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Preface

This book deals with various systems of “numbers” that can be constructed
by adding “imaginary units” to the real numbers. The complex numbers
are a classical example of such a system.
One of the most important properties of the complex numbers is given
oy the identity
j22/] = |2] - |2']. (1)

It says, roughly, that the absolute value of a product is equal to the product
of the absolute values of the factors. If we put z = a; + aqf, 2’ = by + by,
then we can rewrite (1) as

(albl - agbg)z + ((11b2 -+ a2b1)2 = (af + ag)(bf + b%)

The last identity states that “the product of a sum of two squares by a sum
of two squares is a sum of two squares.”

It is natural to ask if there are similar identities with more than two
squares, and how all of them can be described. Already Euler had given
an example of an identity with four squares. Later an identity with eight
squares was found. But a complete solution of the problem was obtained
only at the end of the 19th century.

It is substantially true that every identity with n squares is linked to
formula (1), except that z and 2’ no longer denote complex numbers but
more general “numbers”

ar +azi+azj + -+ aql,

where 4, j,...,1 are imaginary units. One of the main themes of this book
1s the establishing of the connection between identities with n squares and
formula (1).

Another question we deal with at great length is division of hypercom-
plex numbers. The operations defined in each system of hypercomplex
numbers are three of the four “arithmetic” operations, namely, addition,
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subtraction, and multiplication. The possibility of division depends on the
system. Hypercomplex division systems (that is, systems with division)
are few and far between. The real and complex numbers are, of course,
examples of division systems. But there are others. The most remarkable
of them are the quaternions and the Cayley numbers. The problem of find-
ing all hypercomplex division systems is still open. Some variants of this
problem will be considered in this book.

The first part familiarizes the reader with examples of hypercomplex
numbers, including the quaternions and the Cayley numbers. The qua-
ternions and the Cayley numbers {as well as some other hypercomplex
systems) are division systems in which formula (1) holds. The third part
explains the unique role of the complex numbers, the quaternions, and the
Cayley numbers with respect to the questions we’ve raised. The second part
is an elementary exposition of the fundamental concepts of linear algebra
and is of an auxiliary nature.

The book is intended for students of science high schools and, less pre-
scriptively, for all persons interested in mathematics. High school seniors
should be able to read most of the material in the first two chapters, but
may find that the reading of the rest of the book calls for rather strenuous
efforts. Be that as it may, the reader need not worry about prerequisites.
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Hypercomplex Numbers






Chapter 1

Complex Numbers

1.1 Introduction

In elementary algebra we consider, in addition to the real numbers, the
larger system of complezr numbers. What makes us study the complex num-
bers is the solution of quadratic equations. Specifically, certain quadratic
equations, for example,

22 4+1=0, (1.1)
cannot be solved if we restrict ourselves to the real numbers, that is, there
is no real number a such that a? = —1.

The history of the complex numbers goes back to the 16th century. The
Italian mathematicians Girolamo Cardano and Raffael Bombelli introduced
the use of the symbol 1/—1, a formal solution of eq. (1.1), as well as the
expression by/—1, a formal solution of the equation

22+ 52 =0.

Then the more general expression a + bv/—1 can be regarded as a formal
solution of the equation

(z—a)?+b>=0. (1.2)

Expressions of the form a + bv/=1 came to be known first as imaginary
numbers and then as complez numbers, and to be written as a + bi (the
use of i for v/—1 goes back to the 18th century and is due to Euler). These
numbers suffice to solve all quadratic equations. (We recall that if the
discriminant of a quadratic equation is nonnegative, then its roots are real,
and if the discriminant is negative, then its roots can be written in the form

(1.2).)
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Thus a complex number is an expression of the form
a+ bi,

where a and b are real numbers and the symbol : is assigned the property
2 = —1. We note that the complex numbers contain all real numbers (they
are obtained by putting b = 0) as well as all “pure imaginary” numbers
(obtained by putting a = 0.)

For the sake of brevity, we shall denote a complex number by the letter
z and write

z=a-+ bi.

a is called the real part of z, and bi the imaginary part of z; ¢ itself is
called an “imaginary unit”. The name “imaginary” should not be taken
literally. It goes back to the time (the 16th and 17th centuries) when
complex numbers were viewed as something unreal, and were surrounded
by an aura of deep secrecy. In modern mathematics complex numbers are
something quite natural and no more “imaginary” than the real numbers.

1.2 Operations on Complex Numbers

It is natural to define the operations of addition, subtraction, and multipli-
cation of complex numbers as follows:

(a+bi))+(c+di) = (a+c)+ (b+d),
(a+bi)—(c+di) = (a—c)+ (b—d),

(a+bi) x (c+di) = ac+ adi+bci+ bdi®
= (ac— bd)+ (ad + be)i
(in the definition of multiplication we made use of the fact that % = ~1).

Incidentally, if we put b = 0 in the definition of multiplication of complex
numbers, then we obtain the rule

a(c + di) = ac + adi

for multiplying a real number by a complex number.

It is easy to verify that the laws governing the above operations are the
same as the laws governing the corresponding operations on real numbers.
Specifically, addition is commutative and associative:

21+2.'2:2'2+21, (Zl+22)+23=2'1+(2'2+23);
multiplication is also commutative and associative:

2123 = 2221, (21 22)23 = 21(2223);
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and multiplication is distributive over addition:
z1(29 + 23) = 2129 + 21 23. (1.3)
To verify {1.3), say, we put
21 = a1 + b1, zp == ag + b, z3 = a3 + bst.
Then

z1(22 + 2z3) = (a1 + b13)[(a2 + a3) + (b2 + b3)i]
= [ai(as + as) — bi(by + b3)] + [a1(bs + b3) + b1 (aa + as3)]i,

2129 + 2123 = ((11 -+ bli)(a2 + b2l) + (a1 -+ bli)(a3 + 632)
= (a1a2 — b1ba + ajaz — bibs) + (a1b2 + braz + a1b3 + bias)i.

It is easy to see that the outcomes of the two computations are the same.

1.3 The Operation of Conjugation

We consider in some detail certain further properties of the system of com-
plex numbers.
With each complex number

z=a+bi
we associate its complex conjugate
Z=a— b
It is easy to see that
71+ 22=21 + 2y,
and
Z1Z2 = Z123,

that is, the conjugate of a sum is the sum of the conjugates of the sum-
mands, and the conjugate of a product is the product of the conjugates of
the factors. We leave it to the reader to check these formulas.
Note that
z+7Z=2a
and
27 =a’+b%,
that is, the sum and product of conjugate complex numbers are always real
numbers.
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1.4 The Absolute Value of a Complex
Number: An Identity with Two
Squares

The nonnegative real number va2 + b2 is called the absolute value of the
complex number z and is denoted be |z|, that is,

2] = V/a? + b2.

We have
2z = |z)%.
The last equation implies a certain remarkable relation. Thus, let z;
and z3 be two complex numbers, then

|z122|? = (2122)(Z1%2) = 21202172 = 2151 - 2272 = |21]?] 22]%,

so that
|21221% = |21 ] |22)?, (1.4)
and therefore
|z122| = |21] |22]. (1.5)

In other words, the absolute value of a product is the product of the absolute
values of the factors. This is an extremely important property of the com-
plex numbers; in chapter 16 we shall give it a special name (the property
of normability). We shall now obtain a more detailed form of (1.4).
Put
Z] = a3 + bli, Z9 = Qg + b22

Then
Z1Z9 = (alaz - b1b2) + (a1b2 + azbl)i.

This means that we can write eq. (1.4) as
(a3 +b])(a3 +83) = (@10 — b1b2)? + (a1bz + azby)”.

This is an interesting identity. A somewhat vague formulation of this iden-
tity is that the product of a sum of two squares by a sum of two squares is
a sum of two squares.

It is natural to ask if there are similar identities involving more squares.
We shall see that this problem is anything but simple. It has occupied the
minds of mathematicians for many years. It is one of the central issues
considered in this book. We shall formulate it more precisely in chapter 3
and solve it in part 3.
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1.5 Division of Complex Numbers

So far, we have said nothing about division of complex numbers. We discuss
this next.

Let 2’ and z be two complex numbers and z # 0. By definition, the
quotient z’/z is the solution of the equation

zz =12 (1.6)
Multiplying both sides of this equation by z we obtain zzz = z2/, so that
2|22 = 22",
Multiplying both sides of the last equation by 1/|z|> we have
z = (1/|2]%)z7'. (1.7)

It is easy to check that the value of z in (1.7) satisfies equation (1.6).
We illustrate. Suppose that we wish to divide 2’ =5 — i by 2 = 2 — 3i.
By formula (1.7),

ZI

1 ) . 1 . .






Chapter 2

Alternate Arithmetics on
the Numbers a + bi

2.1 Formulation of the Problem

We made the expressions a + b¢ into a number system by introducing the
‘ollowing rules for their addition and multiplication:

(a+bi) + (c+di) = (a+¢) + (b+ d)i, (2.1)

(a + bi)(c + di) = (ac — bd) + (ad + be)i. (2.2)

Formula (2.1) seems very natural. On the other hand, formula (2.2)
Joes not inspire the same feeling. We shall now investigate the possibility of
making the expressions a+b¢ into a reasonable number system by retaining
the addition rule (2.1) and replacing (2.2) by a multiplication rule that is,
a priori, erbitrary.

The form of the new law depends largely on the properties we expect the
new multiplication to have. It would be awkward if the new multiplication
were given by the formula

(@ + b3) - (c + di) = ac? + bdi,
say. Indeed, putting b = 0, d = 0, we would then obtain the strange equality
a-c=ac’.

We shall expect the new multiplication to satisfy the following require-
ments:
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1. Multiplication of a real number a, viewed as an element of the new
system (a = a + 07), by any number z = b + ¢i must yield the same
result as in the case of the complex numbers, that is,

(a + 08)(b + ci) = ab + aci,

and
(b+ ci)(a + 07) = ab + aci.

In particular, this means that for real numbers the new multiplication
must coincide with the usual multiplication:

(a + 08)(b + 0i) = ab + 0i.

Since the analogous claim is true for addition ((2.1) implies that {(a +
ot) + (b + 0¢) = (a + b) + 01), it follows that the real numbers are
included in the new system with their usual arithmetic.

2. The equality
(az1) - (bz2) = (ab) - (2122)
must hold for all real a and b. For example, (2¢)(37) = 6i2.

3. Multiplication must always be distributive over addition, that is, we
must have

z1(z2 + 23) = 2122 + 2123,
and
(21 + 29)23 = 2123 + 2223.

While these requirements do not determine the new law of multiplication
completely, they imply a great deal. Thus,

(@ + bi)(c + di) = a(c + di) + (bi)(c + di)
= ac + adi + bei + bdi?.

To determine the outcome completely, it remains to determine the value of
i2. In particular, if we put 2 = —1, then we obtain the familiar multipli-
cation of complex numbers. But this is certainly not the only possibility.
After all, all that is required is that the product 7 - belong to the number
system under consideration, that is, that it be a number of the form p+ ¢i.
By assigning the values of p and ¢ we will have completely determined the
form of the multiplication law:

(@ + bi)(c + di) = (ac + bdp) + (ad + be + bdg)s. (2.3)
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Having thus defined the object of our study, we can dispense with the
heuristic considerations that led us to formula (2.3) and say that we inves-
tigate the system of numbers of the form a+ bi with addition rule (2.1) and
multiplication rule (2.3), where p and g are two fized real numbers (that
determine, so to say, the “arithmetic” of the given number system).

A close look at formula (2.3) indicates that the new multiplication is
commutative (2122 = z221). This result is somewhat surprising, for it is
not one of the three requirements imposed on the multiplication law. It is
also true that our multiplication is associative. In fact,

[(a + bi)(c + di)](e + fi) = [(ac + bdp) + (ad + be + bdg)il(e + f1)
= ((ac + bdp)e + (ad + bec + bdq) fp)
+((ac + bdp) f + (ad + be + bdq)e + (ad + be + bdg) fq)1,

(a + bd)[(c + di)(e + fi)] = (a + bi)[(ce + dfp) + (cf + de + dfq)i]
= (a(ce + dfp) + b(cf + de + df q)p)
+(a(cf + de + dfq) + b(ce + dfp) + b(cf + de + df ¢)q)i.

If we compare the results of the two computations, then we readily see
that they are equal (to simplify the check, equal expressions appear on
corresponding lines).

2.2 Reduction to Three Systems

The fact that formula (2.3) contains two arbitrary real numbers p and ¢
may be taken as an indication that we have found an infinity of number
systems. We are about to show that this is not at all so, and that each
system can be reduced to one of the following three:

1. numbers @ + bi with 2 = —1 (the complex numbers);

2. numbers a + bi with i?2 = 1 (the so-called double numbers);
3. numbers a + bi with i2 = 0 (the so called dual numbers).

The reduction process goes as follows. The equality i = p + ¢i implies
that 42 — ¢¢ = p, or that

(i- %)2 =p+ % (2.4)

There are three possible cases:
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case 1. p+ ¢2/4 is a negative number, that is, p+ ¢? /4 = —k?, where
k is a nonzero real number. Then

. Q2 2
Iy _p
(-7 =e,
that is, .
_—q— — ’ 2 o= e
( 2% + kz) 1. (2.5)
Denoting the number in parentheses by J, we have
J?=-1.

Since ¢ = ¢/2 + kJ, it follows that every number @ + bi can be written in
the form

b
a+bi:a+b(%+k.]):(a+§q)+ka.

In other words, every number a + bi can be written in the form a’ + b'J,
with J2 = —1. This means that we are aciually dealing with the complex
numbers.

case 2. p+ ¢2/4 is a positive number, that is, p + ¢2/4 = k?. Then
instead of (2.5) we have

_ 9 Ll
( 2k’+kz) =1

Denoting the number in parentheses by E, we have
E?=1.

It follows that every number a+ bi of our system can be written as a’ +b'E,
with E? = 1. The law of multiplication of these numbers is

(! +VEY)c +d'E)=(a'cd +¥d')+ (d'd + ¥ )E.

In other words, for p+ ¢?/4 > 0 we obtain the system of double numbers.
case 3. p+ ¢2/4 = 0. In this case, denoting by Q2 the number i — ¢/2,
we have
Q% =0.
Every number a + b7 in our system can be written as (a + bg/2) + b2, that
is, in the form @ + bQ. The law of multiplication takes the form

(@ + bQ)(E + dQ) = @c + (ad + b&)Q.

This means that we are dealing with the system of dual numbers.
In sum, we have shown that every system of numbers a + b7 with the
operation rules (2.1) and (2.3) is actually one of the following three systems:



22 Reduction to Three Systems 13

1. The complex numbers a¢ + bi, 2= —1;

2. The double numbers a + bE, E?=1;
3. The dual numbers a + 5Q, Q2 =0.

We have studied the properties of the complex numbers in considerable
detail. Dual and double numbers are of lesser interest. Unlike the complex
xumbers,dual and double numbers do not, in general, admit division. We
recall the meaning of the term “division”: Given a law of multiplication, to
Zivide z1 by z2(22 # 0) is to solve the equation

29k = 2y.

We show that in the system of double numbers it is not possible to
fivide, say, z; = 1 (that is, 1 + 0F) by 29 = 1 + E. Indeed, if the equation

(1+E)x=1+0F

were solvable, then it would follow that (1— E%)z = 1—FE, that is, 0 = 1—-E,
which is impossible. Similarly, in the system of dual numbers it is not
possible to divide, say, 1 by Q. Indeed, for every z = a + b2 we have
- Q=aQ#1.

We are used to the notion that a key property of numbers is that we
can add, subtract, multiply, and divide them. This being so, we might
7uestion the appropriateness of speaking of double and dual numbers. In
mathematics, however, systems of “numbers” (similar to double and dual
aumbers) in which we can always add, subtract, and multiply, but not
necessarily divide play an important role. Systems in which division can be
-arried out for all pairs z;, 22 # 0 are called division systems. In this book
we shall be mainly concerned with division systems.






Chapter 3

Quaternions

3.1 Preliminaries

Our construction of the complex (as well as double and dual) numbers,
suggests that we might go further, and consider numbers of the form

z=a-+bi+cj,

where a, b, ¢ are arbitrary real numbers and ¢ and j are certain symbols. It
is reasonable to adopt the following addition rule for these numbers:

(a+bit+cj)+(a +¥i+cj)=(a+a)+(b+b)i+(c+)j].

The form of the multiplication rule requires some thought. Of course, we
don’t want a rule that would lead to awkward consequences, such as, say,
the violation of the equality

(a4 0i + 07)(b + 0i + 07) = ab + 0i + 05,

which states that for real numbers the new rule coincides with the usual
multiplication of such numbers. Also, guided by the natural requirements
stated in the previous section, we require that
1. The product of a real number k = k+0i+0j by a number z = a+bi+cj
must be equal to ka + kbi + kej;

2. The equality
(azl)(bzg) = (ab)(zlzz)

must hold for arbitrary real numbers a,b; and
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3. The distributive law
z1(z2 + 23) = 2122 + 7123,

(21 + 22)23 = 2123 + 2223,

must hold.

It is not difficult to invent a multiplication rule satisfying all these re-
quirements. For example, we could adopt the rule

(a+bi+cj)a" +b'i+c'j) = aa’ + (ab’ + ba')i + (ac’ + ca’)j.

While this multiplication rule is also commutative and associative (z125 =
2921 and (z122)23 = 21(2223)), it certainly does not imply the possibility of
unrestricted division. For example, it is not possible to divide 1 by ¢, that
18, the equation

(0+1i+0)z =1+ 0i+ 05

has no solution.

This is not an accident. It is possible to show that for every multi-
plication rule satisfying 1, 2, and 3 there is at least one pair of numbers
21,22(z2 # 0) such that z; cannot be divided by z,. In other words, it is
impossible to make a division system out of the numbers a + b7 + ¢j !

On the other hand, it is possible to make a diviston system out of the
numbers

a + bi + cj + dk, (3.1)

where k is an additional symbol. More precisely, it is possible to multiply
the numbers (3.1) so that the requirements 1, 2, 3 hold and division, the
inverse of multiplication, can always be carried out. The most interesting
example of such a system are the quaternions.

3.2 The Definition of Quaternions

The quaternions are the numbers (3.1) with the addition rule

(a+bi+cj+dk)+ (¢ +¥i+j+dk)
=(a+a)+(b+b)i+(c+ )i+ (d+d)k,

and a rather special multiplication rule. To determine the multiplication
rule it suffices to assign the values of the products of the numbers i, 7, k
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s2ken two at a time:

2=-1, j2=-1, k? =—1,

ij =k, ji=—k,

jk=1, kj =—1, (3.2)

ki=j, tk=—j.
Eizure 3.1 helps us remember this “multiplication table.” In it, the numbers
t. j. k are represented by dots placed clockwise on the circle. The product of
two of these numbers is the third number or its negative, according as the
atientation of the shortest circular arc joining the first factor to the second
= clockwise or counterclockwise. We see that this multiplication rule is not
~mmutative; the outcome depends on the order of the factors!

Our multiplication table and the requirements 1, 2, 3 enable us to mul-
wply arbitrary quaternions. Thus, let

g=a+bi+cj+dk,
¢ =d +bi+cj+dk
By the rule for multiplying sums (implied by 3), we have
¢ = ad +a(b'i)+a(c'j)+ a(d'k) + (bi)a’ + (bi)(¥'7)
+  (bi)(c5) + (bi)(d"k) + (ci)a’ + (cf)(b'i) + (ci)(c')
+  (ci)(d'k) + (dk)a’ + (dk)(b'3) + (dk)(c'j) + (dk)(d k).

The terms with two of the three numbers ¢, j, k£ can be reduced using the
requirements 1 and 2 and our multiplication table (for example, (bi)(c'7) =
be'(if) = be'k). The end result is
¢ = (ad —bb —cc —dd')+ (ab’ + ba' +cd’ — dc')i
+ (ac’ +cd' +db' —bd")j+ (ad’' +da’ +bc' —cb')k.  (3.3)
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3.3 Associativity of Multiplication of
Quaternions

In spite of the fact that multiplication of quaternions is not commutative,
computations involving quaternions are not as hard as might at first appear.
What helps is that multiplication of quaternions is associative, that is,

(9192)93 = 01(q293)- (3.4)

We verify this next.

Each of the quaternions ¢4 (o = 1,2, 3) is the sum of four terms (g0 =
Ay + boj + coj + dok). Tt follows that the left side of (3.4) is the sum of
4 x 4 x 4 = 64 terms of the form

(U1UQ)U3, (35)

where u; is one of the summands in ¢y, u3 in ¢ and ug in ¢s. Similarly, the
right side of (3.4) is the sum of 64 terms

u(ugu3). (3.6)

If we can show that each of the terms (3.5) is equal to some term (3.6),
then we’ll have proved (3.4).

Thus, to verify (3.4) it suffices to verify it for the special case when
q1, 42,93 are any three of the four quaternions a,bi,cj,dk. Since we can
pull out numerical coeflicients, we need only verify (3.4) for the four qua-
ternions 1,4, j,k; for example, instead of showing that ((bé)(cj))(¥'i) =
(b2)((ef)(b'7)), it suffices to show that (if)i = i(jz).

