is a division algebra (the equation i~ = e, e not in 
Qa,b, is not solvable). This contradiction proves Frobenius' theorem. 

It remains to prove assertions 19.1, 19.2, and 19.3. 

19.4 Proof of the Three Assertions 

Proof of assertion 19.1. Let a be a nonzero element of the algebra A. 
We consider the equation 

~a = a. 

Since A is a division algebra, our equation has a unique solution e, so that 
ea = a. Multiplying this equation on the left by b we obtain b( ea) = ba, 
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or, in view of the associativity of A, (be)a = ba. Since the equation xa = 
ba is uniquely solvable, it follows that 

be = b. 

If we multiply this relation on the right by c and argue in an analogous 
manner, then we find that 

ec = c. 

Since band c are arbitrary elements, the last two equalities show that 
the element e is an identity of A. As usual, we denote this element by 1. 

Proof of assertion 19.2. For our purposes, it is enough to prove that 
the element a satisfies a quadratic equation 

a 2 + sa +h = 0 (19.2 r 

with negative discriminant. 9 

Let n be the dimension of the algebra. Consider the n + 1 powers of a. 

In view of Theorem 9.2, this system of n + 1 vectors is linearly dependent. 
so that some power must by a linear combination of its predecessors: 

am = km_lam- l + ... + k2a2 + kla + ko1. 

In other words, a is a root of the m-th degree equation 

Consider the general m-th degree polynomial 

P(x) = xm - km_lxm- l - ... - k2X2 - klx - ko. 

Such a polynomial can be written as a product 

(19.3) 

oflinear and irreducible (that is, not further decomposable) quadratic poly­
nomials. 

To follow the rest of the argument we must have a clear understanding 
of equality (19.3). Thus each of the polynomials Pl(x), ... , Ps(x) is a sum 
of two or three terms: 

x + tor x 2 + sx + t. 

The equality (19.3) states that if we multiply the polynomials Pl(X), 
... , p.(x) using the rule of multiplication of sums, use the formula 
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and, finally, reduce like terms, then we obtain P(x). 
Note that the rules of working with powers of a are the same as the 

rules of working with the powers of the unknown x, that is, 

(bear in mind the associativity of the algebra A). It follows that equal­
ity (19.3) holds if we replace x with a, that is, 

Since P(a) = 0, it follows that 

(19.4) 

Now we make use of the fact that A is a division algebra. This implies 
that if the product of elements is zero, then at least one of them is zero (if 
uv = 0 and u ':I- 0 then, in view of the uniqueness of the solution of the 
equation ua: = 0, we must have v = 0). Applied to (19.4), this means that 
for some i 

P;(a) = 0, 

that is, the element a satisfies a linear or quadratic equation. If a satisfied 
a linear equation 

a+t1=o 

then, contrary to the assumption, it would be proportional to 1. It follows 
that a satisfies an irreducible quadratic equation (19.2). Since the polyno­
mial Pi( x) is irreducible, its discriminant is negative. This proves assertion 
19.2. 

Proof of assertion 19.3. In the sub algebra Cal we choose an element 
b l such that b~ = -1 (b l is the "imaginary unit" in the complex algebra 
CaJ. Similarly, in the subalgebra Ca2 we choose an element b" such that 
b~ = -1. Since bl , b" differ, respectively, from aI, a" by multiples of 1, 

it follows that the set of elements of the form a1 + f3a l + la2 + c5a l a" 
coincides with the set of elements of the form a'1 + f3'b l + I'b" + c5'b l b" 
that is, Qal,a2 coincides with Qb l ,b2 • 

Further, it is not difficult to see that if 
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and k2 -10, then the set Qel,e2 coincides with Qb l ,b2 , and thus with Qal,a2. 

We shall show that it is possible to choose the numbers k1 and k2 so that 

(19.5) 

(the first of these equalities holds for arbitrary k1, k2). 
Note that, on the one hand, 

and, on the other hand, the square of b, + b,. must be a linear combination 
of 1 and b i + b,. : 

(b, + b,.)" = p1 + q(b, + b,.). 

Therefore, 
bi b2 + b2 b I = (p + 2)1 + q(b i + b2 ). (19.6) 

Similarly, 

and 

so that 

b, b2 + b2 b I = ~(pl + 5)1 + ~ql(b, + 2b2 ). 

Suppose that q -I O. By equating the two expressions we could deduce that 
b1 differs from b2 by a multiple of 1, that is, b2 E Cbl . But this is ruled out 
by assumption. Hence q = 0 and equality (19.6) implies that 

(19.1) 

In other words, if b1 and b2 are two elements whose squares are -1, then 
equality (19.1) holds. 

By now it is easy to determine the required elements e l and e 2 • To this 
end we consider the element c = )"b l + 2b2 , where).. has the same value as 
in (19.1). Its square is 

(19.7) 

which means that )..2 - 4 < 0. 10 Put 

1 
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Then (19.7) implies e~ = -1, that is, the second equality in (19.5). To 
prove the third equality in (19.5) note that 

(19.8) 

Indeed, 

Using (19.8), we obtain 

(ele.,)" = (ele.,)(ele.,) = (ele.,)(-e.,el ) = -(ele~)el = e~ = -1-

(19.9) 
This establishes the third equality in (19.5). 