If one of the quaternions g, ¢2, ¢3 is 1, then (3.4) is obviously true. Thus
it suffices to verify (3.4) when g1, ¢2,93 are any of the quaternions i, j, k.
There are 27 such equalities. Some of them are

(id)i = i(id), (id)j =iGf), ()i =i(i0), (if)k =i(ik).
Using table (3.2} we can easily check all 27 equalities. This proves the
associativity of the multiplication of quaternions.

We shall see that the system of quaternions resembles the system of
complex numbers in many very important respects. We have just checked
that the multiplication of quaternions is associative. But the similarities
between the two systems are far greater. As already indicated, the quater-
nions admit division. Then there is the possibility of defining the absolute
value of a quaternion so that “the absolute value of a product is the product
of the absolute values” of the factors.

What is behind these similarities is the possibility of defining on the
quaternions an operation of conjugation whose properties are analogous to
those of the conjugation of complex numbers.
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3.4 Conjugation of Quaternions

By analogy with the complex numbers, we make the following definition.
By the conjugate of the quaternion

qg=a+bi+cj+dk,
we mean the quaternion
g=a—bi—cj—dk. 3.7

k is clear that the sum of conjugate quaternions is a real number. The
gaaternion multiplication rule 3 implies that the product ¢7 is also real. In

fact,
(a4 bi+cj+dk)(a—bi—cj—dk)=a®+b%+c*+d° (3.8)

Continuing the analogy with the complex numbers, we call the nonneg-
ative number

Va2 +b2 + 2 + d2

the absolute value of the quaternion ¢ and denote it by |g|. Then (3.8) can
be written as

93 = lq*.
This formula is the same as the one for complex numbers.
Remark. If ¢’ is a “pure imaginary” quaternion, that is, if ¢ = bi 4+
=j + dk, then
P =—(p>++d%)<0.

Conversely, if the square of a quaternion is real and less than or equal to
»ero, then that quaternion is pure imaginary. (In fact, if ¢ = a+bi+c¢j+dk,
then ¢2 = (a+¢')(a+¢') = a?+q¢%+2aq = a2 —b%—c? —d? +2aq’. If the
Iast expression were a real number and a # 0, then ¢ = 0. But then ¢ =a
and ¢? is not < 0.) It follows that quaternions of the form bi 4 ¢j + dk —
and only such quaternions — can be characterized by the condition that
their squares are real numbers < (. With this in mind, we can give the
following alternate description of the operation of conjugation: let ¢ be a
maternion and let ¢ = a + ¢' be its unique representation such that the
square of the quaternion ¢ is real and < 0. Then § = a — ¢'. This remark
will be used in chapter 17.
Direct verification shows that conjugation has the properties

Gte=0+4 (3.9)
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(the conjugate of a sum is the sum of the conjugates of the summands),
and
0192 = 201 (3.10)

(the conjugate of a product is the product of the conjugates of the factors
in reverse order). The reader will recall that analogous equalities hold for
complex numbers. The one difference is that whereas for complex numbers
we can write z;Zy for Z,z; (multiplication of complex numbers is commu-
tative), the quaternion products §2q1 and q142 are, in general, different.

To verify (3.10) it suffices to check it in those cases in which ¢; and ¢,
are any two of the three quaternions i, j, k. Then the verification is easily
accomplished by using the table (3.2). For example,

=~1, and W= (=9)(—i) = 2= -1,

Jj=k=-k, and ji=(—j)(—=i)=ji=—k,

and so on.

3.5 The Quaternions as a Division System

There is a basic difference between division of quaternions and division of
complex numbers. The reader will recall that for complex numbers the
quotient of z; by 22 is the solution of the equation 29z = 2;. But multipli-
cation of quaternions is noncommutative, and so it is necessary to consider
not one but two equations:

Qr=q (3.11)
and

zqs = q1. (3.119)
We call the solution of the first of these equations the left quotient of ¢
by ¢» and denote it by x;. Similarly, we call the solution of the second
equation the right quotient of ¢1 by g2 and denote it by z,.. (Of course, for
complex numbers the two inverses coincide.)

To solve the equations (3.11) and (3.11") we use the approach used ear-

lier in connection with complex numbers. We multiply both sides of (3.11)
on the left by §, and then by Tilg The result is

1
= 73 1241
lg2|?
Substitution in (3.11) shows that this expression is a solution. Hence

1
= —= q2q1.
I112|2 q29
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Similarly,
I
xr = |q2|2 QIQ2—

By way of an example, we compute the left and right quotient of k by
1+i4+k: ) .

1 . 1 )
$r:§k(1—l—k)=§(k—3+1)

In sum, we have established the two most important properties of the
system of quaternions:
1. Multiplication of quaternions is associative;

2. The quaternions are a division system.

3.6 Absolute Value of a Product

One other important property of quaternions is that the absolute value of
a product is the product of the absolute values of the factors. Its proof is
the same as for complex numbers. It makes use of the equality q7g2 = §o1
and the associativity of quaternion multiplication. The proof follows.

l71921? = (0102)(7182) = (0102)(@21) = q1(2232) 1 = |@1|? |g2l®

3.7 The Four-Square Identity. General
Formulation of the Problem of the Sum
of Squares

The equality
lai2l® = laaf? |gaf?, (3.12)

spelled out in detail; leads to an interesting identity. Thus, let
qgp=a+bitci+dk, g=d +bi+cj+dk.

Then ¢1¢2 is the expression on the right side of (3.3). If we reverse sides
in (3.12), then we can write it as

(a,2+bz +c2+d2)(a'2 +b'2+c'2+d/2) (3‘13)
= (aa’ —bb' —cc’ —dd’')?® + (ab' 4+ ba’' +cd’ — dc')?
+(ac’ +ca’ + db' — bd’)? + (ad’ + da’ + b’ — cb’)?.
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We recall that for complex numbers the equality |z122|> = |21]?|25|?
yields the analogous identity

(% +b?)(a’ + b'?) = (aa’ — bb')? 4 (ab’ + ba')?, (3.14)

which we said is to the effect that the product of the sum of two squares
is again a sum of two squares. Similarly, (3.13) may be said to assert that
the product of the sum of four squares by a sum of four squares is again a
sum of four squares.

The above identities suggest the following problem: For what values of
n are there identities stating that “the product of a sum of n squares by a
sum of n squares is a sum of n squares”?

For n = 1 we have the immediate positive answer

a?b? = (ab)?.

As we know, for n = 2 and n = 4 the answer, while not at all obvious, is
again positive. But what about n = 3,5,6 and so on? As noted earlier,

“for a long time the problem was not fully answered. We owe a complete
answer to the German mathematician A. Hurwitz who showed in 1898 that
identities of the required kind exist for n = 1,2,4,8 and for no other values
of n.

To avoid possible misunderstandings concerning “the problem of the
sum of squares” we restate it with greater precision.

Let ay,aq,...,a, and by,bs, ..., b, be two strings of letters. By a bi-
linear form in these letters we mean a sum such that each summand is a
product of a letter in the first string and a letter in the second string. For
example, the expression

aiby + 8ayby — 2azbs + 3asb,

is a bilinear form. “The problem of the sum of squares” can be stated
precisely as follows: For what values of n one can find n bilinear forms
Py, Py,...,D, such that

(@+ai+.. . +a2)Pi+b2+.. . +02) =07+ +...+82.())

Clearly, the identities (3.13) and (3.14), which we found in connection
with our study of quaternions and complex numbers, are of the required
type. After a minor change of notation, the identities in question can be
rewritten as

(af + a3)(b3 + b3) = (a1b1 — agba)® + (a1bz + azhy)?,
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and

(a2 + a2 + a3 + a2)(b? + b2 + b2 + b2)
= (aphy — agbs — azbs — asby)® + (a1bs + azby + azbs — ashs)?
+(a1bs + azby + asby — azbs)? + (a1bs + ashy + azbs — aszb2)?.

In chapter 6 we shall consider the division system known as Cayley
numbers and obtain from them an identity (1) for n = 8. In this way we
shall have obtained (!) for n = 1,2,4,8. In Part 3, after discussing all the
necessary preliminaries, we shall prove the previously mentioned Hurwitz
theorem which asserts the impossibility of (!} for other values of n.






Chapter 4

Quaternions and Vector
Algebra

> The discovery of quaternions in the middle of the 19th century provided
the impulse for a variety of researches in mathematics and physics. In
particular, quaternions gave rise to vector algebra, one of the most fruitful
areas of mathematics. In this section we shall describe the connection
between the calculus of quaternions and the operations on vectors in 3-
space.

4.1 The Number and Vector Parts df a
Quaternion

We recall certain issues which the reader learned in geometry. Consider
a rectangular coordinate system in space with unit vectors i, ,k on the
coordinate axes (Figure 4.1). Then any sum of the form bi + cj + dk,
where b,c,d are real numbers, represents a vector joining the origin O of
the coordinate system to the point M with coordinates b, ¢, d.

Now consider the quaternions. We may regard each quaternion

g=a+bit+cj+dk

as a formal sum of the real number a and the vector bi 4 cj + dk. We
shall call a the number (or real) part of ¢, and bi + ¢j + dk its vector (or
imaginary) part.

Now consider the vector quaternions

g1 =bii+cij+dik, g2 = bai + c2j + dok,
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Figure 4.1.
and their product
a1g2 = —(biba+ crc + dids) + (crdy — dica)i
+(d1b2 -— bldz)j(blcz — Clbg)k. (4.1)
We have:
Real part of g1q2 = —(b1ba + c1¢2 + did2). (4.2)

Imaginary part of

Q192 = (cldg — dlcz)i + (d1b2 - bldz)] + (b162 — Clbz)k. (43)

4.2 Scalar Product of Vectors

Each of the expressions (4.2) and (4.3) has a definite geometric sense. We
are about to show that the sum b, b2 + c1c2 + di1d> is equal to |gi| |gz| cos ¢,
that is, the product of the lengths (or absolute values) of the vectors ¢
and g3 by the cosine of the angle between them. Such products turn up
in mathematics with extraordinary frequency. We refer to such a product
as “the scalar product of the vectors ¢; and ¢2.” (We emphasize that the
scalar product is a number and not a vector.) We denote it by (qi,4¢2).
Thus, by definition,

: (91, 42) = |11 lg2| cos .

We prove that
(41, 92) = bidz + c1c2 + dida. (4.4)

Consider the triangle in Figure 4.2 determined by the vectors ¢; and g2.
One of its vertices is at the origin. The remaining vertices are the points
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Figure 4.2.

M1, M, (the endpoints of the vectors g1, qz) with coordinates by, ¢;, d; and
ba, ¢, do, respectively. We have

OME =02+ c +d2,
OMZ = b2 4 c2 + d3,
MyM3 = (by — b3)* + (c1 — ¢3)” + (dy — do)?,

so that
Mi M2 = OMZ + OM2 — 2(b1bs + c1ca + dida).

By the law of cosines,
MiM2 = OME + OMZ —~20M, - OM; - cos o,

where ¢ is the angle at O (the angle between the vectors ¢; and ¢3). Equat-
ing the expressions for M; M2 we see that

OM; -OM, - CoS @ = biby +ec169 + dqids,

which was to be proved.

Thus the real part of the product of the vector quaternions ¢y, g2 is the
negative of their scalar product.

We observe that if the nonzero vectors ¢; and g3 are perpendicular, then
their scalar product is zero (p = ¥, cosp = 0). But then the real part
of the product is zero and ¢1¢2 is a “pure” vector. Of course, the converse
is also true: if ¢q1q2 1s a pure vector, then the scalar product of ¢; and ¢2
is zero. But then, assuming that ¢;,¢2 # 0, that is, that ¢ is defined, it
follows that cos ¢ = 0 and ¢1, g2 are perpendicular. Also, if ¢; and ¢o are
perpendicular, then ¢1¢2 = —¢3¢;. This follows readily from formula (4.1)
if we bear in mind that the real part of ¢q1¢2 is zero.
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4.3 Cross Product of Vectors

The geometric interpretation of the vector part of the product ¢iq2, that
is, of the right side of (4.3), is more difficult. We call it the cross product
of the vectors ¢; and ¢ and denote it by [q1, ¢2]. Thus [¢1,¢2] = (c1ds —
dlcz)i + (d1b2 - bldz)] + (b102 - Clbz)k.

Tt turns out that the vector [g1, ¢2] is perpendicular to each of the vectors
q1 and g¢» and that its length is equal to |¢1] |¢g2| sin ¢, that is, the area S of
the parallelogram on the vectors ¢; and ¢s.

We know that in order to prove the perpendicularity of the vectors
{91, ¢2] and ¢, it suffices to show that the real part of the product of these
quaternions is zero or, what amounts to the same thing, that their product
is a pure vector. Now (4.1) and (4.4) imply that [g1, ¢2] = q192 + (91, 92),
so that

01{91,22] = 1(0192 + (91, 92))
=g+ (11, 02)0 = —lalPe + (¢, ©2)a.

(Note that in the computation process we replaced ¢? by —|g:1|%. This is-
justified by formula (4.1), which implies that ¢ = —(b + ¢ + d?) + 0i +
0j + 0k = —|q1|2.) The expression on the right is a sum of two vectors, and
thus a vector. A similar argument establishes the perpendicularity of the
vectors [q1, g2} and ¢s.

It remains to compute the length of the vector [gy, ¢2]. Its square is
equal to

(c1da — dicz)? + (dibs — b1da)? + (brez — €1b2)?,

which c¢an be rewritten as
(03 + cf +d])(b3 + ¢ + d3) — (biba + crca + duda)?.

The last expression is |¢1|? |g2|2— (g1, g2)? or, bearing in mind the definition
of the scalar product,

911 lg2]® — la1) lg2f? cos® o, ice., |q1|? |g2|?sin® .

Thus, as was to be shown, the square of the length of the vector [g1, ¢5] is
equal to |q1|? |g2|?sin® . , that is, S2.

The properties of the vector [g1, g2] just established (the fact that it is
perpendicular to both ¢; and ¢ and that its length is S) do not determine
it uniquely. In fact, there are just two such vectors, and they are oppositely
directed (Figure 4.3). The description of the vector [g1,¢2] is completed
by the statement that the orientation of the triple ¢1, g2, [¢1, g2] in space is
the same as that of the triple 7, j, k. By this we mean the following: If we
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Figure 4.3.

look at the plane of the vectors ¢; and g3 from the tip of the vector [g1, g3],
then we see that the orientation of the smallest rotation from ¢; to ¢s is
the same as the orientation of the smallest rotation from ¢ to j, determined
by viewing the plane of ¢ and j from the tip of £ (Figure 4.4).

In sum, for the multiplication of pure vector quaternions we have the
formula

9192 = —(q1,92) + 91, 92)-

Here (q1, ¢2) is the scalar product of the vectors ¢; and g3, and [g1, g9] is their
cross product. We see that the scalar and cross products are “fragments”
of quaternion multiplication.

The operations of scalar and cross product (together with vector addi-
tion and multiplication of vectors by scalars) are the basis of vector algebra
— a branch of mathematics with numerous applications in mathematics
and in physics (especially mechanics). The reader may be familiar with
some of these applications (work is the scalar product of the force vector
by the displacement vector, and so on). It should be noted that a clear pre-
sentation of vector algebra appeared much later than the first papers on the
theory of quaternions (the papers of the English mathematician Hamilton,
the founder of quaternion theory, appeared in the 1850s, whereas the basic
aspects of vector algebra were formulated by the American mathematician
and physicist Gibbs in the 1880s).
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Figure 4.4.

4.4 The Geometric Interpretation of the
Multiplication of a Quaternion by a
Pure Vector Quaternion

Owing to the fact that quaternion multiplication involves the scalar and
cross product of vectors, quaternions are a remarkable tool for the solution
of certain problems in mechanics and geometry. Below we state a very
difficult problem which can be solved by means of quaternions in a manner
that is at once very simple and beautiful. Before we can do this, however, we
must explain the geometric significance of the multiplication of a quaternion
by a pure vector quaternion.
Let

g=a+bi+cij+dk
be a quaternion whose absolute value is 1. Then

a? 4+ +ct+d2=1.

Put

g=a+dq,
where ¢' is the vector bi + cj + dk. Since |a?| + [¢'|?> = 1, there exists a
unique angle p, 0% < ¢ < 180°, such that

a=cosp, |¢|=sinep.
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Figure 4.5.

Clearly, ¢ = |¢'| p, where p is a vector of unit length. Hence
g = cosp + psingp.

We emphasize that every quaternion ¢ of absolute value 1 can be so rep-
resented (with p a vector of unit length) and that this representation is
unique.

‘We multiply the quaternion ¢ by a vector quaternion v that is perpen-
dicular to p but otherwise arbitrary. We have

qu = (cosp + psing)v = vcosp + pusinp.

Since ¢ and v are perpendicular, the real part of pv is zero and its vector
part is [p, v], that is, a vector of length |p|-|v| -sin = [v|, perpendicular to
p and v and oriented with respect to p and v in the same way as the vector
k with respect to 7 and j. Denote this vector by ¥. Then we can say that
t is the result of rotating v through #/2 about p. To avoid any ambiguity
we stipulate that the orientation of the rotation about p is to be the same
as the orientation of the smallest rotation from i to j about k.! We have

qu = v cos ¢ + Usin .

A glance at Figure 4.5 shows that the vector gv is obtained from v by a
rotation through ¢ about the vector p.

Thus, if p is a vector of length 1 and v is any vector perpendicular to p,
then by multiplying v on the left by the quaternion ¢ = cosyp + psing we
rotate it about p through the angle .

Up to a point, this fact may be regarded as the geometric sense of
multiplication (on the left) by ¢. What is disappointing is that the vector
r is not arbitrary but perpendicular to p.
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4.5 Representation of an Arbitrary
Rotation in Space by Means of
Quaternions

By using a more complicated action on v we can obtain a quaternion repre-
sentation of a rotation about p of an arbitrary vector v. Specifically, instead
of the product gv we must consider the more complex expression

qug™t.

1 1

Here ¢~ is the inverse of the quaternion ¢, that is, ¢¢g=* = 1. It is easy to

see that
¢ ! =cosp—psing

(in fact,(cos¢p + psinp)(cosp — psinp) = cos? p — p?sin®p = cos? ¢ +
sinZp =1).

We shall show that the vector quq™?! is the result of rotating the vector
v about the vector p through 2¢.

First assume that v is perpendicular to p. Then

qug~! = qu(cos p — psin p) = qv cos p — (qv)psin .

We know that qv is again a vector perpendicular to p. Hence (qv)p =
—p(qv). Earlier we saw that the quaternion p(qv) is the vector obtained by
rotating gqv about the vector p through n/2 (Figure 4.6). As before, we
denote it by gv. Thus

qvg~! = qu cos ¢ + o sin .

The expression on the right is the vector obtained by rotating gv about p
through the angle . If we bear in mind that the vector qv is obtained from
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r by the same rotation, then it is clear that qvg™!

r about p through the angle 2.
Before considering the general case we observe that if the vector v is a
multiple of p,v = Ap, then clearly, qv = vq and

is the result of rotating

qvq_1 = qu'l = .
Now let v be an arbitrary vector. We decompose it into two components,
r = v; + v, where v; is a vector perpendicular to p and v is proportional
1o p. Then

1

qug "t = quigTt +quagTt = quigT v

We see that the component v; is rotated about p through the angle 2¢
and the component v, remains unchanged. But then v is rotated about p
through the angle 2¢.

We have shown that the rotation about p through the angle 2¢ takes the
rector v into the vector qug~!, where

g = cosp+ psin.

With this in mind, we say that the indicated rotation corresponds to
the quaternion gq.

4.6 The Problem of “Composition” of
Rotations

In the beginning of section 4.4 we promised to illustrate the application of
quaternions by using them to solve a difficult geometric problem. We do
this next.

Consider a rotation through an angle 2¢; about an axis determined by
a unit vector p;. This rotation is followed by a rotation through an angle
2p9 about an axis determined by a unit vector p,. We are required to find
the axis and angle of the resultant rotation.

We know that the first rotation takes any vector v into the vector v; =
qivqr L, where g1 = cos p; + p1 sin ;. The second rotation takes v; into

v2 = 201451 = ¢2(q1vg7 ezt = (g201)v(g201)

(here we have used the equality (g2g1)~! = g7 g5 !, implied by the equality
(9291 ) (a7 lqi'l) = 1). Thus, the successive application of the two rotations
takes the vector v into the vector

vy = (Q2ql)v(42¢I1)_1-
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Put differently, the result of successive application of two rotations cor-
responding to the quaternions ¢1 and go ts the rotation corresponding to the
quaternion q¢aq;.

Since we have a rule for multiplying quaternions, we can easily compute
¢2¢1- Then we put it in the form

g2q1 = costp + psiny (4.5)

with p a unit vector. The resultant rotation is a rotation about p through
the angle 2¢. It is certainly true that by using quaternions we have solved
our problem with ease!

We illustrate by means of an example. Suppose the first rotation is
about the z-axis through the angle 7/2 and the second rotation is about the
y-axis through the same angle. The quaternion corresponding to the first
rotation is ¢; = cos +isin § = 3?(1+i), and the quaternion corresponding

to the second rotation is gz = 3@(1 + 7). Hence
1 . L1 L
@ =5(1+)(1+i)=s(1+it+j—k).

To put this quaternion in the form (4.5) we note that its real part is 1 =

cos /3. Hence
T

= s—+[-—1—(i+ '—k]sinI
4291 = €O 3 \/g J 3

It follows that the resultant is the rotation about the vector p = ﬁ(z +j—k)
~ through the angle 27/3. <



Chapter 5

Hypercomplex Numbers

5.1 Definition of a Hypercomplex Number
System

Complex, double, and dual numbers, as well as quaternions, are all instances
of hypercomplez number systems. Now that the reader is familiar with the
simplest examples of such systems he will find it easier to appreciate their
more general definition.

Consider expressions of the form

a0+a1i1+a2i2+...+anin, (51)

where n is a fixed integer, ag, a1, a9, ... a, are arbitrary real numbers and
T,585, ..., %n are certain symbols (that we shall sometimes refer to as “imag-
inary units”). By definition
ap+ ayey + ...+ api, = bog+ byt + ...+ by,
if and only if
a():bo, alzbl, ceny an:bn.

For the sake of brevity, we shall denote the expressions (5.1) by means
of single, boldface letters a, b, ¢, u, v, w, etc. . An exception to this rule is
the use of ap for expressions of the form

ag + 081 + 029 + ... + 02,,.

We shall add, subtract, and multiply the expressions (5.1). Addition
and subtraction are defined by the formulas

(a0+a1i1 +...+anin)+(bo+bli1 ++bnln) =
= (ao + bo) + (a1 + bl)il + ...+ (an + bn)in,
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(ag+arty + ...+ aniy) — (bo + b131 + ... + buiy)
= (ao - bo) -+ (a1 - bl)il +...+ (an - bn)’in.

Multiplication is defined as follows.

We prescribe a “multiplication table,” that is, we assign to each “prod-
uct” ¢4tp a “value” of the form (5.1); here a and 3 are integers from 1 to
n. (Clearly, the number of such products is n - n = n2.) In other words,

ialp = Po + P11 + P2tz + ... + Puin, (5.2)

where the choice of the real numbers pg, p1, . . ., P 18 uniquely determined by
the choice of the subscripts a, 8. To stress the dependence of the coefficients
in (5.2) on the choice of a, 3 we write pyg; for p;. Hence

iaiﬁ = Pap,0 + pa,@,li1 + pa,@‘,ZiE +...+ paﬁ,nim (53)

This notation, while somewhat awkward, takes care, at once, of all cases.
The choice of the numbers p,s,, determines the multiplication table. There
are n%(n + 1) such numbers (n + 1 numbers for each of the n? choices of
the pairs «, ).

For example, in the case of the complex numbers the multiplication
table consists of the single equality

i-3=—1+40:.

In the case of the quaternions, the table contains nine equalities, and can
be written down as follows:
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It is clear that each of the nine entries in the table stands for one of the
equalities (5.3). For example,

t:3=k=0+0:+0j5+ lk.
Given the multiplication table, we define the product
(ao + a1t + ...+ anin)(bo + b1ty + ... + bniy)

to be the result of using the distributive law (each summand in the first
sum is multiplied by each summand in the second sum and the results are
added). Each term (aqiq) - (bgip) is rewritten as agbg(taip), and i4ig is
replaced in accordance with formula (5.3). After reduction we obtain an
expression of the form (5.1).

The expressions (5.1) with addition and multiplication defined as above
are called a hypercomplez number system of dimension n + 1 and the ex-
pressions (5.1) themselves are called hypercomplex numbers. It is clear that
each hypercomplex number system is completely determined by its multi-
plication table.

Here are some properties of the multiplication table valid in all hyper-
complex number systems.

1. The product of a real number a, viewed as the hypercomplex number
a+ 0 + ...+ 07,, by any number by + b2y + ...+ b, 2, is obtained
by multiplying each of the coefficients bg,b1,...,b, by a:

(a +0t1+...+ O’Ln)(bo + bz +...+ bnin)
=aby + abiz1 + ... + abnin,

and

(bg + b131 + ... + bpin)(a + 081 + ...+ 03y,)
= abg + abyi1 + ...+ ab,i,.

In particular,
l-v=vandv-1=w,

where v is any hypercomplex number.

2. If u and v are hypercomplex numbers then

(au)(bv) = (ab)(uv),

where g and b are any real numbers.
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3. The left and right distributive laws hold
u(v + w) = uwv + vw,
(v + w)u = vu + wu.

It is clear that properties 1, 2 and 3 are implied by our multiplication
rule. We stress that they hold in all hypercomplex number systems.

5.2 Commutative Systems, Associative
Systems, and Division Systems

Other “nice” properties of multiplication, such as commutativity
uv = vu

and associativity
(uwv)w = u(vw),

do not necessarily hold in all hypercomplex systems. A system in which for
any two elements u and v,
uv = vu

is called a commutative system. Of the systems considered so far, the
systems of complex, double and dual numbers are commutative and the
system of quaternions is not.
> It is easy to see the connection between commutativity and the proper-
ties of the numbers p,s in the multiplication table. If a system is commu-
tative, then

talp = iy,
that is,

DPag,0 +paﬁ,1i1 +...+ paﬁ,nin = PBa,0 + pﬁa,lil + ... +pﬁa,nin-

Therefore

PafB,0 = PBa,0, Papl = PBa,ly ---5 PoaBn = Ppan; (5.4)

where 1 < o, < n. Conversely, if all these equalities hold, then, clearly,
the system is commutative. In other words, the system is commutative
if and only if the numbers p,p, that determine the multiplication table
satisfy the relations (5.4). <
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A system in which for all triples of numbers u, v, w
(uv)w = u(vw),

is called an associative system. (The property of associativity is usually
part of the definition of a hypercomplex system. In this sense, our definition
represents a break with tradition.)
> We leave it to the reader to determine the relations among the pag
that make a hypercomplex system associative. «
The systems of complex, double, and dual numbers, as well as the sys-
tem of quaternions, are associative. A simple example of a nonassociative
system is the system of numbers a+bi+cj with the following multiplication
table.

In this case, (¢¢)7 # i(i7).

Addition, subtraction, and multiplication are defined for all hypercom-
plex systems. Not so division.

We say that a hypercomplex system is a division system (or that it
admits division) if for all u and v with v # 0 the equations

v =U

and
Tv=u

are uniquely solvable (for ). The solution of the first equation is called
the left quotient of u by v, and the solution of the second equation is called
the right quotient of w by v. In general, the two quotients are different.
The complex numbers and the quaternions are examples of division
systems. Their dimensions are 2 and 4, respectively. It is remarkable that
the only possible dimensions of a hypercomplex division system are 24,
and 8. (We shall have more to say about this below.) This suggests that,
in the multitude of hypercomplex systems, division systems are few and far
between. In particular, the (3-dimensional) system of numbers of the form
a+bz-+cj, with any multiplication table whatever, is not a division system.






Chapter 6

The Doubling Procedure.
Cayley Numbers

We shall talk about a remarkable system of hypercomplex numbers called
Cayley numbers.

Like the complex numbers and the quaternions, the Cayley numbers are
a division system, that is, they admit not only addition, subtraction and
multiplication, but also division. Also, the Cayley numbers enable us to
take a step forward toward the solution of “the sum of squares problem”
formulated at the end of chapter 3, in the sense that we obtain the identity
(1) for n =8.

Each Cayley number consists of eight terms. It follows that we need
seven units ¢,,%5,...,%, to write down each Cayley number. In other
words, the Cayley numbers are expressions of the form

ap + a121 + axty + asis + asts + asis + agis + ariz,

where ag,a1,az,as,a4,a5,a6,a7 are arbitrary real numbers.

The rule of multiplication of Cayley numbers is rather involved and we
won’t state it for a while. Instead, we’ll describe a procedure that enables
us to construct the Cayley numbers out of the quaternions in a very nat-
ural way. We shall call it the doubling procedure and say that the Cayley
numbers are the result of “doubling” the quaternions. We shall see that
the doubling procedure (also called the Cayley-Dickson procedure for the
mathematicians Arthur Cayley and Leonard Dickson who first investigated
it) can be used not only to obtain the Cayley numbers from the quater-
nions, but also the quaternions from the complex numbers and the complex
numbers from the real numbers.
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6.1 Another Approach to the Definition of
the Quaternions
Using the fact that ¢j = k we can write any quaternion
g=a-+bi+cj+dk
in the form
q = (a+bi)+ (c+di)g,

or
q==z +z7,

where 2z, = a+ b2, 2z, = ¢+ di.

With this way of writing the quaternions we consider their multiplica-
tion.

In addition to q we take a quaternion 7,

r=w, + w57,
and consider the product

qr = (z1 + z,j)(w1 + w,j)
zw, + 2, (wzj) + (Z,j)’w,_ + (z,])(’ng)
= z,w, + 2,w,J + ZJw, + 2 Jw,J (61)

(we removed parentheses because quaternion multiplication is associative).
We note that since i = —74, we have (a + b2)j = j(a — bi), that is,

zj = J%.

Also, it is easy to check that any two elements z and w of the form a + bz
commute:
zw = wz.

With these properties in mind, we can rewrite the second term on the right
side of (6.1) as w, 2, 7, the third as z,w,j, and the fourth as z,w3j* or as
—9z,. It follows that

gr = (z,w, — W22,) + (W,2z, + z,W1)7. (6.2)

An important point about the representation of a quaternion in the form
q = z, + 2,7 is that, since 32 = —1, all quaternions of the form a + bi may
be viewed as complex numbers. This and formula (6.2) justify the following
conclusion.



6.2 Definition 43

We can define the quaternions as expressions of the form z, + 2,7 where
z,, and z, are complex numbers and 7 is a symbol, that are multiplied as
in (6.2).

This is an essential remark that will enable us to understand the dou-
bling procedure for hypercomplex numbers.

6.2 The Doubling of a Hypercomplex
System. Definition of the Cayley
Numbers

We introduce a number of definitions. Let &/ be a hypercomplex system of
elements of the form

u = ap + @181 + azty + ...+ anis,
with some multiplication rule. We call the element
'&:ao—alil—azz'z—...—anin

the conjugate of u.
Now we define U(?), the doubled U, as the hypercomplex system of
dimension 2n whose elements are expressions of the form

u, + use, (6.3)

where w, and u, are arbitrary elements in &/ and e is some new symbol.
The elements of 24(?) are added according to the natural rule

(u, +uze) + (v, + v,e) = (u, +v,) + (u; + v,)e, (6.4)
and multiplied in accordance with the rule
(4, + us€)(v, + v,€) = (u, v, —B2u,) + (Vau, + us01)e (6.5)

(the bar denotes conjugation in /).

The reader may be surprised by the fact that in defining the system Y @
we have ignored the usual method of writing hypercomplex numbers and
the use of a multiplication table for the determination of multiplication.
As we are about to explain, we have lost nothing and gained brevity and
transparency.

The usual form ofam element of %( is

ao+ait1+ ...+ apin + Gngpitngr + ..+ G2npitontr. (6.6)
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This determines the pair of elements u,, u, in &/ given by
w, =ag+ayi; + ...+ apiy,,

U; = Ang1 +Apq2t1 + ...+ G2n4100,

and thus the element(6.3) (which may be regarded as a brief code for (6.6)),
and conversely. Beyond that, the definition of multiplication (6.5) is shorter
and clearer than a definition in terms of a multiplication table. Of course,
formula (6.5) can be used to obtain the multiplication table of the “imagi-
nary units” #1,1%s,...,%s,41. We won'’t produce such a table in general but
will give it in detail below for the Cayley numbers.

Now that we have defined the doubling procedure it is easy to see that
what we did in the beginning of this chapter is obtain the quaternions by
doubling the complex numbers. We leave it to the reader to show that
doubling the real numbers yields the complex numbers.

As stated earlier, the main purpose of this chapter is to construct the
system of Cayley numbers. We can now define the Cayley numbers as
the system obtained by doubling the quaternions. All the properties of the
Cayley numbers flow naturally from this definition. They will be studied
in detail in the next section.

6.3 The Multiplication Table of the Cayley
Numbers

By definition, Cayley numbers are numbers of the form
a4, + q;e,

where g, and g, are arbitrary quaternions, that are multiplied in accordance
with the rule

(Q1 + ‘he)(rl + 7‘,6) = (‘hrl - F2Q3) + (1'2Q1 + qzil)e' (67)

We consider the connection between this definition of the Cayley num-
bers and their representation in the form

ag + aity + agis + azis + aqiq + asis + agie + ariv. (6.8)

More precisely, we construct the multiplication table of the “imaginary
units” 2y,...,%7.
The quaternions g, and g, corresponding to the representation (6.8) are

q, = ap + ajt+ azj + ask, q; = a4 + asi + agy + azk.
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For greater uniformity, we shall write (6.8) as
a+bi+cj+dk+ AE+ BI+CJ + DK,

where a,b,¢,d, A, B,C, D are the earlier letters ao, ay,...,a7 and ¢, j, k, E,
I,J,K are new symbols for the imaginary units 21,22, ...,%7. ’
Now the quaternions q, and g, are written as

g =a+bi+cj+dk, g = A+ Bi+Cj+ Dk.

Beginning with(6.7) we can, as noted earlier, construct the multiplica-
tion table for the units ¢, 5, k, E, I, J, K. For example, if in (6.7) we put
g, = v, =0, then

(g, + 0e)(r, + 0e) = q,7, + Ce.

Thus the Cayley numbers g, and r, multiply like quaternions. It follows
that the multiplication table for the units ¢, j, k is the same as for the
quaternions:

i?=-1, j2=-1, k®=-1,
1) =k, ji=—k,
ik =1, kj = —1,
ki =j, 1k = —j.
This gives 9 of the 49 products (there are 7 -7 = 49 products of the 7
units). Instead of a table of the remaining 40 products we give a mnemonic

scheme for remembering the whole table. First there is the collection of
seven triples:

ijk| I -3 K j E J

To remember them, note that the triples in the left frame are obtained
from the triple 4, j, k by putting a minus sign in front of one symbol and
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Figure 6.1,

capitalizing the other two. In all triples in the right frame the middle
symbol is an E and the other two symbols are the same except for the
type. To multiply them, let «, 8,7 denote any one of the 7 triples. Put

0',32‘)’, ,Ba-:—'y,
ﬁ7=a) 7ﬂ:_aa
7a=ﬂ1 07:—,8,

and

(12 = _17 ﬂz = _17 72 = _1)

that is, «, 8,7 multiply like the quaternions ¢, 7, k.

t> Figure 6.1 provides a good illustration of our rule. It shows a triangle
with vertices I, J, K whose medians meet the sides at i, j, k and intersect
at E. There are three “imaginary” units on each line. The units ¢, j, k also
lie on a “line” (represented by the circle). In all, there are 7 “lines” and
three units on each line. Apart from sign, the product of two units is the
unit “collinear” with them.

It is of interest to point out that in order to obtain a correct multipli-
cation scheme for the units ¢, j,k, E,I,J, K it suffices to place (in this
figure) i, j, k on any line, mark one of the remaining points E, and place
I,J,K on the lines tE, 3 E,kE, respectively. <
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6.4 Conjugation of Cayley Numbers.
Absolute Values of Cayley Numbers

Let
u=a+bi+cj+dk+AE+BI+CJ+ DK (6.9)

be any Cayley number. By its conjugate we mean the Cayley number
w=a—bi—cj—dk— AE—-BI-CJ - DK.
If instead of (6.9) we use the short representation
u = q; + qse,

where
g, =a+bi+cj+dk, g, =A+ Bi+Cj+ Dk,

then the conjugate Cayley number is given by
u= 61 — q3€.

Now we compute the product of any Cayley number » and its conjugate
. It turns out that, just as in the case of complex numbers and quaternions,
this product is a real number (that is, a Cayley number of the form a +
0i+05 + ...+ 0K). In fact,

uit = (g, + ¢:€)(q; ~ ¢:€) = (0.3 + 3292) + (— 429, + @201 )e
Bearing in mind that for quaternions ¢qq = gq = |q|?, we see that
ul = ¢ + @3 = |l + @l (6.10)

The square root of |q,|* + |g,|? is called the absolute value or norm of
the Cayley number » and is denoted by |u|. Note that if u is given in the
form (6.9), then the square of its absolute value is

a?+b>+ct+d?+ A2+ B2+ C? + D (6.11)
In view of the definition of the absolute value we have
ue = |ul’. (6.12)

If we bear in mind that the squares of the absolute values of the Cayley
numbers u and % are equal (in fact, both are equal to (6.11)), then we also
have

wu = [uf?.
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6.5 The Absolute Value of the Product of
Cayley Numbers

The system of Cayley numbers shares many of the properties of the systems
of complex numbers and quaternions. One such property is that the abso-
lute value of the product of Cayley numbers is the product of the absolute
values of the factors:
luv| = |ul|v], (6.13)
or, equivalently,
|luv]? = |ul?*|v|?. (6.14)

We prove (6.14) by direct computation of |uv|®> and |ul®|v|*. If we
apply formula (6.10) to the product

uv = (q, + gae)(ry + 72€) = (@71 — F2qa) + (7200 + @aT1)e,
then we obtain
[uv|?* = (@7, —F20,)(@:7: — T2@3) + (T2qs + 2a71)(T2: + @aT1),
or, in view of the property of conjugation for quaternions,
[uv]” = (@7, —724:)(F181 — Go72) + (P2qs + BT (@1T2 +7.33).
On the other hand,
[u]*[v|* = (q.81 + 9232)(r:171 + 1ra272).

If we compare the two expressions, then we see that they differ by the sum
S of four terms,

S=rqr, q, + q:71q 72 — Q17'1(_127'2_FZQQ'F'1‘._11-

Therefore we must show that S = 0 for any four quaternions q,, g,, 7,, 75.
We begin with the obvious observation that S = 0 if r, is real. On the
other hand, if », is a pure imaginary quaternion, then #2 = —r, and

S=r(:7. @ + @7"13;) — (@17:q + 271Gy )7

The expression in parentheses is a sum of two conjugate quaternions and
therefore equal to some real number ¢. Hence

S=rc—cr,=0.

It remains to note an obvious property of S: if it vanishes for v, = a and
7, = b, then it also vanishes for 7, = a + b. Since every quaternion is a
sum of a real number and a pure imaginary quaternion and for each of these
S =0, it follows that S is always equal to zero.
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6.6 The Eight-Square Identity

The identity

luv|* = Jul?|v|* (6.15)
established in the previous section presents a new contribution to the solu-
tion of “the problem of the sum of squares” posed at the end of chapter 3.
Indeed, if we write it out in detail (and read it from right to left), then this

identity states that “the product of sums of eight squares is again a sum of
eight squares.” In fact, if

u=a+bi+cj+dk+ AE+ BIF+ CJ + DK,
v=d +¥Vi+dj+dk+AE+BI+C'J+ DK,
and
uv = ®p + P13 + Bof + 3k + BLE + 51 + PsJ + 7K,
then the identity (6.15) takes the form
(@+...+DH)@?+.. 4+ D) =02+ 32 + ...+ &2

Of course, we must make use of the multiplication of Cayley numbers to
express ®g, ®;,...,P7 in terms of a,..., D, da’,...,D'. This tedious task
vields the identity:

(@® +b6% +c* +d> + A2+ B2+ C? + D?)

% (afz + b12 + CI2 + dl2 + Ai2 + BIZ + CI2 + D/2)

= (aa’ = b’ —¢c’ — dd' — AA' -~ BB' — CC' — DD')?
+(ab’ +ba’ +cd —dd’ — A'B+ B'A+C'D - D'C)?

+(ac’ +ca’ —bd' +db' — A'C+ C'A— B'D+ D'B)?

+(ad' +da’ +bc' —cb' — A'D+ D'A+ B'C — C'B)?

+(A'a— B'b—C’c — D'd+ Ad' 4+ BY + C¢' + Dd')?

+(A'b+ B'a+ C'd— D'c — A¥ + Bd' — Cd’ + Dc')?

+(A'c+ C'a— B'd+ D'b — Ac' + Cd’ + Bd' — Db')?

+(A'd+ D'a+ B'c — C'b — Ad' + Dd’ — B¢’ + Cb')?.

It is of interest to note that it was the search for an eight-square identity

that led the English mathematician Cayley to the discovery of the Cayley
numbers!
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6.7 The Non-associativity of Cayley
Numbers. The Alternative Property

We said earlier that the Cayley numbers share many, but not all, of the
properties of quaternions and complex numbers. Thus, whereas multipli-
cation of complex numbers and quaternions is associative, multiplication of
Cayley numbers is not associative. For example,

(id)E # i(E).
Indeed, (2j)E = kE = K, and :(JE) =1J = - K.
Obviously, the nonassociativity of multiplication of Cayley numbers
does not mean that for any three such numbers u, v, w we have (uv)w #

u(vw). In fact, we will show that the following equalities hold for any two
Cayley numbers u, v:

(uwv)v = u(vv), (6.16)
and
v(vu) = (vv)u. (6.17)

We can regard formulas (6.16) and (6.17) as a weak form of associativity.
Systems in which these two formulas hold are called alternative systems.
Note that instead of proving (6.16) and (6.17) it suffices to prove

(uv)? = u(vv), (6.16")
and

v(vu) = (dv)u. (6.17")
Indeed, if we replace  in these equalities by —wv + 2a, where a is the real
part of the Cayley number v, then we can easily obtain (6.16) and (6.17).