Now we show that the set of elements Qe l,e2 of the form 

en + f3e l + Ie" + bel e., 

(which, as mentioned earlier, coincides with Qal,aJ is a sub algebra of the 
algebra A. 

For this it suffices to show that the product of any two of the four 
elements 

(19.10) 

is itself a linear combination of these elements. The only products for which 
this must still be verified are the products 

We have 

e l (el e2) 

(ele.,)e, 

e2(e l e.,) 

(ele.,)e" 

e:e" = -e", 

-(e"el)e, = -e.,e~ = e", 

-e"(e,,el ) = -e~el = e" (19.11) 

ele~ = -el" 

This completes the proof of the assertion that Qe l,e2 is a subalgebra. 
It remains to show that this sub algebra is isomorphic to the quaternion 

algebra. For this we show, firstly, that the four elements in (19.10) are a 
basis of the sub algebra in question and, secondly, that the multiplication 
table for this basis is the same as the multiplication table for the basis 
1, i, j, k of the quaternion algebra. 
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By now we know that every element of Qe"e2 is a linear combination 
of the elements in (19.10). To prove that these elements form a basis it 
remains to show that they are linearly independent, or (see section 8.3) 
that none of them is a linear combination of its predecessors. That e 2 is 
not a linear combination of 1 and e 1 follows from the fact that e, and e 2 

do not belong to a single subalgebra Ca. Thus it remains to show that e, e 2 

is not a linear combination of 1, e, and e", that is, that we cannot have 

(19.12) 

Suppose that such an equality holds. Then p and q must be different 
from zero (if, say, p = 0 then, multiplying (19.12) bye, on the left, we 
would obtain the inadmissible result that e" is a linear combination of 1 

and e,). Multiplying (19.12) on the left bye, we obtain 

or 
1 r q 

e, e" = --e" - -e, + -1. 
p P P 

The difference of the two expressions for e, e 2 yields the equality 

1 r q 
(p+ -)e" + (q + -)e, + (r - -)1 = o. 

P P P 

Here the coefficient of e 2 must be zero (for otherwise e2 would be a linear 
combination of 1 and el), but this is impossible regardless of the choice of 
the real number p. 

We have shown that the elements 

where e3 = e,e2, form a basis of the sub algebra Qe,,e,. 

At this point, proving the isomorphism of the subalgebra Qel,e2 and 
the quaternion algebra Q requires just one thing, namely, showing that the 
multiplication table for the algebra Qe"e2 with the basis 

is the same as the multiplication table for the quaternion algebra Q with 
basis 

1, i,j, k. 

But this follows directly from the relations (19.5), (19.8), and (19.11). 
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19.5 

Proof of Generalized Theorem 

Proof of the Generalized Frobenius 
Theorem Based on Hurwitz's 
Theorem 
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I> We begin with a remark bearing on the definition of an alternative 
algebra. We define such an algebra as one in which the following identities 
hold: 

(ab)b = a(bb) and b(ba) = (bb)a. 

But there is also a second definition of an alternative algebra, according to 
which an algebra A is alternative if the value of any finite product of any 
two of its elements a and b does not depend on the location of parentheses 
in that product. This means that, for example, 

and so on. 

(ab)b 

(ab)(ba) 

a(bb), 

(a(bb))a, 

It is clear that the second definition of the alternative property implies 
the first. That the first definition implies the second is the content of Artin's 
theorem, which we shall not prove here. 

In our proof ofthe generalized Frobenius theorem we shall use the second 
definition of the alternative property. This means that, strictly speaking, 
we shall prove the following theorem: If a division algebra A has the prop­
erty that any finite product of any two of its elements does not depend on 
the distribution of parentheses in that product, then the algebra A is iso­
morphic to one of the following four algebras: the real numbers, the complex 
numbers, the quaternions, and the Cayley numbers. 

It is important to note that the properties 19.1, 19.2, 19.3 of an asso­
ciative division algebra hold for an alternative division algebra. 

There is no need to make the slightest modification in the proofs of 
assertions 19.2 and 19.3. In fact, careful scrutiny of these proofs shows that 
we used the associativity of the algebra just twice, namely, in connection 
with the formula an . am = an+m, and in connection with the relation 
(e1e2)(e2e1) = (ele~)e" applied in the chain of equalities (19.9). Clearly, 
both of these relations hold in an alternative algebra. 

The proof of assertion 19.1, however, must be slightly modified in the 
alternative case. Thus, let e be the solution of the equation xa = a. 
Multiplying the equality ea = a by e on the left we obtain e( ea) = ea, 
or, by the alternative property, (ee)a = ea. Hence ee = e. Again using 
the alternative property we have (be)e = b(ee) and e(ec) = (ee)c, that is, 
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(be)e = be and e(ec) = ec. It follows that be = band ec = c, so that e 
is the identity of our algebra. 