We prove (6.16"). A similar proof establishes (6.17").
Put w=gq, + q;e, v =7, +7;e. Then

(wo)o = ((g: + gae)(r, +72€))(F1 — 7€)
((q:71 — 72@a) + (raqy + @aT1)€)(F1 — 73¢€)
= ((Q17'1—"_"2Q2)Fl + 7-'2(7'2(11 + Q2F'1))
((_'rz)(Q17'1 —73q;) + ('ra‘h + Q2'F1)Tl)e

= (Ir:* +|ral?)a + (Ira P + |7a]*)ase

= (Ir: P + Iral*) (@2 + 22€) = [v[*u.
On the other hand, v® = [v]?, so that

i

-+

u(vd) = |v[u.

This implies (6.16").
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6.8 The Cayley Numbers Are a Division
System

Like the complex numbers and the quaternions, the Cayley numbers are a
division system. Let u and v be any two Cayley numbers and v # 0. We
recall that the left quotient of u by v is the solution of the equation

vz = u, (6.18)
and the right quotient of w by v is the solution of the equation
zv = u. (6.19)

We solve (6.18). Just as in the case of the quaternions, we multiply
both sides of (6.18) on the left by . This yields

t(ve) =vu,

or, in view of (6.17'),
Jv)?z = vu.

Hence
z = vuf|v)?.

Direct substitution (and the use of (6.17")) shows that this value of = sat-
isfies (6.18). In other words, the left quotient of u by v is

z; = vu/lv|?.
A similar argument shows that the right quotient is
z, = udf|v|?.

(the proof requires the use of formula (6.16")).
Thus we have shown that the Cayley numbers are indeed a division
system.






Chapter 7

Algebras

7.1 Heuristic Considerations

Let us go back to the concept of a hypercomplex system. According to the
definition in chapter 5, a hypercomplex system of dimension n -+ 1 is the
set of expressions

ag + @121 + azta + ... + dnty

{bypercomplex numbers) with a natural rule of addition and a certain rule of
multiplication. The latter is determined by prescribing a table of products

iaiﬁ = Pap,0 +pap,1'i1 + ... +pa,3,nin (7‘1)

of the “imaginary units” %,, 4, ...,%,, and stipulating that the product of
two hypercomplex numbers is obtained by using the distributive laws, and
by replacing (aata)(bpig) by aabs(iaip) and i,is by the right side of (7.1).
We consider the case when all numbers pyg 0 (the “free terms” in for-
mula (7.1)) are zero. In that case the product of two imaginary units ¢, 4
1s again a combination of imaginary units.
Let A denote the set of hypercomplex numbers of the form

a= alil -+ a2i2 + ...+ a,,i,, (72)

{without the free terms). It is clear that the sum of two such numbers
is again a number of the form (7.2). By what has been said about the
products 241g, it follows that the product of two numbers of the form (7.2)
is also a number of that form. Thus the set A is closed (under addition
and multiplication. This allows us to consider A as an in@ dent system
with two operations, addition and multiplication. In general, A is not a
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hypercomplex system in the sense of our use of the word (the case when A
can be regarded as such will be discussed below).

The main difference between the system A and a hypercomplex systermn
is that the latter contains an element e such that

for all @ (the e in question is the element 1401 +...+07,) and the former.
in general, does not. A closely related difference is that in a hypercomplex
system it makes sense to speak of the product of a real number k£ by any
element a (by definition, this is the product of ¥ = k + 0z, + ... + 0z, and
a) whereas in A the symbol ka is meaningless. The latter difference can
easily be set aside by simply defining the product of a real number by an
element of A by means of the formula

k(a1i1 + a2i2 + ...+ anin) = ka1i1 -+ ka2i2 + ...+ kanin.
In this way, the set A (on which one has already defined addition and mul-
tiplication) becomes an object called an n-dimensional algebra, or simply

an algebra (not to be confused with the branch of mathematics bearing the
same name!).

7.2 Definition of an Algebra
By an n-dimensional algebra we mean the set of expressions of the form
a1t1 + asts + ...+ aniy (72)
(where a4, as, ..., a, are arbitrary real numbers and ¢,, %, ..., %, are cer-
tain symbols) with the following operations:
1. multiplication by a real number
k(alil + a2i2 + ...+ anin) = kalil -+ ka2i2 S T kanin; (73)
2. addition

(alil -+ ag’iz + ...+ anin) + (blil + bgiz +...+ bn’in() =
= (a1 +b1)is + (a2 + b2)ia+ ...+ (an + br)in;  (7.4)

3. multiplication given in terms of a table of products

iﬂiﬂ = paﬂ,lil + paﬂ,?iZ +...+ paﬂ,nina ' (75)
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where o and 3 are integers from 1 to n (the table is used to find the
product

(a1i1 +agsia ...+ anin)(blil +botg 4+ ...+ bnin)
just as in the case of hypercomplex numbers).

Our definition makes it clear that an n-dimensional algebra is com-
pletely determined by its “multiplication table”(7.5), that is, by the choice
of n® numbers p,p.,. In principle, these numbers are not subject to any
restrictions; each choice determines a certain algebra.

7.3 A Hypercomplex System as a Special
Case of an Algebra

For the sake of clarity, we “extracted” the concept of an algebra from that of
a hypercomplex system. This fact notwithstanding, it must be emphasized
that the concept of an algebra is more general than that of a hypercomplex
system in the sense that every hypercomplezr system can be regarded as an
algebra of the same dimension. A detailed explanation follows.

Let A be an algebra with elements

ajty + azéiz + ...+ aniy
and multiplication table
tals = Pap1t1 + Papatz + .-+ Papntn
(o, B are numbers from 1 to n), in which the unit ¢; has the property
118 = 1y and 48, = i, (7.6)

for all @ from 1 to n. Together with this algebra we consider the hyper-
complex system of elements

a1 + asia + ...+ aniy,
with the multiplication table
iaiﬁ = Pap,i + Paﬁ,ZiZ +... +Paﬁ,nin

{a, ( are numbers from 1 to n). We shall say that this hypercomplex system .
corresponds to the algebra A.
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Using the multiplication table, we can find the product of any two ele-
ments of our algebra:
(a1i1 +asty +...+ a,,i,,)(blil +boiy+...+ bn’in)
=iy + oo+ ...+ Crin.

If we “clear away” ¢, in the last equality, then we obtain the relation

((ll -+ a2i2 + ...+ anin)(bl + bzig + ...+ bnin)
= + gt + ...+ Cntyp,

which coincides with the law of multiplication in the corresponding hy-
percomplex system. It follows that by starting with an algebra satisfying
condition (7.6) and “clearing away” the symbol ¢; in the representation
of its elements, we obtain a hypercomplex system of the same dimension.
Moreover, since the numbers pag for @ > 1,8 > 1 are arbitrary, we can
obtain in this way all hypercomplex system. For example, consider the
two-dimensional algebra with the multiplication table

ilil = iu 4,8, = ia, izil = iaa iziz = "ix-
Clearly, this algebra satisfies condition (7.6). If in the product
(@181 + azéz)(briy + baiz) = (a1hy — azba)iy + (arbs + a2b;)iz

of two elements of .4 we strike out #;, then the multiplication table reduces
to

1,8, = —1,

and the multiplication rule becomes

(@1 + agig)(by + baia) = (arby — azba) + (a1by + agby )iy,

which shows that we are dealing, essentially, with the system of complex
numbers.

7.4 Commutative Algebras, Associative
Algebras, and Division Algebras

The terminology introduced in chapter 5 to designate certain properties of
hypercomplex systems carries over without changes to algebras. Thus an
algebra is said to be commutative if for any two of its elements a and b we
have

ab = ba,
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and associative if for any three of its elements a, b, ¢ we have
(ab)e = a(be).

(Tt is of interest to note that early in the development of the theory of alge-
bras the property of associativity seemed so natural that the term “algebra”
meant “associative algebra”.) Finally, an algebra A is called a division al-
gebra if each of the equations

ar =b (7.7)

and

ya = b, (7.8)

where a and b are any elements of 4 and a # o, is uniquely solvable. In
that case, the element = satisfying (7.7) is called the left quotient of b by
a, and the element y satisfying (7.8) is called the right quotient of b by a.

It is easy to see that division algebras have the property that if a product
ab is zero, then either a or b is zero. In fact, if @ # o then b = o, for o is
a solution of az = o and such solutions are unique.

In chapter 9 we shall prove the converse proposition: If A is an algebra
suck that ab = o implies that either a or b is zero, then A is a division
algebra.

If e is an element of an algebra 4 such that

ae =a and ea =a

for all @ € A, then e is called an identity of A, and A is said to be an algebra
with an tdentity element. As noted earlier, all hypercomplex systems are
algebras with identities.

The simplest algebra with an identity is the one-dimensional algebra
with the multiplication table

tt =12,

In this algebra the multiplication rule is

(alil)(blil) = alblil.

Effectively, this rule coincides with the multiplication of real numbers. That
is why we shall call this algebra the algebra of real numbers.
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7.5 Examples

We consider examples of algebras that are not hypercomplex systems.
Example 7.1 The n-dimensional null algebra. The multiplication table of
this algebra has a particularly simple form:

ia'iﬁ =0
for all «, 8 from 1 to n. It follows that the product of any two elements is

Zero.

Example 7.2 We consider the 2-dimensional algebra with the multiplica-
tion table

4, = 1,
3,4, = i,
18, = —i,
T30, = 1.

Here the multiplication rule is
(alil + agiz)(blil + bzig) = (a1b1 -+ agbz)il + (albz — agbl)ig.

Notwithstanding the similarity between this multiplication and the mul-
tiplication of complex numbers, this algebra is different from the algebra
of complex numbers. We leave it to the reader to show that this algebra
has no identity element ( and so cannot be a hypercomplex system). A
more difficult exercise is proving the interesting fact that this algebra is a
division algebra.

Example 7.3 The algebra of 3-dimensional vectors with the cross product
maultiplication. This algebra consists of elements of the form

bt + c3 + dk,

multiplied in accordance with the table

t*=0, j°=0, kK = o0,
ig=k, ji=—k,
ik =1, kj=—1,
ki = j, tk=—j.

Hence

(bi + cj + dR)(Vi + ¢ + d'k)
= (cd' —dc')i + (db' — bd")j + (bc' — cb')k. (7.9)
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Figure 7.1.

t> Consider a rectangular coordinate system in ordinary euclidean space.
Let i, j, k be three unit vectors whose directions coincide with those of the
coordinate axes (Figure 7.1). With the usual conventions for the sum of
two vectors and the product of a number and a vector, the expression

q=bi+cj+dk

represents a vector in space. The operation (7.9) is called the cross product
(its geometric sense is discussed in chapter 4). It plays an important role
in geometry and in physics. <

7.6 An Important Example: The Algebra
of n x n Matrices

The dimension of this algebra is n?. We could introduce n? imaginary units

2,585, . .., %n=, but it is more convenient to use another numbering scheme
in which, instead of a number « taking on the values from 1 to n?, we use
the “number” a,3 where o and 8 take on independently the values from
1 to n (so that the number of pairs @ and f is n?). Hence the notation
t,p for an imaginary unit. The imaginary units can be ordered any way we
wish. We choose the following ordering:

Tiisigs - aliniPayslazs .- -9lan 2319835949230 +--ln1slnay...52nn.
3 3 3

Thus the elements of our algebra are given by expressions of the form



60 Algebras

A = aptin+atiz+ ...+ Gintin
+ a21821 + a0tz + ...+ aontan (7.10)

4+ @ni¥at +An2ta2+ ...+ Gnnlinn.

This notation emphasizes the fact that each element A of our algebra is
determined by a table

ai ai2 oo Qin
a2 asg oo Qon
anl Qn2 ... Qpn

with n? entries. Such tables are called matrices; more specifically, n x n
matrices, or square matrices of order n (the order is the number of rows
or columns of the square table). In what follows, we shall use the compact
notation

aiy  G12 Qin

as a as
A= 1 22 n

Any  Gn2 Qnp

and suppose that the elements of our algebra are matrices.
Next we prescribe the multiplication table of the units ¢4g - the key to
the “personality” of our matrix algebra. We put

ia1i1ﬁ = iaﬁ, iaz'izﬁ = iaﬁ, vy ianinﬁ = Z.oz,[i (710)
or, briefly,
Tarirg = tog.
Here a, 3, A range over the integers 1,...,n. By definition, all the remaining

products of imaginary units are zero. The two “halves” of our definition
can be combined in the single rule

iakipﬂ = 6)\yiaﬁ; (7.11)

where 8y, is defined to be 1 if A = p and 0 if A # p.
We shall now try to determine the entries in the product of two elements
A and B of our algebra, that is, to compute

a11%11 + ... + G1ntin bi1t11 + ...+ bintin
+  a21t91 + ...+ asntan +  boreer + ...+ banta,

+ anlinl +...+ anninn + bpitpi 4.+ bnninn
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The result is some element C':

ci1t11 + c19812 + . .. + Cintin
C= +  c21t21 + C22%22 + ...+ Contan

+  Cnital + Cn2tn2+ ...+ Cantan

Consider a typical summand ¢ogtsps in C. The multiplication table (7.10)
shows that this summand involves only the products

Ga1ta1 by bigtis, Gaztaz by bapiag,...,Ganten DY bnping,
and so is equal to
(@a1big + Gabopg + ... + Ganbnp)iag.
In other words,
Cap = Aa1big + aqabap + ...+ danbnp.

It is not difficult to remember this formula: To obtain the element cop
of the matriz C take the a-th row

Ayl Ay .. Qun

of the mairiz A and the B-th column

bip
bas

bnp

of the matriz B, form the product of each row element by the corresponding
column element, and sum these products. The result is the element cqap of
the matriz C. :

Given two matrices A and B, this rule enables us to compute a third
matrix C which it is natural to call the product of the matrices 4 and B.
In other words, to multiply two elements A and B of our algebra we must
multiply their corresponding matrices A and B. For example, if

1 2 6 —4
A=(34) and B:(_3 3>,

AB — ( 1-64+2-(-3) 1.(_4)+2,3>= (g

then

O N

3-6+4-(~3) 3.(—4)+4-3

).
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Matrix multiplication plays an extremely important role in mathemat-
ics. The modest scope of this book rules out a detailed study of this opera~
tion. We limit ourselves to proving that metriz multiplication is associative,
or to put it differently, the algebra of matrices is associative.

For proof it suffices to show that the equality (AB)C = A(BC) holds if
for A, B,C we take arbitrary imaginary units of our matrix algebra (com-
pare the similar argument used to prove the associativity of quaterniom
multiplication in chapter 3). In other words, we must prove that

(ia/\iuﬁ)iwy = iaz\(iuﬁiuw)-

Now by (7.11), the left side is equal to (8xu2ap)isy, or, again by (7.11), to
8xu0py 10y Similarly, the right side is equal to 24A(8p, %4y ), OF t0 65,6542 0y-
Clearly, the two outcomes are equal.

7.7 Characterization of Multiplication in
an Arbitrary Algebra

The material in this section is of an auxiliary nature and will be used only
in chapters 16 and 18.

The following properties of the operation of multiplication are direct
consequences of the definition of an algebra:

1. (a+b)e=ac+be, a(b+c)=ab+ac,

2. ka-b=k(ab), a-kb= k(ab).

These properties characterize the multiplication operation in the sense clar-
ified by the following proposition.
Consider the set A of expressions of the form

a1ty + asts + ...+ anty,

with the operation (7.3) of multiplication by a number, the operation (7.4)
of addition, and a certain operalion a o b having the properties 1 and 2
above, that s

(a+b)oc=aoc+boe, ao(b+c)=aob+aoc,
ka o b= k(a ob), aokb = k(a o b).

Then the set A is an algebra whose multiplication operation is a o b.
To prove this result we must check that a o b is a multiplication in the
sense of the definition of an algebra given in section 7.2.
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Consider the expression i 0 ig. This is a certain element of 4, that is,

Ty Oiﬁ :paﬁ,lil +paﬂ,2i2+ "‘+pa,6,nin‘ (712)

Properties 1 and 2 imply that

aob = (a1i1+...+ani,,)o(b1i1+...+bni,,)
= Y l(aada)o (bsip)l = Y aabs(ia 0 ip)
a'ﬁ avﬁ

(here the equality marked with ! is justified by property 1 and the equal-
ity marked !! is justified by property 2). At this point, all we need do
to compute a o b is replace ¢, 0 ig by the corresponding element (7.12),
multiply aobg by this element, and carry out reductions. But this is just
the procedure used in defining the multiplication of the elements in any
algebra A.
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N-Dimensional Vectors
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We turn once more to the definition of an n-dimensional algebra. Its
most difficult component is, undoubtedly, the operation of multiplication.
Is there anything significant left if this operation is suppressed? Well, what
is left is a collection of elements that are uniquely represented in the form

aity + agiz + ... + Gy,
with a natural rule of addition

(alil +azts+...+ anin) + (b]_il +boty + ...+ bnin)
= (a1 +b1)e1 + (a2 + ba)is + ... + (an + b))y

and an equally natural rule of multiplication of an element by a real number:
k(a1i1 + agis + ...+ anin) =kayt1 + kagis + ... + kani,.

While the material at our disposal does not look very promising, it turns
out that it is possible to use it as the basis for a comprehensive theory. In
fact, there is a whole branch of mathematics, called linear algebra, built
around these two operations. Linear algebra has a rich content and is
frequently utilized both is mathematics and in its many areas of application.
The present chapter is an introduction to some aspects of linear algebra and
will provide the basis for the study of the theory of algebras in part 3.






Chapter 8

The N-Dimensional
Vector Space Ay

8.1 Basic Definitions

Definition 8.1 By an n-dimensional vector we mean an object of the form

alil +a2i2+ ...+an’in, (81)
where ay,as, . ..,a, are arbitrary real numbers and
21,7:2’ cresln

are n different symbols to which we assign no special meaning.

We shall explain the reason for calling the expressions (8.1) vectors. If
n = 2, then (8.1) reduces to

ajzy + asisy. (82)

If we think of ¢; and ¢ as two fixed vectors in a plane, then the expression
in (8.2) is again a vector in that plane? (Figure 8.1). Also, if the vectors
i1 and 2, are not collinear, then every vector in the plane can be uniquely
represented in the form (8.2).

Definition 8.2 Two n-dimensional vectors
@121 + agts + ...+ aniy

and
b1ty + boty + ...+ bnin
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Figure 8.1.

are said to be equal if and only if
a; = bla ag = bg,...,an :bn-

The reason for this definition was mentioned earlier: if ¢; and 5 are two
noncollinear “basis” vectors in the plane, then every vector in the plane has
a unique representation (8.2).

Definition 8.3 Two n-dimensional veciors are added according o the rule

(a1i1 +...+ anin) + (blil + ...+ bnzn)
= (a1 -+ bl)’il + ...+ (Cln + bn)in,

and multiplication of an n-dimensional vector by a real number is deter-
mined by the rule

k(a1i1 +asty+ ...+ anin) = kayi1 + kagis + ... + kant,.

This definition is also inspired by the corresponding definitions for geo-
metric vectors.

We shall denote vectors briefly by boldface lowercase letters a, b, ¢, and
so on. Equality of vectors a and b will be denoted in the usual manner:

a=b.
3
It is easy to see that addition of vectors has the properties

a+b=b+a (commutativity)
(a+b)+e=a+(b+c) (associativity),
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and multiplication of a vector by a scalar has the properties
k(la) = (kDa,
(k+Da = ka + la.

We shall call our system of vectors an n-dimensional vector space and
denote it by A,,.
The vector
0ty +0is+ ...+ 0:sy

is called the zero vector and is denoted by o. It is clear that for any vector
a
a+o0=a

and
0a = o.

8.2 The Concept of Linear Dependence

When studying some problems we usually deal not with a single vector
but with a whole system of n-dimensional vectors. Then we usually denote
them by the same letter (say, a) with different subscripts. Thus

a, = b 521 + 3i2 + 5’&3 + 3i4,
a, = - il + iz + 4’&3 + 3i4, (83)
a; = 21 + 022 + 323 — 2i4,

is an example of a system of three 4-dimensional vectors.
Let
Gy,0z2,.-.50n

be a system of n-dimensional vectors. We take arbitrary numbers
ki, koy... km
and form the vector
a=kia, +koa, + ...+ kpa,.