To prove the generalized Frobenius theorem we could now follow the 
pattern of the proof of Frobenius' theorem, that is, show that if the sub al­
gebra Qa,b is not all of A, then the latter contains a sub algebra isomorphic 
to the algebra of Cayley numbers. Then it would be necessary to prove 
that the latter subalgebra coincides with A. While possible, such a proof is 
rather long. Therefore we shall use a different approach, namely, we shall 
prove that A is a normed algebra. By Hurwitz's theorem, this will imply 
the required result. 

We define in the algebra A the following conjugation operation. If an 
element a is proportional to 1, then we put a = a. If a is not proportional 
to 1 then, by assertion 19.2, it is contained in the sub algebra Ca. Ca contains 
a conjugate a of a, and we shall call it the conjugate of a in the algebra A. 

It follows from the definition of a that a = a, and that 

ka = ka (19.13) 

for any real number k. 
Before we can deduce further properties of our conjugation we must 

clarify a certain issue. Suppose that an element a is not proportional to 
1. Take any quaternion subalgebra Qa l,a2 containing a. This subalgebra 
contains a conjugate element a of a. The natural question is whether a = a. 
We shall show that this is so. 

As conjugates in a complex algebra, a and a have the properties 

a+a = (real number) ·1, (19.14) 

and 
aa = (real number) .1. (19.15) 

As conjugates in a quaternion algebra, a and a have the analogous 
properties 

a + a = (real number) ·1, (19.14') 

and 
aa = (real number) .1. (19.15') 

Forming the differences of the equalities (19.14) and (19.14') and (19.15 1 

and (19.15'), we obtain the equalities 

a - a = (real number) ·1, 

and 
a(a - a) = (real number) .1. 
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If we had u "# ii, then the latter relations would imply that a is a multiple 
of 1-an outcome that contradicts our assumption. 

Thus the conjugation of an element a is the same regardless of whether 
we think of it as an element of a complex subalgebra Ca (that is, as a complex 
number) or an element of a quaternion subalgebra Q a l,a2 (that is, as a 
quaternion) . 

Incidentally, the same is true of the absolute value of a; since (absolute 
value of a)2 = au in the case of complex numbers as well as quaternions, 
the absolute value of a is the same regardless of whether we think of it as an 
element of a complex sub algebra or an element of a quaternion subalgebra. 

From what has just been proved about the properties of conjugation it 
is easy to deduce the following equalities for any two elements a and b in 
the algebl'a A : 

a+b =u+b, 

ab = bu. 

(19.16) 

(19.17) 

In fact, if a and b are in the same complex sub algebra (that is, if Ca and 
Cb coincide), then the above equalities express properties of conjugation in 
that subalgebra. If b is not in Ca , than these equalities still hold for, in this 
case, they express proper~es of conjugation in Qa,b' 

Formula (19.17) and b = b imply that the conjugate of ab is bii. It 
follows that 

ab + bu = real number . 1. 

We define in the algebra A a scalar prod uct (a, b) by means of the formula 

ab + bu = 2( a, b) . 1. 

The properties of a scalar product are 

(1) (a, a) > 0 if a ¥ 0, and (0,0) = 0; 

(2) (a, b) = (b, a); 

(3) (a,kb) = k(a, b); 

(4) 

and it is easy to verify that the operation we've just defined satisfies all of 
them. In fact, it is obvious that our operation has property (2). Formu­
las (19.13) and (19.16) imply that it has properties (3) and (4). To see that 
it has property (1) it suffices to note that 

(a, a) . 1 = au = (absolute value of a)2 . 1, (19.18) 
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and to recall that the absolute value of a complex number is strictly positive 
if a i: 0 and zero if a = o. 

We note that equality (19.18) implies that 

V(a, a) = absolute value of a, 

that is, that the norm of an element a in the algebra A coincides with the 
absolute value of a viewed as a complex number (or a quaternion). 

Since any two elements a, b in the algebra A belong to a single complex 
or quaternion subalgebra, it follows that 

( absolute value of ab)2 = ( absolute value of a)2 . ( absolute value of b)2 

(for the algebra of complex numbers and the quaternion algebra are both 
normed), or that 

(ab, ab) = (a, a)(b, b). 

But this equality states that A is a normed algebra. According to Hurwitz's 
theorem, the algebra A must be isomorphic to one of the four "standard" 
algebras of real numbers, complex numbers, quaternions, and Cayley num­
bers. This completes the proof of the generalized Frobenius theorem. <l 



Chapter 20 

Commutative Division 
Algebras 

20.1 Formulation of the Main Result 

In the previous chapter we found all associative division algebras. Below 
we describe all commutative division algebras. 

First we state without proof the following fact: The dimension of a 
commutative division does not exceed two.ll 

It follows that in order to solve our problem we must7find all 2-dimen­
sional division algebras. 

To formulate the answer to this problem we introduce the symbol 
A( 0:, (3, ,) to denote a 2-dimensional commutative algebra with basis k, , k" 
and multiplication table determined by 

k, 0 k, 

k" 0 k" 

kl 0 k" 

ak1 + (3k2 , 

-ak1 - (3k2 , 

(3k1 + ,k2, 

where the numbers 0:, (3" satisfy the following conditions: 

(1) a, -(32 = ±1; 

(2) 

(3) 

(3 ? 0; 

0: ? O. If 0: = 0, then,?' o. 
The following theorem holds. 

(20.1) 
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Theorem 20.1 Every 2-dimensional commutative division algebra A I.~ 

isomorphic to an algebra A(o:,p,"Y). All algebras A(o:, P,"Y) are divis;o'r. 
algebras and no two of them are isomorphic. 

The rest of this section is devoted to a proof of this theorem. 

20.2 The Connection Between 
Multiplication in the Algebra A and 
Multiplication of Complex Numbers 

Let A be a commutative division algebra. Denote its multiplication b::> 
:l:Dy. Let a =f. 0 be any element of A, and consider the mapping A giver. 
by :I: 1----+ aD:I:. Obviously, this mapping is linear. Since.A is a divisioL 
algebra, the mapping A has an inverse A-I. 

We introduce in our algebra a new multiplication given by 

(20.2 

The algebra with the multiplication :I: • Y is again a division algebra (th-,: 
unique solvability of the equations aD:I: = band :l:Da = b implies tht 
unique solvability of the equations a . :I: = b and :I: • a = b). Its identity 
is the element aDa (for proof see section 18.2, where we consider a simila: 
construction). But the only 2-dimensional division algebra with an identity 
is the algebra of complex numbers (see chapter 2). It follows that we may 
regard the elements :I: and y as complex numbers and the operation :I: • Y 

as ordinary multiplication of complex numbers. 
Now we denote A-I(:I:) by u and A-I(y) by v, and write (20.2) as 

uDv = A(u) . A(v). 

This expresses the multiplication in the initial algebra A in terms of tht 
multiplication of complex numbers. 

As our next step, we consider the multiplication 

uov=A(u·v) (20.3 

and show that the algebras with the respective multiplications uDv and 
u 0 v are isomorphic. 

To this end we write the multiplication table of the multiplication c 
relative to some basis e" e 2 and show that it is the same as the multiplica­
tion table of the multiplication D relative to the basis eJ. = A-I (e1 ), e~ = 
A-l(e2). 
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In fact, let 

Then 

e~De'. , J A(eD .A(ej) = ei· ej = A-l(ei 0 ej) 
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A-l(ael + j3e2) = aA-l(et) + j3A- l (e2) = ae~ + j3e~. 

This proves the coincidence of the two mUltiplication tables. 
We have shown that the initial algebra A is isomorphic to the alge­

bra with the multiplication (20.3), where u . v is ordinary multiplication 
of complex numbers and A is a certain invertible linear transformation. 
On the other hand, it is clear that such an algebra is a commutative divi­
sion algebra. Thus the problem of finding all 2-dimensional commutative 
division algebras reduces to the problem of finding the nonisomorphic al­
gebras (20.3). 

20.3 Determination of the Algebra 
A(a,,B,I') that is Isomorphic to the 
Algebra A 

We must find in the algebra (20.3) a basis k
" 

k,. relative to which the 
multiplication table has the form (20.1) (with suitable conditions on a, 13,1). 
First we write down the multiplication table of the algebra (20.3) relative 
to the basis 

Since 

e l 0 e l A(e, • e , ) = A(1), 

A(e,. • e,.) = A( -1) = -A(1), 

A(e, . e2 ) = A(i), 

it follows that if we put A(1) = a + bi, A(i) = e + di, then 

e l 0 e l 

e l 0 e 2 

ael + be2, 

-ael - be2, 

eel + de2. 

(20.4) 

Now we pose the following question: Is there a basis other than e" e 2 

(that is, 1, i ) relative to which the multiplication table is analogous to 
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(20.4): 

ak1 + {3k2 , 

-ak1 - (3k2 , 

8k1 + ,k2 · 

In other words, are there bases in which 

(20.5) 

(20.6) 

Since equality (20.6) is equivalent to A(k1 0 k 1 ) -A(k" 0 k,,), or 
A(k 1 0 kd = A( -k" 0 k,,), the existence of the inverse transformation A-1 

implies that kl 0 kl = -k" 0 k", or 

k" = ±ik1o 

Hence all bases in which the multiplication table has the form (20.5) are 
given by 

kl = f, k" = ±if, (20.7) 

where f is an arbitrary nonzero complex number. 
Of course, there are infinitely many bases (20.7). We shall show that in 

one of them 
(3 = 8, 

that is, in one of these bases the multiplication table has the form (20.1). 
To show this we again take as the initial basis the basis e 1 = 1, e" = i, 

and write the required basis in the form 

k1 p(costp+isintp), 

k2 ±ip(costp + isintp). 

To find p and tp we must: 
1. compute the product kl 0 kl starting with the formulas (20.4) and 

express it as a linear combination of k1 and k2 ; 

2. compute in a similar manner the product kl 0 k" and express it as a 
linear combination of k1 and k 2 ; 

3. equate the coefficient of k2 in the first of these linear combinations 
with the coefficient of k1 in the second. 

We leave this computational task to the reader. The result is that p is 
unrestricted and tp is determined from the condition 

b-c 
tantp = --d. a+ 
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Figure 20.1. 
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Figure 20.2. 
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It is clear that this condition determines r.p to within a summand mr. This 
means that it determines in the plane two rays (Figure 20.1) that determine 
a single line h. On that line is a vector representing the complex number 
k1 (or, as we shall say, the vector kt). The second vector k2 = ±ik1 is on 
its line 12 • The lengths of these vectors are the same. 