We say that the vector a is a linear combination of the vectors a,, a,, ...,
a,, with coefficients ki, ks, ..., kn.
Example 8.1 Ezpress the linear combination

a;, —3a; + 2a,

of the vectors a,,a,, ay in (8.3) as a vector of the form ki1 +katz +kziz+
k4’i4.
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Solution 8.1 Since

a = =5t + iy + btz + 314,
—3a;, = 371 - 312 — 12’&3 -— 9i4,
20'3 = 2t + 0iy + 613 — dig,

it follows that
a, —3a; + 2a; = 0i; + 0ip — 1ig — 1024,
We introduce one more key definition.
Definition 8.4 A system of vectors
a,085,...,0ap (8.4)

1s satd o be linearly dependent if some linear combination of these vectors
is equal to the zero vector,

s1a, + 5285+ ...+ spa, = o, (8.5)

and at least one of the coefficients s1,s,,...,5, is not zero. In the opposite
case (that is, if no such linear combination exists) we say that the system
(8.4) is linearly independent.

A direct consequence of this definition is that a system consisting of a
single vector is linearly dependent if the vector in question is the zero vector
(indeed, if s1a, = o and s; # 0, then @, = o).

In case of a system of two vectors, linear dependence means that there
are numbers s3, $9, not both zero, such that

s1a, + s$2a, = 0.
Suppose that s; # 0. Then our equality implies that
a, = ka,,

where k = —s3/s1. Two vectors so related are said to be proportional.
Now consider a system of p linearly dependent vectors and suppose, for
definiteness, that sy in (8.5) is different from zero. Then

a, = ka, + ksag; +... +kya,,

that is, the vector a, is a linear combination of the other vectors in the
system.

This argument shows that a linearly dependent system consists of one
vector (and then it is the zero vector), or one of its vectors is a linear
combination of the others.
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8.3 Another Definition of Linear
Dependence

We shall find it convenient to use another formulation of the concept of
linear dependence: the system (8.4) is linearly dependent if and only if
a, = o or one of ils vectors is a linear combination of its predecessors.

We shall show that our two definitions of linear dependence are equiv-
alent.

If a, = o, then the system is linearly dependent for, in that case, the
linear combination 1- @, + 0a; + ...+ Oa, is equal to the zero vector and
the first coefficient is different from zero. If one of the vectors is a linear
combination of its predecessors,

a; =kia, + ...+ ki_1a;_1,

shen the system is linearly dependent, for the linear combination k1@, +
o+t ki—iai—1 — 1a; + 0aiyy + ... + O0ayp is zero (that is, the zero vector)
and the coefficient of a; is not zero.

Conversely, suppose that our system is dependent, that is, (8.5) holds
and at least one of the coefficients s1,53,...,5p is not zero. Consider the
last of the nonzero coefficients. If that is s;, then s;a@, = 0. But then
a, = o. If that is s; with ¢ > 1 then, by adding the vector —s;a; to our
equality and multiplying both sides by —1/s;, we obtain an equality of the
form

a; =kia, +...+ki_1a;_,,

that is, we shall have expressed the vector a; as a linear combination of its
predecessors.

8.4 The Initial Basis

It is natural to denote the vector
la; + 020 +...+ 02,

as 4;. This means that the symbol 2, originally devoid of any particular
meaning, has now been identified with one of the vectors. Similarly, we
identify

with <5, and so on.
The vectors

215225452
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just defined have the property that every vector in A, can be expressed as
a linear combination of them. In fact, consider any vector @ € A,,. This
vector is some formal sum

a1i1 + dz’iz + ...+ anin . (86)
In view of definitions 8.2 and 8.3 we can write

alil +llzi2 + ... +ani,, = a1(1i1 +022 + ...+ Oln)
+a(081 + Liz +...08,) + ...+ an(021 + 02p + ... + 13,),

which means that the vector e is a linear combination of the vectors 21,25,
.. tn with the coefficients aq,as,...,a,. This means that we may now
regard the formal sum (8.6) as a genuine linear combination of vectors.

The vectors %;, %5, - . . , 2, form a so-called basis of the space A,,. In the
next section we shall give a precise definition of this term. By way of an
anticipatory remark we wish to note that there are infinitely many bases,
and that the basis 2,,%,,...,1%, is in no way distinguished.
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A Basis of The Space Ay,

9.1 Definition of a Basis

A finite system of vectors
Qy,0g,. .., 08 (9.1)

in called a basis of the space A, if it has the following two properties:
1. every vector @ € A,, is a linear combination of these vectors,

a=kFkiay +kar+ ...+ kpa,; (9.2)
2. the representation (9.2) of a is unique, that is, given a representation
a=1lia;+ bas+...+ la,,
we can conclude that
ky=1, ka=1y, ..., ky=1,.
We shall prove that the vectors of a basis are linearly independent.

Suppose that the vectors (9.1) are linearly dependent. By definition,
there is a linear combination of these vectors that is equal to zero,

sia; + s3a3+ ... + spa, = o, (9.3)

and not all of the coefficients sy, s5,...,s, are zero. By adding the equali-
ties (9.2) and (9.3) we obtain

a= (k1 + sl)al + (kz + 82)(12 + ...+ (kp + sp)ap,

that is, a differeni representation of @ as a linear combination of the vec-
tors {9.1). But this contradicts the definition of a basis.
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9.2 Obtaining Other Bases
One example of a basis is the system
'iu'i:’ . -ain

of initial basis vectors. It is obvious that these vectors satisfy the conditions
1 and 2 in section 9.1. This is far from being the only basis of the space
A,, however. What follows are two ways of obtaining bases from a given
basis.

1. Multiply any one of the basis vectors by a nonzero number.

For example, by multiplying the first of the vectors in (9.1) by some
nonzero number k we obtain the system of vectors

ka,,a,,...,a,, (9.1)
which is obviously a basis.

2. Replace one of the basis vectors by the sum of that vector and another
of the basis vectors. .

For example, by replacing the vector a, by the sum a, + a, we obtain
the new system

a, +a;, a; ..., aGp, (9.1

which is again a basis. In fact , let a be some vector. Then, for some
real numbers k1, ..., kp, equality (9.2) holds. But then

a=ki(a, + a,)+ (k3 — k), + kzag + ...+ kyay,

that is, a is a linear combination of the vectors (9.1”). Also, the
uniqueness of the representation of @ in terms of the basis vectors (9.1)
readily implies the uniqueness of its representation in terms of the
vectors (9.1"). Hence (9.1”) is also a basis of the space A,,.

b It is natural to ask how one finds all bases of the space A,. What we
have in mind is a procedure for obtaining from any basis all the others. Ina
sense, the following proposition answers this question. In this proposition,
the term “elementary transformations” refers to the above two ways of
obtaining bases from a given basis.

1t is possible to go from any basis to any other basis by means of a finite
number of elementary transformations.

In particular, it is possible to obtain all bases of the space A,, by apply-
ing (arbitrary numbers of) all possible elementary transformations to the
basis of the initial basis vectors.
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The proof of this proposition is not difficult but we shall not give it
here. Actually, it is not so much this proposition that interests us here but
rather its consequence which asserts that:

Every basis of the space A, consists of n veclors.

Given the above proposition, the proof of its consequence just formu-
lated is obvious, for an elementary transformation preserves the number of
vectors in any system of vectors.

Below we give an independent proof of the last proposition. <

9.3 The Number of Basis Vectors

We shall now prove the following theorem.
Theorem 9.1 Every basis of the space A,, consists of n vectors.

Since the initial basis 2,,%,,...,%, consists of n vectors, all we need
show is that any two bases contain equal numbers of vectors.

Before embarking on the proof we make the following observation.

Suppose that the system of vectors

a,,a;,...,0a,

is complete, by which we mean that any vector @ can be written as a linear
combination of these vectors. Take any nonzero vector b and adjoin it to
our complete system as a new first vector. The new system of vectors

ba,,a,,...,a,

is linearly dependent (for the completeness of the initial system implies an
equality of the form b—k1a1—koas—...—kpa, = 0). According to section 3
of chapter 8, the new system contains a vector a; that can be written as
a linear combination of its predecessors. We claim that if we eliminate the
“superfluous” vector a; , then the resulting system is again complete.

This is almost obvious. Indeed, any vector @ can be written as a lin-
ear combination of the vectors a,,as,...,a,. If we replace in this ex-
pression the “superfluous” vector a; by its representation in terms of a
linear combination of its predecessors b, a,,a,,...,a;_,;, then we shall
have expressed the vector a as a linear combination of the p vectors
ba,,a;,...,8;,,8;4,,...,8p.

Now the proof of theorem 9.1 is quite short. Thus, let

Gy Qsey. ..y 0p (9.4)

and
by baey... by (9.5)
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be two bases. We wish to show that p = ¢.

Suppose that p # ¢ and assume, for definiteness, that p < ¢. Adjoim
the vector b, as a first vector to the system (9.4) and eliminate from it the
“superfluous” vector. By what was proved above, the new system

call it (9.4'), is complete.

Adjoin the vector b, as a first vector to the system (9.4) and eliminate
from the resulting system the “superfluous” vector. This yields a new
complete system

and so on.

Note that none of the adjoined vectors b, , b,, ... can be a “superfluous”
vector. This is so because these vectors belong to a basis (namely, (9.5)).
This means that at each step of our process we eliminate one of the vectors
Ay, Gy .., 0p.

After p steps we will have eliminated all the vectors a,,a,,...,a, and
arrived at the presumably complete system

bys bp—ss -y bay by

But this is impossible, for the vector b, 11, say, cannot be written as a linear
combination of these vectors. This contradiction proves our theorem.

9.4 The Number of Vectors in a Linearly
Independent System

We proved above that the vectors of a basis are linearly independent. It
follows trivially that the space A, contains linearly independent systems
of n vectors. It is natural to ask whether there are in A,, systems of more
than n linearly independent vectors. It turns out that this is not the case.
In fact, we have

Theorem 9.2 If the system

1,85, ...,0p

of vectors in A, 1s linearly independent, then p < n. If p = n, then the
given system is a basis of the space A,,.
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Proof. Denote the given system for brevity by S. We shall construct a
basis of the space A, by adjoining to the system S vectors from an arbitrary
basis

€14€25.-.5En.

Consider the vector e,. If it can be written as a linear combination of
the vectors in S, then we ignore it. If not, then we adjoin it to S (as a
last vector). In either case, we call the new system S’ (we have S’ = S or
§=85Ue).

Now we consider e,. If it can be written as a linear combination of the
vectors in S’, then we ignore it. Otherwise we adjoin it to S’. In either
case we call the new system S” (we have S” = S’ or §” = S'Ue,;). After
n such steps we end up with a system S(). This system has the following
properties:

1. Every vector a € A,, is a linear combination of vectors in S, This
is so because the vector @ is a linear combination of the vectors
€,,€s,...,e, which, in turn, are linear combinations of vectors in
S() (the latter follows from the way we constructed .S ().

2. None of the vectors in S can be written as a linear combination of
its predecessors (this again follows from the manner of construction
of S(»)). This means that the system 5(") is linearly independent.

3. The representation of any vector a as a linear combination of the
vectors in S(™) is unique. Otherwise, the difference of two represen-
tations of @ would yield a relation of linear dependence connecting
vectors in S(™).

Properties 1 and 3 show that the system S () is a basis of the space A,,.
By theorem 9.1, the number of vectors in S(*) is n. Since S contains
the vectors a,, as, ..., a,, it follows that p < n. If p = n, then our initial
system is a basis. This completes the proof.

9.5 A Consequence of Theorem 9.2
Pertaining to Algebras

In chapter 7 we promised to prove that in an algebra A has the property
that ab = o implies @ = 0 or b = o, then A is a division algebra. We
couldn’t prove this proposition then but we prove it now.

Suppose that we wish to solve the equation

az = b, (9.6)
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where a # 0. We choose a basis
€,5€35,...9€n

in the vector space A. Upon multiplication of the basis vectors on the left
by a we obtain the system of n vectors

ae,,ae,,...,ae,. (9.7

We prove that these vectors again form a basis.

By Theorem 9.2, it suffices to show that the vectors (9.7) are lin-
early independent. Suppose that this is false. Then there exist numbers
ki, ks, ..., k; not all zero such that

kiae, + koae, + ...+ k,ae, = o.

Hence
a(kie, + koe, + ...+ kne,) = o.
By assumption, one of the factors in the last equation must be o. Since
a # o,it follows that
kie, +koe, + ...+ kne, = o.

This contradicts the linear independence of the vectors e,;,e,,...,e,.
Thus the vectors {9.7) form a basis. Write b as a linear combination of
the vectors in (9.7),

b=s,ae, + syae, +...+ s,ae,.
If we rewrite this as
b=a(s1e, +s2e,+ ...+ snen),
then we see that the element
T = sie, +'52e, + ...+ sp€e,

is a solution of (9.6). This solution is unique. In fact, if #’ were another so-
lution, then by forming the difference of the equations az = band az’ = b
we would obtain

a(z — z') = o,

which implies that 2 — 2’ = o, that is, z = 2’.
A similar argument proves the existence and uniqueness of the solution
of the equation
za = b.
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9.6 Coordinates of a Vector Relative to a
Basis

The last question we want to touch on in this section is that of the coordi-
nates of a vector relative to a given basis of the space A,,.
Thus, let

Q;5Q3,...50p

be a basis of the space A,, and let
pP= kia, + koa, +~--+knan

be the representation of a vector p € A, relative to this basis. The numbers
ki, ko, ..., ky, are called the coordinates of the vector p relative to the given
basis.

The equality

(k1a1 + ...+ knan) + (11a1 ot l,,a,,)
={ki+h)ai+... 4+ (k; + l)ay,,

implied by the properties of vector addition and multiplication of a vector
by a number, shows that when vectors are added, then their corresponding
coordinates are added. Similarly, the equality

k(kl‘al + kg(lz + ... -+ k,,a,,) = kklal —|- kk2a2 + e + kkna,,

shows that when a vector is multiplied by a number, then its coordinates
are multiplied by that number. In other words, the rules of addition of
vectors and multiplication of a vector by a number are the same for the
mitial basis 2,,¢,,...,%, as well as for any other basis a,,a,,...,a,.






Chapter 10

Subspaces

There are certain subsets of the space A, whose properties justify our
regarding them as independent spaces Ap,p < n. We call such subsets
subspaces of Ay,.

10.1 Definition of a Subspace

Let P be a nonempty set of vectors in A,,. We shall call it a subspace of
the space A, if
1. a € P and b € P imply that a + b € P,

2. a € P implies that ka € P for any real number k.

In other words, a subspace is a set of vectors containing all linear com-
binations ka + Ib + sc¢ + . .. of vectors a, b, c, ... in it.

Trivial examples of subspaces are the so-called null space, consisting of
the zero vector, and the space A,,. But there are many other subspaces. In
the next section we shall explain the structure of any subspace of A,,.

Suppose that P is a subspace that is not the null space. Let a; €
P,a, # o. If all the vectors of P are multiples of a;, then we are finished.
Otherwise we adjoin to a; a vector a; in P that is not a multiple of a.
If all the vectors in P are linear combinations of @; and as, then we are
finished. Otherwise we adjoin to a,, a, a vector a3 in P that is not a linear
combination of a; and @, and so on. This process yields a system of vectors
none of which is a linear combination of its predecessors. This means that
at each step we are dealing with a linearly independent system of vectors.
By theorem 9.2 of the preceding chapter this process must end after at most
n steps. In other words, we obtain a system of linearly independent vectors

Q1,Qs,...,08p (p<n), (10.1)
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in P such that

1. every vector in P is a linear combination of these vectors, and

2. this linear combination is unique. (In fact, if we had two such linear
combinations for a vector @ € P, then their difference s;a; + ssas +
...+ spa, would be equal to o and at least one of the coefficients
$1,82,...,5p would be different from zero. But this would contradict
the linear independence of the vectors (10.1).)

We see that the subspace P consists of all vectors of the form
kiay +ksas 4+ ...+ kpap

and that there is just one such representation for every vector a € P. This
allows us to regard P as a p-dimensional vector space A, with initial basis
Q.,8,,...,0a, Of course, the theorems proved earlier for vector spaces
hold in this space. In particular, each of its bases consists of p vectors. The
number p is called the dimension of the subspace P. We saw that p cannot
exceed n. If p = n, then the system (10.1) is a basis of A, (see once more
theorem 9.2 of the preceding chapter), so that P coincides with A,,.

‘We wish to emphasize the following immediate consequence of the above:
every subspace P cotncides with the totality of linear combinations of certain
p vectors @y, Q5. ..,0p.

10.2 Examples

We illustrate the concept of a subspace in the case of the 3-dimensional
space As.

Let P be a nonnull subspace of Az. A basis of P contains at most three
vectors. It follows that a basis of P has one of the following three forms:

a,; G,,0;;, a;,0q,,03.

In the first case, P consists of all multiples ka; of a; (Figure 10.1). In
the second case P is the set of all vectors of the form kia; + ksas, and so
consists of all vectors coplanar with a; and @y (Figure 10.2). In the third
case, P consists of all vectors of the form kya; + kaas + kaag, that is, of all
vectors in Ag (Figure 10.3).
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Chapter 11

Lemma on Homogeneous
Systems of Equations

This chapter is of an auxiliary nature. In it we consider a subject seemingly
unrelated to vectors, namely, the subject of systems of linear equations.
More accurately, we shall prove a lemma pertaining to systems of homoge-
neous linear equations. This lemma will help us establish important results
to be considered in the sequel.

A linear equation is called homogeneous if its free term is zero. In other
words, a homogeneous linear equation in n unknowns z, s, ..., 2z, has the
form

a1y a4+ ...+ a2, = 0.

A system consisting of homogeneous linear equations is itself called ho-
mogeneous. A homogeneous system of m equations in n unknowns has the
form

121 + asZs + ...+ a2, = 0 — lst equation,
bizy + baza + ...+ byz, = 0~ 2nd equation, (1L.1)

dizy + dozo + ... +dyz, = 0 — mth equation.

An obvious solution of a homogeneous system is the so-called null so-
tution.
1 :0, 1:2:0, ceey In =0.

Frequently it is important to know if a homogeneous system has nonnull
solutions. A partial answer to this question is provided by the following
lemma.
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Lemma 11.1 A homogeneous system in which the number of equations is
smaller than the number of unknowns always has a nonnull solution.

The proof is by induction on the number m of equations in the sys-
tem (11.1).

If m = 1, then we have a single equation in more than one unknown. It
is clear that such an equation has a nonnull solution.

We assume that our lemma holds for systems with m — 1 equations and
prove it for systems of m equations.

If the coefficients @;,b;,...,d; of z; are all zero, then our system has
nonnull solutions. An example of such a solution is

z1=1, z2=0, ..., z,=0.

Now suppose that a; is not zero. (Note that this is a harmless assump-
tion that may require, at most, the rearranging of the equations of our
system.)

We transform our system as follows. We multiply the first equation by
—b;/a; and add it to the second equation. The result is a new system,
equivalent to the first, whose second equation has the form

2T+ ...+ b, =0
(the coefficient of z; is 0). By adding appropriate multiples of the first
equation to the remaining equations of the system, if any, we end up with

a homogeneous system of the form

a121 + @222+ ...+ any, =0,

...................... (11.1%)

that is equivalent to the starting system. The bored part of the sys-
tem (11.1’) is a homogeneous system of m — 1 equations in n — 1 unknowns.
Since m < n,

m—-1<n-1,

so that the boxed system has fewer equations than unknowns. Also, the
boxed system has m—1 equations. But in view of the induction assumption,
the boxed system has a nonnull solution

Tg =02, T3 =3, ..., Tp — Upn.
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By adjoining to it the value of #; obtained from the first equation of the
system (11.1’), namely,

1
21 = —(azaz + ...+ anan),
a

we obtain a nonnull solution of the system (11.1’), and thus of original
system (11.1). This proves our lemma.






Chapter 12

Scalar Products

All the concepts studied thus far in this part are based on two operations
on vectors: addition of vectors and multiplication of vector by a number.
If we consider geometric vectors (that is, directed segments in the plane
or in space), then there are many concepts, such as length of a vector,
perpendicular vectors, and so on, for which we have so far not provided
sensible analogues in A,. This we do next.

12.1 The Scalar Product of Geometric
Vectors

Let = and y be two vectors in the plane emanating from the origin O. Let
the coordinates of # and y be, respectively, 1, z2 and y;,y2. Then

T = 1% + xoty,

= yit1 + Yaig,

where 1,, %, are unit vectors whose orientations are those of the coordinate
axes (Figure 12.1).

Let X and Y be the endpoints of our vectors. Then the coordinates of
X are x1, 25 and the coordinates of Y are y;,y».

The formula for the distance between two points yields the relations

XY? = (yi—z1)’+(y2—22)°,
0X? = 2422
oY? = ¥+,
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Figure 12.1.

from which it follows that
OX?+0Y? - XY? = 22191 + 20y2). (12.1)

Bearing in mind Pythagoras’ theorem, we easily conclude on the basis
of (12.1) that = and y are perpendicular if and only if

z1y1 + 2oy = 0.

A similar argument applied to vectors in space yields the analogous
perpendicularity condition

z1y1 + Tay2 + Tayz = 0.

Formula (12.1) suggests that we associate with each pair of vectors =, y
in the plane the number

Z1Y1 + Tay2, (12.2)
and in space the number
z1 + T2y2 + 23Ys- (12.2)

In each case the number is called in geometry the scalar product of the
vectors = and y and is denoted by (z, ).