Thus the totality of bases k 1 , k2 in which the multiplication table has 
the form (20.1) can be describe as follows. We choose a basis vector kl on a 
uniquely determined line h and a basis vector k2 on a line 12 perpendicular 
to 11 . Both vectors must have the same length p. We note that for a given 
length there are just four of the required bases (Figure 20.2). 

Upon transition from a basis k" k2 to a basis Ak1' Ak2' where A is a 
positive real number, the coefficients in the multiplication table (20.1) are 
multiplied by A. Hence the additional condition 

wy - j32 = ±1 

determines a unique value of A. In this way, the infinite set of admissible 
bases is restricted to just four (Figure 20.2). 

To recapitulate: There are just four bases 

kl = ±k, k2 = ±ik, 

for which the multiplication table is of the form 

with 

ak1 + j3k2' 
-ak1 - j3k2' 
j3k1 + ,k2' 

0:, - j32 = ±1. 

(20.1) 

The last step is to show that among these four bases there is one for 
which j3 ~ 0 and 0: ~ 0, and such that if 0: = 0, then , ~ O. 

In fact, if in the basis k" k2 we have j3 < 0, then transition to the 
basis k 1 , -k2 yields a new table with j3 > O. Similarly, if 0: < 0 then, by 
multiplying the first basis vector by -1, we obtain a table with 0: > 0 (and 
the sign of j3 unchanged). Finally, if 0: = 0, then the same transformation 
enables us to change the sign of ,. 

In sum, for every 2-dimensional commutative division algebra there ex­
ists a basis for which the multiplication table has the form (20.1) and 

(1) 0:, - j32 = ±1, 

(2) j3 ~ 0, 
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(3) a 2: 0 and, if a = 0, then, 2: o. 

This basis is, in general, unique. In certain special cases (when (3 = 0 or 
a = , = 0) there are two such bases but the table (20.1) is the same for 
both. 

We see that with each algebra A there is associated a unique table (20.1) 
with the indicated restrictions on a, (3". In other words, the algebra A is 
isomorphic to just one algebra A(a,{3,,). 

That every algebra A(a, (3,,) is a division algebra follows from the fact, 
say, that its multiplication is of the form 

u 0 v = A( u . v), 

where the action of the transformation A is given by the formulas 

A(k1 ) = ak1 + (3k2' 

A( k 2) = {3k 1 + ,k2, 

with a, - {32 :I O. In fact, the condition a/{3 :I {3h (equivalent to the 
condition a, - (32 :I 0 when (3, :I 0) implies that A(kI) :I AA(k2)' so that 
the vectors A(kl) and A(k2) form a basis. From this it readily follows that 
the transformation A is invertible. In turn, this shows that the algebra with 
the multiplication u 0 v is a division algebra. This completes the proof of 
our theorem. 
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Conclusion 

Most of the discussion in this book bears on the initial stage of the devel­
opment of the theory of algebras. Now we want to touch on some newer 
results in this theory. 

The development of the theory of algebras began with Hamilton's paper 
on quaternions published in 1843. Subsequently, Hamilton gave a detailed 
account of the results in that paper, as well as of a number of additional 
results, in his Lectures on quaternions. Hamilton's ideas were extremely 
influential. They prepared the ground for a series of papers on associative 
algebras that culminated in the proving of a number of deep theorems on 
the structure of such algebras. 

In order to describe these theorems we must first state precisely an issue 
we have, so far, left out of account. It bears on the coefficients aI, a2, ... , an 
in the expression 

(21.1 ) 

for the elements of an n-dimensional algebra. So far, we've always assumed 
that these coefficients were real numbers; in technical terms, then, we've 
been discussing algebras over the field of real numbers. But there are occa­
sions when one discusses algebras whose elements are given by expressions 
of the form (21.1) in which the coefficients aI, a2, ... , an are arbitrary com­
plex numbers. Such algebras are called algebras over the field of complex 
numbers. In addition to the fields of real and complex numbers there are 
many other fieldsl2 (for example, the field of rational numbers), and thus 
a corresponding multitude of other types of algebras. 

Many results in the theory of algebras vary drastically with the field of 
the coefficients aI, ... , an in the expressions (21.1), that is, the field over 
which the algebra is being considered. For example, we know that over the 
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field of real numbers there are (in addition to the reals themselves) three 
associative division algebras (and infinitely many nonassociative division 
algebras), at a time when there is just one complex division algebra, namely, 
the I-dimensional algebra of complex numbers. Apart from it, there is no 
additional (associative or nonassociative) division algebra over the field of 
complex numbers. This is easy to prove but we won't do it here. 

We shall require certain definitions. 

1. By an ideal of an algebra A we mean a subspace U such that 

AU c U and U A CU. 

This means that for any elements a E A and u E U the two products 
au and ua are in U. In other words, the product of an element in 
the ideal by an element of the algebra (in either order) is again an 
element of the ideal. 

Incidentally, the two extreme cases-when the subspace U coincides 
with all of A or consists of just the one element 0 are not regarded 
as ideals (they are sometimes referred to as trivial ideals). 

One example of an ideal is the subspace of elements bO in the algebra 
of dual numbers (that is, numbers of the form a + bf! with 0 2 = 0). 
Another example is the subspace of elements of the form a( 1 + E) in 
the algebra of double numbers (that is, numbers of the form a + bE 
with E2 = 1). 

2. An algebra without nontrivial ideals is called simple. 

We might say that the concept of a simple algebra is a generaliza­
tion of the concept of a division algebra. Every division algebra is 
necessarily simple. In fact, if an algebra has an ideal U, then the 
equation 

uz = b, 

where u is in U and b is not, is not solvable. Hence such an algebra 
cannot be a division algebra. 

At the end of the 19th century research in the theory of algebras 
centered, for the most part, on associative algebras (as noted earlier, 
the term "algebra" was taken to mean "associative algebra"). This 
produced a fairly clear understanding of the structure of associative 
algebras. The first substantial result dealt with simple algebras and 
was obtained in 1893 by Molien. Frobenius and Cartan discovered 
the same result independently of Molien. It turned out that, up to 
isomorphism, all complex simple algebras are full matrix algebras of 
order n (that is, algebras consisting of all square matrices of order n). 
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In 1907 the American mathematician Wedderburn proved a more gen­
eral result for algebras over an arbitrary field P. Wedderburn's result 
was to the effect that all simple associative algebras over a field Pare 
precisely the full matrix algebras with elements from an associative 
division algebra over P. 

For example, according to this theorem the simple associative algebras 
over the field n of real numbers form three series: 

(a) the algebras of matrices whose elements are real numbers; 

(b) the algebras of matrices whose elements are complex numbers 
(these algebras are to be regarded as algebras over the field n, 
so that the algebra of complex numbers, say, has dimension 2 
and, similarly, the algebra of all complex matrices of order n has 
dimension 2n2); 

( c) the algebras of matrices whose elements are quaternions (the 
dimension of the algebra of quaternion matrices of order n is 
4n2). 

If we bear in mind that the only complex division algebra is the alge­
bra of complex numbers, then Wedderburn's theorem readily implies 
the previously mentioned theorem on complex simple algebras. 

After the determination of all simple associative algebras it was found 
(by the same authors) that the structure of arbitrary associative al­
gebras is determined to a large extent by the structure of simple asso­
ciative algebras. A precise formulation of the latter assertion requires 
the introduction of additional concepts. 

3. Let UI and U2 be two algebras. Their direct sum is the new algebra 
A whose elements are all pairs 

and whose rules of addition and multiplication are given by 

(U"U 2 ) + (u:,u~) 
(u" u 2 ) • (u:, u~) 

(U, + u:,u" + u~), 
(u 1 u~, U2U~), 

It is easy to see that the elements ofthe form (u
" 

0) form a subalgebra 
of the algebra A isomorphic to UI ; we denote it by AI. Similarly, the 
elements of the form (0, u 2 ) form a subalgebra A2 isomorphic to U2 . 

Both of these sub algebras are ideals. For example, the equalities 
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show that Al is an ideal. 

We note that the sub algebras Al and A2 are complementary. This 
means of any number of algebras is defined similarly. The 
elements of the direct sum of algebras Ul , U2 , • •• , Uk are all k-tuples 

(u"u", ... ,Uk)(U, EU1, ... ,Uk EUk). 

An example of a direct sum is the algebra of matrices of order p + q 
with "block-diagonal" structure 

Here A and B are arbitrary matrices of order p and q, respectively. 
It is easy to verify that the multiplication of these matrices satisfies 
the rule 

which shows that this algebra is isomorphic to the direct sum of the 
algebra of all matrices of order p and the algebra of all matrices of 
order q. 

It is a curious fact the algebra A of dual numbers considered in the 
early part of this book (see chapter 2) is isomorphic to the direct sum 
of two algebras of real numbers. In fact, take the following basis of 
the algebra A 

i , = (1 - E)/2, i" = (1 + E)/2. 

Clearly, 

Each element a E A can be uniquely represented as a sum 

and the multiplication of two elements satisfies the rule 

(ali l + a2i2)(blil + b2i2) = albli l + a2 b2i 2. 

If we associate with an element a the pair of numbers (al, a2), then 
we see that our algebra is the direct sum of two copies of the algebra 
R of real numbers. 
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4. A semisimple algebra is the direct sum of simple algebras. Since a 
direct sum is uniquely determined by its summands, it follows that if 
we know all simple associative algebras, then we know all semisimple 
associative algebras. 

For example, every semisimple associative algebra over the field of 
complex numbers is isomorphic to the algebra of all "block-diagonal" 
matrices with blocks of order Pl. P2, ... ,Pk on the diagonal (the num­
bers Pl,P2, ... ,Pk are fixed). In particular, for k = 3 we obtain ma­
trices of the form 

o 
B 
o 

5. An algebra is called nilpotent if there is a number k such that the 
product of any k of its elements, with arbitrary distribution of paren­
theses, is zero. (Our definition of a nilpotent algebra is general in the 
sense that we don't assume associativity of multiplication. Hence the 
need for the remark about the arbitrary distribution of parentheses.) 