We note that the length of a vector can be expressed by means of the
scalar product. In fact, in the plane

le| = \/z3 + 23,

lz| = /22 + 23 + z3.
|z} = V(= z).

and in space

In either case,
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12.2 General Definition of the Scalar
Product

Here are some of the simple properties of the scalar product of vectors in
the plane and in space:

1) (z,2) > 0. (z,2) =0 onlyif ¢ = o;

(2) (,9) = (v, 2);

(3) (z, ky) = k(z,y), where k is any real number;
4) (@9 +2) = (x,y) + (2, 2).

The first three properties follow directly from the definition of the scalar
product. The last property is not difficult to prove. Here is its proof for
the case of vectors in space:

z1(y1 + z1) + z2(y2 + 22) + z3(ys + 23)
= (z1y1 + Toys + x3y3) + (2121 + T220 + T323)
= (z,y) + (z, 2).

(z,y+2)

We now come to the key issue of this section — the extension of the

definition of the scalar product to the case of n dimensions. No matter how
this is done it is desirable that properties (1) — (4) should hold. This guides
the following definition.
Definition 12.1 Suppose that with any two vectors x and y in the space
A, there is associated a number (z,y) such that the properties (1), (2), (3),
and (4) hold. Then we say that a scalar product is given in A, and call
(®,y) the scalar product of the vectors # and y.

12.3 One Way of Introducing a Scalar
Product

Our definition leaves open the question of the very possibility of introducing
a scalar product in the space A,. That this can be done, and how it can
be done, is suggested by the expressions (12.2) and (12.2). Specifically, let

AyyQgy...,0,
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be a basis in A,,. With any two vectors

x = xia, +x6,+ ...+ zTxa,,

Y = Hna, +ya;+...+ ypan,,

in A,, we associate the number

(®,y) = z1y1 4+ Z2y2 + . .. + ZnYn. (12.3)

It is not difficult to show that (, y) satisfies the requirements (1)-(4), and
is therefore a scalar product.
Let
al,al,...,al
be another basis in A,,. Let the coordinates of & and y relative to this basis
be x{,25,...,z}, and yi,y5,...,V,, respectively. Then the equality

(@, y) =2y + ooy + ...+ 2y,
defines another scalar product in A,,. But, in general, it is not true that

(wa y) = (:l:, y)l'

In other words, there are many scalar products in the space A,,. Neverthe-
less, as we shall show below, the indicated manner of introducing a scalar
product is general in the following sense: No matter how one introduces

a scalar product in the space A, there is a basis (in fact, there are many
bases) in which formula (12.3) holds.

12.4 Length of a Vector. Orthogonal
Vectors

Given a scalar product, we define the length of a vector and the perpen-
dicularity of two vectors by analogy with the two- and three-dimensional
cases. Thus, by the length, or norm, of an n-dimensional vector we mean

the number
lz] = /(=, )

(note that, in view of property (1), the number under the square root sign is
nonnegative), and we say of two vectors  and ¥ that they are perpendicular,
or orthogonal — in symbols, L y — if their scalar product is zero. In
other words,

# L y means that (2,y) = 0.
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12.5 Expressing a Scalar Product in Terms
of Coordinates

First we supplement properties (3) and (4) by the properties

(3 (kx,y) = k(z, y);

4) (z +y,2) = (x,2) + (¥, 2)-
Property (3') follows from the chain of equalities
(kx,y) = (y, k) = k(y, z) = k(z,y),

each of which is justified by some scalar product property. Similarly, (4')
follows from the chain of equalities

(z+y,2) = (52 +y) = (5,2) +(,9) = (2, 2) + (v, 2).
Combining properties (3) and (3’) we obtain
(3 (k=z,ly) = kl(z,y).
Further, (4) and (4') imply that
(@ 4@t Ty Y+ Y+ Yg) = 2 (20 Y5)s

that is, the scalar product of two sums is the sum of the scalar products
of each of the summands of the first sum by each of the summands in the
second sum. This and property (3") justify the following rule for obtaining
the scalar product of two linear combinations:
(b1, + ko, + ...+ kpzyp, by, +hy, + ...+ Ly, =
= Zkglj(a:i,yj). (12‘4)
%)

Now we can easily obtain an expression for the scalar product (=, y) in
terms of the coordinates of @ and y. Specifically, let

a,,a,,...,0n. (12.5)
be a basis of the space A, and let

x = 10, + Ta;+ ...+ Tpay,,

y1a, + Y205 + ...+ Ynan,
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be any two vectors in A,. By formula (12.4)

(= y) =D =ziyi(ai aj).
i
The quantities
gij = (ai, a;)
are constants depending on the choice of basis. Once a basis has been
selected, the scalar product is given by the expression

(z,y) = Egijxiyj- (12.6)
i.J

We shall apply this very useful result to prove many important propositions.

12.6 Existence of a Vector Orthogonal to p
Given Vectors, p < n

We wish to find a vector ® perpendicular to a given vector y, that is, a
vector such that (x, y) = 0. In view of (12.6), the coordinates z1,zs, ..., zy
of the vector must satisfy the equation

> @iy = 0.
ij

Since the g;; and the y; are given numbers, the left side of our equa-
tion reduces to an expression of the form aiz; + azz3 + ...+ a,z,. This
means that our equation is a linear homogeneous equation in the variables
L1,L2,...,&n.

If the vector z is to be orthogonal to p given vectors

YisYas - - - s Yp,

then its coordinates must satisfy a system of p linear homogeneous equa-
tions. By the lemma in chapter 11, such a system must have a nonzero
solution provided that p < n. This implies the following theorem.
Theorem 12.1 let

YisYas---9Yp

be p given vectors in the space A,. If p < n, then there exists a nonzero
vector = perpendicular to all the given vectors.3

This theorem has many consequences. We shall consider just one of
them that will play an important part in the sequel.
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Figure 12.2.

Corollary 12.1 IfP is a subspace of the space A, and P # A, then there
erists a nonzero vector ® € A, orthogonal to all vectors in P. (We say,
briefly, that @ is orthogonal to the subspace P.)

The proof is almost obvious. Let

YisYas-- -9 Yp

be a basis in P. Since P # A,,, we have p < n. But then there is a vec-
tor & # o that is orthogonal to the vectors g,, %, ...,¥p. In turn, z is
orthogonal to every linear combination of these vectors,

(@, b1y, + kays + ... + ko)
= kl(a’, yl) + kZ(ma 'yz) +...+ kp(“’? yP) =0,

and therefore to all of P.

12.7 Decomposition of a Vector into Two
Components

We are about to prove in A,, a fact that is geometrically obvious in the
plane as well as in space.

Let 2 be a nonzero vector.Any vector a can be decomposed into a sum
of two vectors of which one is a multiple of ¢ and the other is perpendicular
to ¢ (Figure 12.2.)

a=ki+u, udi.

To prove this assertion we must prove the existence of a number k such
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that the vector # = a — ki is orthogonal to ¢, that is, such that
(a. - k'i, ‘l) =0.
Equivalently,
But then .
U
(3,9)
(Note that ¢ # o, so that (3,¢) #0.)




Chapter 13

Orthonormal Basis.
Orthogonal
Transformation

13.1 Definition of an Orthonormal Basis

We know that there are infinitely many bases in the space A,,. Before the
mtroduction of the scalar product in A, we had no reason for singling out
any of them. After the introduction of the scalar product, however, the
so-called orthonormal bases play a special role.

A basis

Q;,053y...58p

s said to be orthonormal if any two of its vectors are orthogonal,

(ai,aj):O (z',j:l,...,n; 2¢j), (131)
and each of its vectors has length 1,
(aiya;)=1 (i=1,...,n). (13.2)

In ordinary 3-dimensional space an orthonormal basis consists of a triple
>f pairwise orthogonal unit vectors (Figure 13.1).

(The word “orthonormal” is composed of the words “orthogonal” and
“normalized.” A vector is said to be rormalized, or a unit vector, if its
ength is 1.)

What makes an orthonormal basis special is the simplicity of the ex-
oression for the scalar product in such a basis. Specifically, if our basis
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a,

a5

Figure 13.1.

is orthonormal, that is, if the equalities (13.1) and (13.2) hold, then the
expression

(=, y) = > ziy(ai, aj)
i

for the scalar product of two vectors reduces to
(z,y) = z1gn + 2292 + .. . + ZnYn; (13.3)

that is, the scalar product of two vectors expressed in an orthonormal basis
reduces to the sum of the products of the corresponding coordinates of the
two vectors.

13.2 Existence of Orthonormal Bases

While we have established an important property of orthonormal bases we
don’t know whether such bases exist. We prove their existence next.
First a remark. Let a be a nonzero vector. Then the vector

o = af|al
has length one. Indeed,
(a',d') = (a,a)/|al =1.

The transition from a to a’ is called the normalization of the vector a.
The existence of an orthonormal basis follows readily from a theorem

proved in the previous chapter. Take a nonzero vector b,. Let a; be

the result of normalization of b,. Take a nonzero vector b, orthogonal to
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a,. Let a; be the result of normalization of b,. Take a nonzero vector
b; orthogonal to a; and a;. Let as be the result of the normalization of
b;, and so on. Finally we obtain a vector a, orthogonal to the vectors
a,,Qz,...,a,_,. By theorem 9.2, the system of n vectors

Q) yAyy...509

is linearly independent. Suppose not. Then one of our vectors would be a
linear combination of its predecessors. Specifically, suppose that

az = aa; + fas.
Multiplying both sides of this equality by ag we obtain
(ag,a3) = 0.

But this is impossible, for (a5, a3) = 1.

We note that by proving the existence of an orthonormal basis we have
Zulfilled a promise made in the previous chapter to demonstrate the ezis-
zence of a basis in which the scalar product is given by formula (13.3).

13.3 A Method for Obtaining All
Orthonormal Bases

> The study of orthonormal bases gives rise to a number of interesting
juestions. One of them is the question of the transition from one orthonor-
mal basis to another. In chapter 9 we said that there is always a chain
:f elementary transformations that lead from one basis to another. This
wssertion applies, in particular, to orthonormal bases. But what spoils
:hings here is that the result of applying an elementary transformation to
an orthonormal basis is, in general, not an orthonormal basis. This can be
~medied as follows.

Let a,,a,,...,a, be an orthonormal basis. By an elementary ortho-
=ansformation of a basis we mean

1. multiplication of a-basis by (-1). (Clearly this transformation takes

an orthonormal basis into an orthonormal basis);

2. the replacement of any two basis vectors a;, a;{i # j) by vectors
! / 3
a;, a; given by the formulas
a; = cosa a; — sina aj,
'
@;
where « is any real number.

=sina a; — cos o a;,
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We state without proof a theorem that explains the role of elementary
orthotransformations.

Theorem 13.1 Given any two orthogonal bases there is a chain of ele-
mentary orthotransformations leading from one to the other. <

13.4 Orthogonal Transformations

The reader is probably familiar with the concept of a transformation (some
transformations are studied, for example, in high school geometry courses).
We are about to study certain transformations of the n-dimensional vector
space A,,.

If a rule is given that associates with any vector @ € A,, a vectora’ € A,,,
then we say that there is given a transformation of the space A,, and write

a' = F(a).

Here F denotes the rule for obtaining a’ from a.
A transformation F is said to linear if it has the following two properties:

1) F(z +y) = F(z) + F(y),

(2) F(kx) = kF(=).

Here = and y are any two vectors and k is any number. If we denote the
vectors F(x) and F(y) by «’ and 3/, then we can restate these conditions
as follows: the transformation F' maps the triple of vectors x, y, & + y onto
the triple ', %y, 2’ + v/, and the pair @, kz onto the pair &', k2’. In other
words, a transformation is linear if it doesn’t “disturb” either the sum of
two vectors or the product of a vector by a number. It is clear that a linear
transformation does not disturb linear combinations:

F(klml + koo + ...+ kp:l:p)
= k‘lF('.Bl) -+ kQF(mz) + ...+ k'pF(a:p).

Suppose that A, is a space with a scalar product. Then the linear trans-
formations of special interest are those that “preserve” the scalar product
in the sense that

(F(=), F(y)) = (2, y) for any =,y € Ay,.

Such transformations are called orthogonal.
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It is clear that orthogonal transformations preserve the length of any

vector z, that 1s,
[F ()] = |=|.

This follows from the fact that the length of a vector is expressed in terms

of the scalar product:
lz| = (2, z).

The property of preservation of the length of any vector may be taken
as the defining property of an orthogonal transformation. This follows from
the fact that the scalar product can be expressed in terms of lengths. In
fact, the obvious identity

(z+y,z+y) =(z,2)+ ¥y +(,9) + (v, 2)
implies that
2(393/) = (:c +yz +y) - (23,:!:) - (ysy)
[z + yl* = [=]* — |y[*.

Orthogonal transformations have many important properties. We men-
tion one of them.
Let @, a,,...,a, be an orthonormal basis and F' an orthogonal trans-

formation of A,,. Then the vectors

ay = F(a,), a,=F(as), ..., a/ = F(a,)

also form an orthonormal basis of A,,. In other words, orthogonal transfor-
mations map orthonormal bases onto orthonormal bases.
Indeed, the orthogonality of the transformation F implies that
(ai, a;) = (@}, a})

for all 4, j from 1 to n. This means that the vectors a),al,...,a] satisfy
the relations

(@ha)=1, (ahaf)=0 (i#j).
But then they also form an orthonormal basis (see the argument at the end
of section 2).

13.5 The Inverse of an Orthogonal
Transformation

First we establish the fact that if F' is an orthogonal transformation and &
is any vector in A,,, then the equation

F(z)=b (13.4)
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has a unique solution.

This can be proved as follows. Let a,,a,,...,a, be an orthonormal
basis. Then the vectors aj = F(a1), a5 = F(as3), ..., al, = F(ay), also
form an orthonormal basis. If the vector b is given by

b=kia) + kab+...+ kna,,

then the vector
a=kFkia; +keas+ ...+ kna,

is a solution of equation (13.4). Indeed, the linearity of F' implies that
F(a) = kya} + kaab + ...+ kqal, = b.

This proves that equation (13.4) has a solution. Its uniqueness is easy to
establish, for if '
F(z,) = b and F(=,) = b,

then F(z1) = F(=x2), so that, F(®, — #;) = 0. But then [, —z,[ =0,
that is, @, = =,.

If with each vector b € A,, we associate the vector x that is the solu-
tion of equation (13.4), then we obtain a new transformation F~?! called
the inverse of F. Another way of putting this is that every orthogonal
transformation has an inverse.

It is natural to ask if the inverse of an orthogonal transformation is itself
orthogonal. We shall prove that this is indeed the case.

The linearity of F~! is an easy consequence of the linearity of F: if F
maps the triple of vectors z, y, € + y onto the triple &', ¢y, 2’ + ¢/, then
F~1 maps the triple «’,4’, 2’ + ¥’ onto the triple z,y,z + y, and if F
maps the pair @, kz onto the pair /, kz’, then F~! maps the pair =/, k2’
onto the pair #, kx. To see that F~! preserves scalar products note that
the equality

(= v) = (=, y)
implies the equality
(F1(="), F'(y)) = (=',9/).

Since the transformation F~! is linear and preserves scalar products, it is
orthogonal.
We see that the inverse of an orthogonal transformation is orthogonal.
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13.6 “How Many” Different Orthogonal
Transformations Are There?

> It is natural to ask if there are orthogonal transformations and how large
is the class of such transformations. The following proposition will help us
answer these questions.

Let

’

! ’
@,as,...,ay and @,al,...,a,

be two orthonormal bases. Then there exists a unique orthogonal transfor-
mation that maps the first of these bases onto the second.

We define the required transformation as the transformation F' that
associates with any vector

a=rka +kay+...4+ kpa,

the vector
F(a) = kia’ + k2ab + ... + kpal,

and show that it is orthogonal.
The linearity of F is obvious. It remains to show that F' preserves scalar
products. Let

z=z181+...+2pa, and y=y1a; + ... + ypan (13.5)
be any two vectors in A,. Then
F(z)==zia] + ...+ zna,, Fy)=ya)+...+ yal,. (13.6)
Since the basis a,, a,, ..., a, is orthonormal, (13.5) implies that
(@,9) = 21y1 + zay2 + ...+ ZnYn.
Since the basis a., al,..., a), is also orthonormal, (13.6) implies that
(F(=z), F(y)) =z1n + 2292 + ... + ZnYn.

But then
(=, y) = (F(=), F(y)),

that is, the transformation F is orthogonal.

That there is just one orthogonal transformation that maps the first
basis onto the second follows from the linearity of F. Specifically, the effect
of a linear transformation on any vector is uniquely determined by its effect
on the vectors of a basis.



106 Orthonormal Basis. Orthogonal Transformation

This proposition justifies the following conclusion: it is possible to estab-
lish a one-to-one correspondence between the class of orthonormal bases and
the class of orthogonal transformations. To do this fix some orthonormal
basis B, and associate to any orthonormal basis B the (unique) orthogonal
transformation that maps B, onto B. This shows that there are “as many”
orthogonal transformation as there are orthonormal bases. <



Part I11

The Exceptional Position
of Four Algebras
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Certain algebras occupy a special position in the infinitude of algebras.
They are the algebras C, Q@ and O of complex numbers, quaternions, and
Cayley numbers. There are many ways of describing the distinguishing fea-
tures of these algebras but they all come down to the following: compared
with other algebras, these three algebras are closest to what is, in a sense,
their original foundation — the algebra R of real numbers. Examples of
this closeness are:

1. The algebras R,C, and Q are the only division algebras with asso-
ciative multiplication (briefly, R,C, and @ are the only associative
division algebras). A somewhat more precise version of this proposi-
tion is known as Frobenius’ theorem.

2. The algebras R,C, @, and O are the only division algebras in which
the following formulas hold : (uv)v = u(vv) and v(vu) = (vo)u
(briefly, R,C,Q, and O are the only alternative division algebras).
This proposition is known as the generalized Frobenius theorem.

3. The algebras R,C, @, and O are the only algebras with an identity in
which it is possible to define a scalar product such that the norm of
a product is the product of the norms of the factors.

This is the substance of Hurwitz’s theorem.

To put it differently, there is a certain hierarchy of algebras. Its very
foundation is the algebra of real numbers. Its closest neighbor is the alge-
bra of complex numbers in which multiplication retains the most important
properties of the multiplication of real numbers such as commutativity, as-
sociativity, invertibility (this is an allusion to the possibility of division),
and the existence of a multiplicative identity. Then comes the algebra of
quaternions, in which multiplication is no longer commutative. Then comes
the algebra of Cayley numbers, in which the multiplication is “alternative”
rather than associative, but which is still a division algebra with a multi-
plicative identity. Other algebras do not enjoy such a “minimal package”
of properties. Of course, this does not make them less interesting or im-
‘portant. It is simply that we happen to be concerned with what may be
called the proximity of an algebra to the algebra of real numbers.

A final remark. In part 1 we formulated the “problem of the sum of

”»

squares,” which consists in finding all identities of the form

(@+aZ+...+a2)B2+b2+...+b2)
=04+ 92+ ... +92 (13.7)

(see chapter 3). Starting with the “norm property” (the norm of a product
is the product of the norms of the factors) of the algebras R,C, Q, and O, we



110

constructed in part 1 concrete examples of such identities for n = 1,2,4, 8.
In the present part we shall show that the number n in the identity (13.7)
can take on just these four values. The proof of this fact is very much a
consequence of Hurwitz’s theorem, so that the “heroes” of the problem of
the sum of squares are once more the algebras R,C,Q, and O.

In this part we make precise and prove all the facts mentioned above.



Chapter 14

Isomorphic Algebras

According to the definition in chapter 7, any n-dimensional algebra consists
of elements that are uniquely representable in the form

(l]_il + a2i2 4+ ...+ anin

and are added and multiplied by real numbers according to natural rules.
In other words, an n-dimensional algebra is, first of all, an n-dimensional
vector space. Beyond that, there is given a multiplication table of the
(initial) basis elements 2, ,4,, . .., &5, that is, a table of n? relations

Z.a’iﬁ = kaﬂ,lil + kap’2i2 + ...+ kaﬁ,nin (141)
{o,=1,2,...,n),

where k,p . are certain real numbers. Given the rules of multiplication of
the basis elements, we multiply any two elements

a1t1+ ...+ anty, and byt + ... + b2,

of the algebra by following the usual rule of multiplication of sums and then
taking into consideration the relations (14.1).

In sum, we can say that an n-dimensional algebra is an n-dimensional
vector space with a multiplication table (14.1) of the basis elements.

It would seem that two n-dimensional algebras with different multipli-
cation tables should be regarded as different algebras. But this would not
be entirely appropriate for reasons that follow. )

Consider an n-dimensional algebra with initial basis ¢,,%,,...,%, and
multiplication table (14.1). If we select in A another basis 4/,4¢/,..., 4/
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then, of course, we shall have some other multiplication table

ihip = lop 18] + lap,2i5 + - .. + lap nin (14.2)
(a,6=1,2,...,n).