A sub algebra of an algebra is nilpotent if it is nilpotent when viewed 
as an algebra in its own right. 

The simplest example of a nilpotent algebra is the null algebra (the 
product of any two elements is zero). Another example is furnished 
by the algebra with basis iI' i2, i3 and multiplication table 

We note that the properties of nilpotent algebras are, in a sense, 
opposite to the properties of semisimple algebras. For example if A 
is a nilpotent algebra, a certain "power" Ak of A, that is, the set of 
finite sums of products of elements of A taken k at a time, consists 
of zero alone. On the other hand, any power of a semisimple algebra 
coincides with that algebra. 

It is easy to show that if Vl and V2 are two nilpotent ideals of 
any algebra A, then their sum (that is, all elements of the form 
VI + V2 , VI E Vl, V2 E V2) is again a nilpotent ideal. It follows 
readily that among the nilpotent ideals of an algebra A there must 
be a maximal one, that is a nilpotent ideal containing all other nilpo­
tent ideals. 

We can now formulate the fundamental theorem of the theory of asso­
ciative algebras. 
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The Wedderburn theorem. In any associative algebra A there is a 
semisimple subalgebra U complementary to its maximal nilpotent ideal V. 

In other words, every element a E A can he uniquely represented as 
a sum '/.I. + v, where '/.I. belongs to a semisimple sub algebra U and v to 
the maximal nilpotent ideal V. It follows that we can associate with every 
element a the pair ('/.I., v), '/.I. E U, v E V. The product of any two elements 
of the algebra A satisfies the rule 

(21.2) 

where v = '/.1. 1 v 2 + v 1 '/.1. 2 + v 1 v 2 E V (one must bear in mind that V is an 
ideal). 

In the special case when U is also an ideal, each of the products '/.1. 1 v 2 

and v 1 '/.1. 2 is 0 (for these products are simultaneously in U and V ), and the 
multiplication rule takes the form 

In this case the algebra A is the direct sum of the algebras U and V. In 
the general case, the structure of the algebra A is not entirely determined 
by the structure of the algebras U and V taken separately, for the element 
v in (21.2) depends not only on v" 11" but also on '/.I." '/.1.2' Nevertheless, 
the fact that every associative algebra A can be represented by a set of 
pairs ('/.I., v), where '/.I. ranges over a certain semisimple algebra and v over a 
nilpotent algebra, sheds a great deal of light on the structure of associative 
algebras. 

To illustrate Wedderburn's theorem we consider the algebra of matrices 
of order p + q in which the elements in the last q rows are zero. All such 
matrices can be written in the form 

(21.3) 

where u is a square matrix of order p and v is a rectangular matrix with 
p rows and q columns. It is easy to show that the maximal nilpotent ideal 
V consists of the matrices (21.3) with u = 0 (and is a null algebra). As a 
complementary semisimple algebra U we can take the set of matrices (21.3) 
with v = 0 (in this case the sub algebra U is simple). 

To emphasize the comprehensive nature of Wedderburn's theorem we 
shall give examples of 2-dimensional (necessarily nonassociative) algebras 
to which the theorem doesn't apply. 

In the first example, the multiplication table has the form 
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It is easy to see that the elements of the form ke2 constitute a I-dimensional 
nilpotent ideal N. This ideal is maximal, for the only subspace that contains 
it is the algebra itself and that algebra is not nilpotent (no power of e 1 is 
zero). It is easy to check that A contains no other subalgebras and therefore 
no sub algebra complementary to N. 

The second example is that of the algebra with the multiplication table 

This algebra contains no nilpotent ideals. If this algebra "satisfied" Wed­
derburn's theorem, it would be simple or semisimple. The first possibility 
does not arise, for the algebra contains the ideal of elements of the form 
ke2. The second possibility does not arise because this ideal is the only 
ideal in our algebra. 

The results obtained in the theory of associative algebras have served as 
a model for further investigations. Many subsequent papers were devoted 
to showing that Wedderburn's theorem holds for other classes of algebras 
(we just saw that the theorem cannot be true for all algebras) and to listing 
the simple algebras of these classes. 

Zorn showed that Wedderburn's theorem applies to the class of alterna­
tive algebras that is larger than the class of associative algebras. Here we 
mention the interesting and unexpected fact that the class of alternative 
algebras is not much larger than that of associative algebras. In fact, in 
the case of the field of complex numbers, the larger class is obtained from 
the smaller one by the addition of the single algebra of "complex" Cayley 
numbers, and in the case of the field of real numbers-by the addition of a 
few algebras of the same type as the Cayley numbers. 

We shall say a few words about two more classes of algebras for which 
Wedderburn's theorem is true. Start with any associative algebra A and 
use it to construct two more algebras A+ and A-, consisting of the same 
elements as A but with the following rules of multiplication: 

in A+ aDb = ab + ba, 

in A- a 0 b = ab - ba. 

The algebra A+ is commutative and, as is easily verified, 

(21.3) 

The algebra A- is anticommutative (that is, a 0 b = -b 0 a) and 

a 0 (b 0 c) + b 0 (c 0 a) + c 0 (a 0 b) = o. (21.4) 
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A commutative algebra in which (21.3) holds is called a Jordan algebra 
(named for the German mathematician P. Jordan). An anticommutative 
algebra in which (21.4) holds is called a Lie algebra, in honor of the Nor­
wegian mathematician Sophus Lie who, at the end of the 19th century, was 
the first to investigate these algebras in connection with the theory of "con­
tinuous groups of transformations." Lie algebras playa very important role 
in modern mathematics and find applications in virtually everyone of its 
areas. 

The classification of Jordan algebras was carried out by the American 
mathematician Albert,who also proved the validity of Wed deb urn's theorem 
for these algebras. 

The fundamental theorems on the structure of Lie algebras were ob­
tained by E. Cartan, one of the greatest mathematicians of the 20th cen­
tury. In particular, Cartan classified the simple Lie groups. The extension 
of Wedderburn's theorem to Lie algebras is due to Levi. Here it turned 
out that the concept of a nilpotent ideal had to be replaced with that of a 
solvable ideal. A more detailed study of these matters is beyond the scope 
of the present book. 



Chapter 22 

Notes 

1. If ql and q2 are two nonzero vectors, then we say that ql is carried to q2 
by a rotation about (the directed line, or axis, determined by) [qb q2] 
through ip, where ip is the directed angle from ql to q2, 0° ::; ip ::; 180°; 
cf. section 4.3. (Translator) 

2. We assume the usual geometric interpretation of the sum of vectors 
and the multiplication of a vector by a number. We recall that vectors 
are added in accordance with the "parallelogram law," and multipli­
cation of a vector by a number amounts to stretching it by a factor 
Ikl and, if k < 0, reversing the orientation of the stretched vector. 

3. The word "nonzero" in the statement of the theorem is essential, for 
the zero vector is orthogonal to every vector y. This follows from the 
equalities 

(0, y) = (Oy, y) = O(y, y) = O. 

4. Here and in the rest of the book we make use of the general properties 
of inner products established in chapter 12. 

5. The square of an element that is not orthogonal to 1, that is, an 
element of the form a = k1 + a' with k # 0 and a' .1. 1 is 

(h + a')(h + a') = k21 + a,2 + 2ka' = k21 + 11,1 + 2ka'. 

If this element were proportional to 1, then it would follow that 
a' = 0, and so a = k1. But the square of the latter element is not 
equal to .h with A ::; O. 
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6. The equality b' = h + b implies that (b' , b') k2(1, 1) + (b, b). 
Also, (1,1) = 1. This follows readily from the fundamental equal­
ity (17.1) for a = b = 1. 

7. Incidentally, the existence of the transformations A -1 and B- 1 im­
plies that each of the equations 

:I: 0 e = a and e 0 y = a 

has a unique solution. The fact that lei = 1 is immaterial: what 
counts is thatei: 0. We conclude that every normed algebra is a 
division algebra. 

8. In order actually to find the forms <1>1' we must write 

:l:y = (L xaea )(LYf3kf3) = L xa Yf3ea kf3 
a f3 af3 

and replace each product ea kf3 with a suitable linear combination of 
the basis vectors iI, i", ... ,in. 

9. In fact, (19.2) implies that a 2 = -sa - h. Hence the set of elements 
of the form en + f3a is closed under multiplication. As such, it is 
a 2-dimensional hyper complex system. In view of section 2.2 , if 
(s2/4) - t < 0 (the case of a negative discriminant), then the system 
is isomorphic to the complex numbers. 

10. If we had p = ..\2 - 4 ~ 0, then c2 = p1 would imply that (c - vIP· 
1)(C + vIP· 1) = 0, that is, that c = vIP· 1, and c = -vIP' 1. But 
this is impossible, for b l and b" do not belong to the same complex 
subalgebra. 

11. The following ingenious proof, due to G. Spiz, relies on topological 
considerations. It is intended for readers familiar with elementary 
topological concepts. 

Let A be a n-dimensional commutative division algebra. If a: and 
yare two elements such that :1: 2 = y2 then, by commutativity, the 
product (:I: - y) (:I: + y) = 0. The absence of divisors of zero implies 
that :I: = Y or :I: = -yo Hence the mapping :l: f-+ :l:2 induces a con­
tinuous monomorphism of the sphere sn-1 into the projective space 
Rpn-l. As is well known, such a mapping is possible only for n = 2. 

12. A field is defined as follows. Let P be a set of elements with two 
operations called addition and multiplication denoted, respectively, 
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by a + b and a . b. The set P is called a field if both operations defined 
in it are commutative and associative, multiplication is distributive 
over addition, and it is possible to subtract (that is, the equation 
a + x = b is uniquely solvable) and divide. The latter means that if 
a :f. 0, then the equation ax = b is uniquely solvable; here ° is the 
element of P such that a + ° = a for all a E P (the existence of such 
an element is easily demonstrated). 

In our definition, the word "operation" refers to any rule that as­
sociates with every pair of elements a E P, b EPa definite third 
element c E P. 
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