Now consider some algebra A’ with initial basis ¢/,2,,...,%, and multipli-
cation table (14.2). Should we regard A’ as different from 4 ? In purely
formal terms the answer is obviously yes. On the other hand, A’ is es-
sentially just the algebra A referred to a different basis, and there is every
reason to regard the difference between the two algebras as inessential. This
point of view is reflected in the concept of an isomorphism.

Definition 14.1 Two n-dimensional algebras are said to be isomorphic if
they have bases with identical multiplication tables.

Of course, the sameness of the multiplication tables need not imply the
same designations for the corresponding basis elements; the basis elements
of one algebra may be denoted as ¢,,¢;,...,¢, and those of the other
as d,,d;,...,d,. But the coefficients of the linear combination of the
¢’s representing a product c,cpg must be the same as the corresponding
coefficients of the d’s representing the product dodg.

For example, if

c3c; = 3¢, — Ty

then
d,d, = 3d, - 7d;.

In mathematics {wo isomorphic algebras are not regarded as different.
Rather, they are thought of as two different copies of the same algebra. This
means that the answer to the problem of finding all algebras with a certain
special property must have the form: an algebra with the required property
is isomorphic to one concrete algebra, or another, or a third, and so on.

In part 1 we introduced the concept of a hypercomplex system and
then the broader concept of an algebra. Now that we have at our disposal
the concept of an isomorphism, we can make the relation between these
concepts completely clear. In chapter 7 we showed that every hypercomplex
system may be viewed as an algebra in which the first initial basis element
is replaced by the identity element of the algebra, that is,

2,80 = ot = 1a

for all «. Now we can supplement this with a kind of converse: Ev-
ery algebra with an identity is isomorphic to some hypercomplex system.
In fact, given an algebra with an identity 1 we can choose in it a basis
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i ,2,,...,1, with ¢/ = 1. Then we obtain a multiplication table in which
t14) =1 3! =14/ for all o, that is, the multiplication table of some hyper-
complex system M. It follows that the initial algebra is isomorphic to the
hypercomplex system M.

We conclude with an example that illustrates the role of the concept
of isomorphism. We can now describe the result of chapter 2 by saying
that every 2-dimensional algebra with an identity is isomorphic to one of
the three algebras of complex, double, or dual numbers. This is the precise
rendering of the statement in section 2.2 to the effect that “every system
of numbers a + b7 with the operation rules 1 to 3 reduces to one of the
following three ...” “Reduces to” is now replaced by “is isomorphic to.”






Chapter 15

Subalgebras

In part 1 we have more than once encountered the phenomenon of one
algebra being part of another. For example, the algebra of real numbers
is part of the algebra of complex numbers, which is part of the algebra of
quaternions, which itself is part of the algebra of Cayley numbers, and so
on. In such cases we use the term “subalgebra” instead of “part.”

Definition 15.1 A set P of elements of an algebra A is called subalgebra
of A if

1. P is a subspace of the vector space A;

2. P s closed under the multiplication in A, that is, if a € P and
be P,then ab e P.

The first requirement is equivalent (see chapter 10) to the condition that
P is the totality of linear combinations

kiay +koag 4 ...+ kpap

of some elements a,,@,,...,a,. The latter may be taken to be linearly
independent. Then they form a basis of the subspace P (and their number
does not exceed n).

To satisfy the second condition it suffices that all products

asag (0,f=1,2,...,p)
of the basis elements are again in P, that is, that

agapg = ka,@,lal + kapgaq + kapypap (a,,@ =1,... ,p). (15.1)



116 Subalgebras

Our definition implies that a subalgebra may be regarded as an alge-
bra in its own right with initial basis a,,as,...,a, and multiplication
table (15.1).

We give examples of subalgebras.

1. In the algebra of quaternions the subspace with basis 1, 7 is a subal-
gebra. More generally, any subspace with basis 1, g, where q is not a
multiple of 1, is a subalgebra. Each of these subalgebras is isomorphic
to the algebra of complex numbers.

2. In the algebra of Cayley numbers the subspace with basis 1,2, E, I
is a subalgebra. This subalgebra is isomorphic to the algebra of
quaternions (the multiplication of the elements of this basis is the
same as the multiplication table of the elements of the quaternion
basis 1,1, j, k). Similar examples are furnished by spaces with bases
1, a, b, ab, where a and b are any two imaginary units from the initial
basis 1,12, 3, k, E, I, J, K of the algebra of Cayley numbers.

3. In the algebra of matrices of order n the matrices with zero in th=
first k rows, k fixed, from a subalgebra. A more complicated exampl=
is furnished by the subspace of all “chessboard” matrices, that is
matrices in which the elements a;; with 7+ j an odd integer are zerc
For example, for n = 3 these are the matrices of the form

* 0 x
0 « 0
* 0 =

We leave the verification of this fact to the reader.



Chapter 16

Translation of the
“Problem of the Sum of

Squares” into the
Language of Algebras.
Normed Algebras

We recall the formulation of the problem of the sum of squares posed in
part 1. It is required to find out for what values of n and for what n bilinear
forms

@1((31,172, ce ey Ty yl)yZ)"'ayn)a
@2(171,232, ey iy Y1, Y2, - ’yn)a

we have the identity
2422+ +22) R+ 4. +yd) =B+ B+ ...+ BI()

In part 1, the study of certain concrete algebras (the algebras of com-
plex numbers, quaternions, and Cayley numbers) enabled us to construct
examples of the identity (!) for n = 2,4,8. But we said nothing about the
construction of an arbitrary identity (). We consider this issue next.



118 Normed Algebras

16.1 The Connection between (!) and a
Certain Algebra A
First we note that with every identity (!) there is associated a certain

algebra defined in the following manner. We consider the n-dimensional
vector space whose elements are the vectors

Tity + Tty + ...+ Tpi,. - (16.1)
The product of two elements
T =281+ Tato + ...+ Tyt
and

Y =yt + Y2tz + ...+ Ynin
in that space is defined by the formula

Y = <I>1'i1 +¢22.2+ ...+<I>nin. (162)

In view of the linearity of the forms ®;,®,,...,®, with respect to the
variables z1,z5,...,Z, as well as the variables y1,ys, ..., yn it is clear that
the following equalities hold:

kz -y = k(zy) z - ky = k(zy),
(1111 + a:;)y =z,y + 2.V, :c(yl + yz) = zY, + 2Y-.

But then the multiplication rule (16.2) actually defines a certain algebra
(see section 7.7). Let this algebra be denoted by A. From what we said
above it follows that the algebra A is completely determined by the identity

().

16.2 The Possibility of Introducing a Norm
in the Algebra A

We wish to find out what property of the algebra A is a reflection of the fact
that forms ®1,®s,..., P, are not entirely arbitrary but satisfy the identity
M.

To this end we introduce in the algebra A a scalar product (z, y) defined
in terms of the coordinates of the vectors # and y relative to the basis
T15234...52n Dy means of the rule

(®,9) = 2191 + Zay2 + ... + TaYn- (16.3)
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In particular,

(z,@) =23+ 22+ ... 422,
We note that by defining the scalar product in this way we make the basis
21,5254 .- %, Oorthonormal. Indeed,

(ia, ia) =1,
(tas¥p) =0,
fora,f=1,...,n, a# B. Thisisso because the only nonzero coordinate

of the vector i, is its o — th coordinate (it has the value 1), and the only
nonzero coordinate of ig is its § — th coordinate.

Now that we have introduced in the algebra A a scalar product, we
can give the identity (!) a new interpretation. It is easy to see that the
expression on the right side of the identity is the “scalar-product square”
(zy, ®y) of the element zy, and the left side is the product of the scalar-
product squares (x, z) and (y, y). This means that we can write (!) as

(zy, zy) = (=, z)(y, ¥). (16.4)

By defining the norm of an element z by the formula

|z] = (=, 2),

lzy| = |=|lyl (16.4')
(the norm of a product is the product of the norms of the factors).
Next we make the following
Definition 16.1 We say that an algebra A is normed if we can define in
it a scalar product such that the identity (16.4) holds.

we can rewrite (16.4) as

Examples of normed algebras are the by now familiar algebras of com-
plex numbers, quaternions, and Cayley numbers. That these are normed
algebras follows from the fact that formula (16.4’) holds in them.

In order to satisfy all the requirements of the definition of a normed
algebra we need only introduce a scalar product such that |z| = /(=, x).
For complex numbers such a scalar product is given by the formula

(2, 2') = 211 + 2232,

where z = 21 + 118, 2’ = z3 +yot, and for the algebra of quaternions it is
given by the formula

(g, @) = z1y1 + z2y2 + T3ys + 24y,

where ¢ = z1 + 22t + 23] + x4k, ¢ = y1 + Yo% + y3J + yak. There is an
analogous definition of a scalar product for the algebra of Cayley numbers.
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16.3 Conclusion

We have shown that to every identity (!} there corresponds a certain
normed algebra 4. In that algebra the product of two elements =
Tyt 4 ...+ Tptn, Y= Y181 + - .. + Yni, is defined by the formula

a2y = @101+ ...+ D,iy, (16.5)
and the scalar product by the formula
(®,9) =z1y1 + 2292+ .. + ZnYn.

In the algebra A the elements ¢,,%,,...,%, form an orthonormal basis.
Also, the identity (!) expresses the condition of normability relative to that
basis.

1t is easy to see that the converse of this proposition holds. Specifically,
let us select in a given normed algebra A an orthonormal basis ¢, , 25, . .., %,.
If we write down the rule of multiplication relative to this basis, then we
obtain n forms ®,,®,,...,®,, and if we write down the normability con-
dition for the algebra A, then we obtain the identity (!) with the forms
®,,®;,...,9, on the right side.

In sum, we arrive at the following conclusion.

All n-tuples of forms ®1,®,,..., D, satisfying the identity (1) can be
obtained in the following manner: We take any normed n-dimensional al-
gebra A and choose in it an orthonormal basis t,,4,,...,%,. Then we write
down the law of multiplication in the algebra A in the form (16.5).

It follows that the problem of determining all identities (1) reduces to
two problems:

1. finding all normed algebras.

2. writing down the multiplication law for each of these algebras relative
to all orthonormal bases.

We shall consider the first of these problems in the next two chapters.
We shall use the solution of the first problem to obtain a survey of all
identities (!).



Chapter 17

Normed Algebras with an
Identity. Hurwitz’s
Theorem

17.1 Formulation of Hurwitz’s Theorem

In the previous chapter, in discussing the “problem of the sum of squares,”
we concluded that it was necessary to find all normed algebras. In this con-
nection we prove a theorem, first established by the German mathematician
A. Hurwitz in 1896, which does not give us a complete survey of normed
algebras but disposes of a large part of the difficulties associated with this
problem:.

Hurwitz’s theorem. Every normed algebra with an identity is iso-
morphic to one of following four algebras: the real numbers, the complex
numbers, the quaternions, and the Cayley numbers. ‘

The requirement that the algebra has an identity is essential and cannot
be left out: We shall see later that there exist algebras without identities,
and none of them can be isomorphic to one of the algebras mentioned in
the theorem, all of which have identities.

The proof of Hurwitz’s theorem is quite long. That is why we first
present the overall scheme showing the ideas of the proof and fill in the
details later.
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17.2 Sketch of the Proof of Hurwitz’s
Theorem

Let A be a normed algebra with an identity. We recall that a normed
algebra is an algebra in which one can define a scalar product such that

(ab, ab) = (a, a)(b, b). (17.1)

Let 1 be the identity of the algebra 4. Every element a € A can be uniquely
represented as a sum of two terms* one of which is proportional to 1 and
the other orthogonal to 1. Thus

a=ki+a,

where k is a real number and @’ L 1. We introduce in the algebra an
operation of conjugation whose effect on an element a is given by

a=+kir—a.

In particular, if a is proportional to 1, then @ = a, and if a is orthogonal
to 1, then @ = —a . Clearly,

K

=a

and
at+tb=a+b.

Now we are ready to present the ideas underlying the proof of our the-
orem.

Let U be a subalgebra of the algebra A containing 1 and different from A.
Let 1,%,,%,,...,%, be a basis of Y such that ,,%,,...,¢, are orthogonal
to 1. Then the conjugate of an element ag1+ai2;+...+a,2, is the element
gl — @121 — ... — Gpt,. This shows that if u is an element of A, then so
is its conjugate u.

According to chapter 12, there exists a nonzero vector orthogonal to i.
A suitable numerical multiple of it is a unit vector e orthogonal to U. We
shall show that the set of elements of the form

u, +u,e (u, €U, u, €EU) (17.2)

is closed under multiplication, and thus a subalgebra of #. Let U + Ue
denote this subalgebra. We shall prove that:

Assertion 17.1 The representation of an element of U + Ue in the form
(17.2) is unique;
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Assertion 17.2 The product of two elements of the form (17.2) is given
by

(uy + use)(v, + vie) = (u,v, — Dou;) + (v,u, + U,y )e. (17.3)

Juxtaposing these facts and the doubling procedure described in chap-
ter 6 we arrive at the conclusion that the subalgebra U + Ue is isomorphic
to the doubled subalgebra U.

The rest of the proof is relatively simple. Before turning to the last
phase of the proof we remark on a certain aspect of conjugation in the
algebra A.

Since it contains an identity element 1, the algebra A contains the
subalgebra of elements of the form k1. This subalgebra is isomorphic to
the algebra of real numbers. We denote it by R. If in the preceding
argument we replace i by R, then e will be a unit vector orthogonal to 1.
By formula (17.3)

e?* = (o+1le)(o+ le) = —1.

This implies that the square of a vector a’ orthogonal to 1 is A1, where
X < 0. It is easy to show that, conversely, if the square of an element is
A1 and A < 0, then this element is orthogonal to 1.> Thus the elements
orthogonal to 1 , and only these elements, are characterized by the fact
that their squares are equal to A1, where A < 0. This enables us to give
the following alternative description of conjugation in A: Let

k14 @', where a’? = A1, A <0,

be the unique representation of an element a € A. Then a = k1 — a’.

We are now ready to present the last, quite transparent, part of the
proof.

Consider once more the subalgebra R. If R # A, then there is a unit
vector e orthogonal to R. Consider the subalgebra C = R + Re. Since it is
the doubled algebra R, it is isomorphic to the algebra of complex numbers.
From what was said about conjugation in the algebra A it follows that
for the elements of C conjugation coincides with the usual conjugation of
complex numbers.

If the subalgebra C does not coincide with A, then we can once more find
a unit vector €’ orthogonal to C. We consider the subalgebra @ = C + Cé/,
the result of doubling C. This algebra is isomorphic to the algebra of qua-
ternions. Our earlier characterization of conjugation in A4 implies that for
the elements of @ conjugation coincides with conjugation in the algebra of
quaternions. ,

If the subalgebra @ is not all of A, then we again choose a vector e
orthogonal to Q@ and consider the subalgebra @ = Q@ + Qe” which is the
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result of doubling @ and is therefore isomorphic to the Cayley numbers
(chapter 6). This algebra must coincide with .4 for, as we shall show, any
subalgebra containing 1 and not equal to A is assoctative. Since multiplica-
tion of Cayley numbers is not associative, the subalgebra () must coincide
with the whole algebra A.

In turn, if the algebra A4 is not isomorphic to one of the algebras R, ¢, 0,
then it is isomorphic to the algebra (. But this is the assertion of our
theorem.

We see that our theorem will have been proved if we prove the assertions
17.1 and 17.2, and the assertion: ’

Assertion 17.3 FEuvery subalgebra containing 1 and different from A is as-
sociative.

17.3 Two Lemmas

First we establish two lemmas.” We suggest that the reader familiarize
himself with the statements and leave their proofs to a second reading.
Lemma 17.1 the following identity holds in any normed algebra:

(a,b,,a.b,) + (a,b,,a,b,) = 2(a,,a,)(b,, b,). 7 (17.4)

We note that this identity connects four elements a,, a,, b,, b, of the
algebra A.

Proof. Put for a in the fundamental identity (17.1) the sum a, + a,.
We have

(a,b+a,b, a,b+a,b)=(a, +a,, a, +a,)b,b),
or

(a.b,a,b) + (a;b,a,b) + 2(a,b, a,b)
= (a,,a,)(b,b) + (a;,a,)(b,b) + 2(a,, a,)(b, b).

By the fundamental identity, the first and second terms on the left are
equal, respectively, to the first and second terms on the right. Hence

(a.b,a;b) = (a,,a,)(b,b). (17.5)

To obtain the required result we must replace b in (17.5) by b, + b,.
Then we have

(albl + axbz’ a2b1 + azbz) = (axaan)(bl + bas b, + b2)5
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or
(a1b17 azb1) + (a1b2, azbz) + (0'1 bl, azbz) + (a1 b., a2b1)
= (au az)(bu bl) + (au az)(bz, bz) + 2(0'19 az)(bu ba)

By (17.5), the first and second summands on the left are equal, respectively,
to the first and second summands on the right. Cancellation yields the

identity (17.4).

Lemma 17.2 The following identity holds in a normed algebra with iden-

tity:
(ab)b = (b, b)a. (17.6)

In other words, the element (ab)b is always proportional to @ and the
proportionality coefficient is (b, b).

Proof. First we note that it suffices to prove the identity (17.6) for
the case when b .L 1. Indeed, let b’ be an element of the algebra A. If we

represent it in the form
b =k1+b,

with b L 1, then b= —b, and
(ab)b' = (a(k1 + b))(kr — b) = k2a — (ab)b = k?a + (ab)b.
If we assume that formula (17.6) holds for the vector b, then we have
(ab))b' = K*a + (b, b)a = [k + (b, b)la = (V/, b)a,’

that is, formula (17.6) holds for b'.

Thus we shall prove (17.6) under the assumption that b L 1 (or, equiv-
alently, b = —b). Also, we shall write A for (b, b).

Consider the element

c = (ab)b - Aa.
We must show that ¢ = o or, equivalently, that
(e, ) =0.
In view of the properties of scalar products we have
(¢, ¢) = ((a, b)b, (ab)b) + A*(a, a) — 2X((ab)b, a). (17.7)

The right side is a sum of three terms. Using the fundamental identity (17.1)
we can easily simplify the first summand:

((ab)b, (ab)b) = (ab, ab)(b,b) = (a, a)(b, b)* = A*(a, a).



126 Hurwitz’s Theorem

To simplify the third summand we use the identity (17.4). First we write
it as

(a1b19 azbz) = 2(019 az)(bu ba) - (a‘x bz’ a2b1)-
In the last identity we put

a, =ab, b, =b, a, =a, b, =1,

and obtain ~ ~ ~
((ab)b,a) = 2(ab, a)(b,1) — (ab, ab).

Since b L 1, the first summand on the right is zero, and the second is
—(ab, ab) = (ab, ab) = (a, a)(b,b) = \(a, a).

Hence

((ab)b,a) = A a, a).
Now we can rewrite (17.7) and obtain
(¢, €) = A%a, a) + )\*(a, a) — 2)*(a,a) = 0,

which is what we wished to prove.

A consequence of Lemma 17.2. We now deduce from the iden-
tity (17.6) another identity that will play a very important role in what
follows.

If we replace b in {17.6) by = + vy, then we obtain

(az+y)(2+9)=(z+y,z+ya,
(az)Z + (ay)y + (az)y + (ay)z
=(z,z)a + (y, y)a + 2(z, y)a.

In view of (17.6), the first and second summands on the left are equal,
respectively, to the first and second summands on the right. Hence

(az)y + (ay)z = 2(zy)a. (17.8)

This is the identity we wished to establish.
&> Putting @ = 1 in (17.6) we obtain

bb = (b, b)1.

This and (17.6) yield ~ ~
(ab)b = a(bb).
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Hence
(ab)b = a(bb).

A similar argument proves that
b(ba) = (bb)a.

The last two formulas show that the algebra A is alternative. <

17.4 Conclusion of the Proof

It remains to prove the assertions 17.1, 17.2, and 17.3. We recall that
there U denotes a subalgebra of the algebra A that contains 1 and does not
coincide with A, and e is a unit vector orthogonal to U.

First we show that the subspaces U and Ue are orthogonal, that is,
u, L u,e for any two elements u, € U, u, € U.

We use lemma 17.1. If we put in (17.4) a, = u,, b, = u,, a, = e,
b, = 1, then we obtain

(u,u,,e) + (u,, u,e) = 2(u,, e){u,,1).

Now we need only bear in mind that I is a subalgebra, so that u,u, is in
U. But then u, L e,u,u, L e. It now follows from the last equality that

(u,,u,e) =0,

that is, 4, L w;e. This means that the subspaces ¥/ and /e are orthogonal,
as claimed.

Now we easily prove assertion 17.1: The representation of any element
inld +Ue in the form u, + u,e is unique. In fact, suppose that

u; +use = u +ule.

Then

u;, —u, = (u, — u,)e.

This means that the element v = u, — u/ is in the subspaces I/ and Ue.
Since these subspaces have just been shown to be orthogonal, (v,v) = 0,
and therefore v = o. This implies that w, — %/ = o0, and (u] — u,)e = o.
Also, in view of the fundamental identity (17.1), ab = o implies that @ = o
or b = o. In our case (u, — u,)e = o and e # o imply that u, — u, = o.
Hence u, = u and u, = u). This completes the proof of assertion 17.1.
Next we prove assertion 17.2, that is, the correctness of formula (17.3).
To this end we shall prove that if # and v are elements of the subalgebra
U, then
(ue)v = (uve, ()
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u(ve) = (vu)e, (8)
(ue)(ve) = — vu. (7)

With these relations at our disposal we can easily prove formula (17.3). In
fact,

(u, + u,e)(v, +v,e) = u,v, + (u,e)(v,e) + (u,e)v, + u,(v,e).

If we transform the last three terms on the right in accordance with the
formulas (@), (8), and (7), then we obtain the equality

(u, + uze)(v, + v€) = (u,v,—V2u;) + (Vau, + u,v1)e,

that is, formula (17.3).
To prove (a), (), and (v) we make use of the identity (17.8):

(az)y + (ay)z = 2(=, y)a. (17.8)
If we put in this identity
a=u, T=e, Y=
and bear in mind that © 1 e, then we have
(ue)v + (uv)ée = o.

Since & = —e( for e L 1), we obtain the formula (o).
To prove (8), put in (17.8)

a=1, z=1u, Yy =7ve.
Since ve = —ve (ve LU, so that ve L 1), it follows that
u(ve) — (ve)it = o.
Using («) we obtain
u(ve) = {ve)ﬁ = (vu)e.

To prove (y) we use the following obvious remark: If this formula holds
for v = ¢ and v = d, then it also holds for v = ¢ + d. Since every element
v can be written as a sum of two terms one of which is proportional to 1
and the other orthogonal to 1, it suffices to prove () in two cases: when
v = k1 and when v L 1.
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If v = k1, then formula (y) becomes
k(ue)e = —ku,

an identity whose validity is implied by the identity (17.6).
Now suppose that v L 1 (so that 4 = —wv). If in (17.8) we put

a=u, r=e, y=—ve,
theﬂ we have
(ue)(ve) — (u{ve))e = —2(e, ve)u.
By the identity (17.5), (e, ve) equals (1, v)(e, e), that is, zero. Further, by
(B), the second term on the left equals —((vu)e)e = —vu =vu. But then

(ue)(ve) = — vu,

which is what we wished to prove. By proving (), (), () we have proved
assertion 17.2.

In order to complete the proof of our theorem we must prove assertion
17.3: Every subalgebra U of the algebra A that contains 1 and is not A is
associative, that is,

(uwv)w = u(vw)

for any three elements u, v, w in .
To show this we again use (17.8). Putting in (17.8)

a=ve, T=w, Yy=ue,

we have
(ve)io)(~e) + ((ve)(ue)w = o,

or, using () and (7),
u{vw) — {(uv)w = o.

This completes the proof of Hurwitz’s theorem.






Chapter 18

A Method for
Constructing All Normed
Algebras and Its

Implications for the
Problem of the Sum of

Squares

18.1 A Method for Constructing New
Normed Algebras

First we describe a special method for constructing many normed algebras
starting with a normed algebra A.

Let A and B be two orthogonal (that is, norm-preserving) transforma-
tions on A. In the vector space A we define a new multiplication o given
by the formula

u o v = A(u)B(v). (18.1)

This definition states that the new product of two elements u and v is
equal to the old product of their transforms A(u) and B(v).
It is easy to see that the new operation satisfies the following relations:

uo(v, +v;)=uov, +uov, uokv==k(uov),
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and
(u, +u)ov=u,0v+u;0ov, kuowv =k(uowv).

The first two of these relations are implied by the linearity of the trans-
formation B and the last two by the linearity of the transformation A.
These relations show that the new operation is indeed a multiplication (see
section 7.7).

The vector space of the algebra A with the new multiplication is denoted
by A,. Thus A and A, are copies of the same vector space furnished with
different multiplications.

The algebra A is furnished with a scalar product (z,y). It turns out
that, like the old algebra .4, the new algebra A, is normed with respect to
this scalar product. In fact, formula (18.1) implies that

w0 v| = |[A(u)B(v)| = [A(w)[|B(v)| = |ul|v];

here we made use of the fact that the original algebra A is normed and the
transformations A and B are orthogonal, that is, that

|A(w)] = |u| and |B(v)] = |v].

18.2 Construction of All Normed Algebras

The above method enables us to obtain many normed algebras from a given
normed algebra. For this we need only substitute in formula (18.1) different
pairs of orthogonal transformations. We are familiar with four remarkable
normed algebras: the real numbers, the complex numbers, the quaternions.
and the Cayley numbers. It is not unreasonable to ask whether all normed
algebras can be obtained from these four by means of the method jus:
described. It turns out that the answer to this question is affirmative. Since
by Hurwitz’s theorem, these four algebras are the only iormed algebras wit=
an identity, we must prove the following theorem.

Theorem 18.1 Every normed algebra A, can be obtained from a norme:
algebra A with an identity by the introduction of @ new multiplication vis
formula (18.1) (in that formula o denotes the multiplication in the algebr:

A,.)

For proof take an element e of norm 1 in A,, and consider the transfor-
mation that maps an element x in 4, onto ® o e. Such a transformation
(multiplication by e on the right) is called a right translation by e in the
algebra A,. We denote it by A. Thus

A(z) ==z oe.
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It is easy to see that the transformation A is orthogonal. In fact, the
equalities

|A(z)| = |z 0 e = |z||e] = |=|

show that the transformation A preserves the norm of every element .
Similarly, we can introduce a second transformation

B(z)=eox

— a left translation by an element e in the algebra A, — and show that it is
also orthogonal.

The orthogonality of the transformations A and B implies (see chapter
13) the existence of inverse transformations A~! and B! as well as their
orthogonality.”

We use these transformations to introduce a new multiplication in the
vector space of the algebra A,. If # and y are two elements in A,, then
their new product is defined by the formula

xzy = A" (z) o B~(y). (18.2)

We denote the resulting algebra by A.

The equality (18.2) expresses the new multiplication in term of the old.
But we can easily use (18.2) to express the old multiplication in terms of
the new: Putting

AN (z)=u, BT (y) =0,
we have
A(u)B(v) =uow.

Thus if we regard A with the operation uv as the initial algebra, then
the algebra A,, given from the very beginning, can be obtained from it by
replacing its multiplication by the new multiplication % o v in accordance
with the formula

u o v = A(u)B(v).

To complete the proof we need only show that the algebra 4 has an identity.
We claim that the element € = e o e plays the role of the identity in
the algebra .4. In fact, consider the products

xé and ey.
For the first of these products we have

zé = A"Y(x)o B71(&).
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By definition of the inverse transformation, the element u = B~1(&) is the
(unique) solution of the equation

B(u) = e,

or, equivalently, of the equation e o u = e 0 e. From this it follows (by
uniqueness) that this element is e. Further, v = A~!}(z) means that = =
A(v), that is, v 0 e = z. But then

zé=A"Y(z)oB (&) =voe==.
Similarly,
ey=A"'(&)oB Hy)=eoB Hy)=y.

We have shown that & is the identity of the algebra A. This completes
the proof of our theorem.

To recapitulate: All normed algebras can be oblained from the four fa-
miliar algebras R,C, Q, and O by the introduction of a new multiplication
via formula {18.1). In a sense, this may be viewed as a method for obtaining
all normed algebras.

18.3 The Number n in the Identity (!)

One of the consequences of this theorem is that the dimension of any normed
algebra is equal to one of the numbers 1,2,4,8 (these are the dimensions of
the algebras of real numbers, complex numbers, quaternions, and Cayley
numbers).

We note that there is a definite connection between normed algebras
and identities of the form

(34234 +e)@+¥5+. . +9)
=07 +®5+...+®2. (1)

This connection (see chapter 17) consists in the fact that by taking a
normed algebra, selecting in it an orthogonal basis, and writing down the
multiplication rule in this basis, we obtain n forms ®,9,...,®,, satisfying
the identity (') Furthermore, all identities (!) can be obtalned in this
manner. In view of this connection we arrive at the following fundamental
conclusion:

The number n in the identity (!)can take on only the four values 1,2,4,
and 8.
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18.4 Survey of All Identities (!)

B> From the theorem just proved we can deduce far more than just the
number of squares in the identity (!). In fact, if we know how to construct
all normed algebras, then we also have a method of describing all identities
(). We shall show that all such identities can be obtained in the following
manner.

Choose one of the values 2, 4, 8 of n. In the corresponding one of the
three algebras C, Q, O select three orthonormal bases

€,€5,...,6n; kiykay.. . ykny d,4a,.. 500,

If & and y are general vectors expressed in terms of the first and second of
these bases, respectively, and their product zy is expressed in terms of the
third basis, that is, if

T = Erxaea, y= Z@:yﬁkﬂa &Yy = Zq)'yi'ya
@ ¥

then the forms ®y(21,...,%n; Y1,...,Yn) satisfly the identity (1).2 More-
over, all identities (1) can be obtained in this way.
That our procedure always leads to forms satisfying (!) is apparent from

the equality
(Zxaea)(zyﬁkﬁ) = ZQViV'
a B ¥

Taking norms on both sides we obtain an identity (!), as claimed.
Conversely, we shall show that all identities (!) can be obtained from
multiplications of the form

zoy= A(z)Bly)
(A and B are orthogonal transformations) by expressing the products with

respect to orthonormal bases %,,2;, ..., ¢5. In other words, the forms
®,®,, ..., ¥, associated with a given identity come from an equality

A(Y 2aia)B(Y_ ysip) = ) Byiy. (18.3)
a B Y

The linearity of the transformations A and B implies that

A(Z Tale) = EmaA(ia)w B(Zyﬁiﬁ) = EyﬁB(iﬁ)-
o o B B
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Denote A(i,) by e and B(ig) by kg. Then (18.3) takes the form
(Z zaea)(z ysks) = Z Dyiy.
o B Y

Bearing in mind that the bases e,,e,,...,e, and k,, k., ..., k, are or-
thonormal, we conclude that the forms &, ®,,..., P, are obtained in the
manner asserted in our theorem.

For mathematically more advanced readers the same survey of the iden-
tities (1) can be described differently. Given one of the permissible values
1,2,4,8 of n we choose n forms ®;, ®,,...,P, and alter them as follows:
Replace the variables z1,z2,...,2, in ®; by new variables z},z5, ..., 2/,
related to them by an orthogonal transformation A. Apply a similar op-
eration, involving another orthogonal transformation B, to the variables
Y1,¥2, -, Yn- Then apply to the forms ®,,®,,...,®, a third orthogonal
transformation C.

Call two identities (!} equivalent if they are obtained from one another
in the indicated manner. Then we can say that, for a given value of n =
1,2,4,8, there is, up to equivalence, just one identity (!). <

18.5 Examples of 2- and 4-Dimensional
Algebras and of the Associated
Identities (!)

We know that there is just one normed 2-dimensional algebra with identity,

namely, the algebra C of complex numbers. Since conjugation of complex
numbers, that is, the mapping

r—

is an orthogonal transformation of the algebra C (for || = |2]), we can
obtain at least three new algebras by replacing the usual multiplication of
complex numbers with the multiplications

ztQy = zy,
tQy = =y, (18.4)
@y = =y

In this way we obtain three new normed algebras Cy, Ca, C3.

It is a useful exercise for the reader to show that any normed 2-dimen-
sional algebra is isomorphic to one of the algebras C,C;,Cs,C3 and no two
of the latter are isomorphic.
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We shall now give examples of identities (!) associated with these alge-
bras.

Using the basis 1,2 in the algebra C; we have

tQy = 2y= (21— 228)(y1 + yat)
= (z1y1 + z2y2) + (21y2 — 2201 )3,

so that the corresponding identity is
(2} + 23)(v7 + 93) = (®191 + 2292)” + (2102 — z101)°.
We see that this identity is somewhat different from the familiar identity
(22 + 22 (3 + ¥3) = (2191 — 2w2)® + (2192 + Tapn)’ (18.5)

associated with the same basis 1,4 in the algebra C.
To obtain an identity that departs more radically from (18.5) we use
the orthonormal basis (easily shown to be one)

+¢)and e; =

1 1 .
e, = E(l 75(1 - l)
in C. Expressed in terms of this basis the multiplication rule takes the form
1
(u1e1 + uses)(vier +v2e2) = 7§(uwz + viug + u1v1 — ugvale;
1
+ —=(u1v2 + viug — u1v1 + uavajeq.
\/5( 192 + vtz 191 2v3) €3
The corresponding identity is
1
(uf +u3)(v} +v3) = [7§(U1vz + v1u2 + U101 — uzva)]
1
+ [7§(u1v2 + viug — w1v1 + ugva)]’.

Next we turn to 4-dimensional normed algebras. We know that, in this
case, the only normed algebra with identity is the algebra Q of quaternions.
Just as in the case of the complex numbers, conjugation effects an orthogo-
nal transformation of the algebra Q. Therefore, in addition to @, there are
at least three more normed algebras Q;, @5, Q3 with multiplications given
by the formulas (18.4). In the 4-dimensional case, however, there are other
normed algebras, such as the algebras with multiplication operations given
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by the formulas

axyb,
azyb,
azxyb,
azyb,

where a and b are two fixed quaternions.

We leave it to the reader to prove that every normed 4-dimensional
algebra is isomorphic to an algebra of this type.

As an example, we consider the first of the above multiplications with
a =i, b= j. We obtain an algebra Q with the multiplication rule

z oy = (iz)(yJj)

We shall obtain the identity associated with this algebra in the basis 1,1,
7, k. We have

(i(zo + z18 + 225 + z3k))((yo + y12 + Y25 + ysk)s)
(zoi — 21 + 22k — 235)(v0F + y1k — y2 — y31)
(2192 — Z2y1 + ToYs + T3Yo)

(—®oyz — Tayo + T1Y3 — T3Y1)8

(=190 — zoy1 + Tays — T2y1)J

(zoyo — T1y1 — T2y2 — z3ya)k.

zoy

++ 40

Hence the corresponding identity is

(25 + 2 + 23 + 23) (48 + vi + 43 + v3)
= (21Y2 — T2y1 + Toys + z3yo)? + (—Toyz — Tayo + T1ys — Tay1)®
+(—z1¥0 — Toy1 + T3y2 — T2w1)” + (ToYo — T1Y1 — TaYs — T3ys)’.
We do not give examples of the identity (!) for n = 8 (other than the

standard identity in section 6.6), for they are cumbersome and, if needed,
can be obtained without essential difficulties.
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Frobenius’ Theorem

19.1 Formulation of Frobenius’ Theorem

One of the classical problems of the theory of algebras is that of finding
all division algebras. In spite of the fundamental nature of the problem
(and the fact that many problems in other areas of mathematics—such
as topology—hinge on its solution), it is still not completely solved. An
important result was obtained rather recently. It is to the effect that the
dimension of such an algebra must be equal to one of the numbers 1, 2, 4,
8. While this shows that the dimensions of division algebras are small, we
still have no complete overview of these algebras.

A considerably simpler problem is that of finding the division algebras
satisfying additional natural conditions. Thus in 1878 the German mathe-
matician Frobenius established the following remarkable result.

Frobenius’ theorem. Every associative division algebra is isomorphic
to one of the following: the algebra of real numbers, the algebra of complex
numbers, and the algebra of quaternions.

Subsequently, the following, more general result, which may be called
the,generalized Frobenius theorem, was established. Its statement follows.

The generalized Frobenius theorem. Fvery alternative division
algebra is isomorphic to one of the following four algebras: the real numbers,
the complex numbers, the quaternions, and the Cayley numbers.

We recall that an algebra is alternative if the following identities hold
for any two of its elements a and b:

(ab)b = a(bb),
(bb)a = b(ba).
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It is clear that every associative algebra is alternative, so that Frobenius’
theorem follows from the generalized Frobenius theorem. On the other
hand, the algebra of Cayley numbers is alternative but not associative, so
that the two theorems are actually different.

To prove these two theorems we first list certain properties of associa-
tive division algebras. Then we use these properties to prove Frobenius’
theorem. This done, we give the proofs of these properties. In the last
paragraph of this chapter we give a proof of the generalized Frobenius the-
orem based on Hurwitz’s theorem.

19.2 Three Properties of Associative
Division Algebras

Let A denote an associative division algebra. We claim that the algebra A
has the following properties.
Assertion 19.1 The algebra A has an identity.

Assertion 19.2 If an element a € A is not proportional to 1 then the set
of elements C, of the form
a1+ fa

forms a subalgebra isomorphic to the algebra of complez numbers.

Assertion 19.3 If two elements a; € A,az € A do not belopg to the same
subalgebra C, then the set Qg 4, of elements of the form

a1+ fa; + vas + ba,a,
forms a subalgebra isomorphic to the algebra of quaternions.

In the process of proving assertion 19.3 we shall show that if b, and b,
are two elements whose squares are —1, then

b.b, + byb, = A1, (19.1)

where X is a real number.

19.3 Proof of Frobenius’ Theorem

Using properties of assertions 19.1, 19.2, and 19.3 it is an easy matter to
prove Frobenius’ theorem. Thus let A be an associative division algebra.
By assertion 19.1, the algebra .A has an identity. The elements of the form
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k1 form a subalgebra R isomorphic to the algebra of real numbers. If R is
not all of A then, by assertion 19.2, A contains a subalgebra C, isomorphic
to the complex numbers. If C; is not all of A then, by assertion 19.3, A
contains a subalgebra Q, ; isomorphic to the quaternion algebra. If Q,
coincides with A, then we are done. Assume that this is not the case. Then
A contains an element ¢ not in Q, ;, and we shall show that .4 cannot be
a division algebra.

In the quaternion algebra Q,; we choose a basis 1,4, 7,k with the
“standard” multiplication table

i? = j? = k? = —1,
ij=—j3i=k, jk=—-kj =1, ki=—ik =7,
and write ¢ as p1 + ge, where € = —1 (e is the “imaginary unit” of the
complex algebra C,).
Next we rewrite the element e using the associativity of .4 and relation
(19.1). We have

ie = (jk)e = j(ke) = j(—ek+)'1) = —(je)k+Nj
= —(—ej+X"1)k+Nj = et — Nk + )Ny,

and hence
ie—eit=XNj—NEk.

On the other hand, again by (19.1),
te+ei = X"1.

Adding the last two equalities we see that ie is an element of Q, ;. So is
tc =i(p1 + qe). If ¢ € Qq, then the product ic’ is also an element of
Qg 5. Thus the product of ¢ by any element in A is an element of Q, ;. But
this is impossible, for A is a division algebra (the equation iz = ¢, ¢ not in
Q, 3, is not solvable). This contradiction proves Frobenius’ theorem.

It remains to prove assertions 19.1, 19.2, and 19.3.

19.4 Proof of the Three Assertions

Proof of assertion 19.1. Let a be a nonzero element of the algebra A.
We consider the equation
za = a.

Since A is a division algebra, our equation has a unique solution e, so that
ea = a. Multiplying this equation on the left by b we obtain b(ea) = ba,
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or, in view of the associativity of A, (be)a = ba. Since the equation za =
ba is uniquely solvable, it follows that

be = b.

If we multiply this relation on the right by ¢ and argue in an analogous
manner, then we find that
ec = c.

Since b and ¢ are arbitrary elements, the last two equalities show that
the element e is an identity of .A. As usual, we denote this element by 1.

Proof of assertion 19.2. For our purposes, it is enough to prove that
the element a satisfies a quadratic equation

al+sa+t1=o0 (19.2
with negative discriminant.®
Let n be the dimension of the algebra. Consider the n +1 powers of a.

a® =1,a',a°,a3,...,a".

In view of Theorem 9.2, this system of n 4+ 1 vectors is linearly dependent.
so that some power must by a linear combination of its predecessors:

am = km_lam'l +...+ kzaz + kla + kgl.
In other words, a is a root of the m-th degree equation

1

" —kpo12™ = —kyx? — ki@ — ko1 = 0.

Consider the general m-th degree polynomial
P(z)=z™ — kmo12™ Y — . = koz? — kyz — ko. -
Such a polynomial can be written as a product
P(2) = Pi(z)Pa(z) ... Py(z), (19.3)

of linear and irreducible (that is, not further decomposable) quadratic poly-
nomials.

To follow the rest of the argument we must have a clear understanding
of equality (19.3). Thus each of the polynomials Pi(z),..., P;(z) is a sum
of two or three terms:

c+torz?+sz+t.

The equality (19.3) states that if we multiply the polynomials P;(z),
..., Py(z) using the rule of multiplication of sums, use the formula
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2k . gl = ghH
and, finally, reduce like terms, then we obtain P(z).
Note that the rules of working with powers of a are the same as the
rules of working with the powers of the unknown z, that is,

a _al :ak+l

(bear in mind the associativity of the algebra A). It follows that equal-
ity (19.3) holds if we replace z with a, that is,

P(a) = Pi(a)Pz(a) ... Py(a).
Since P(a) = o, it follows that
Pi(a)Ps(a)...Py(a) =o. (19.4)

Now we make use of the fact that A is a division algebra. This implies
that if the product of elements is zero, then at least one of them is zero (if
uv = o and u # o then, in view of the uniqueness of the solution of the
equation uz = o, we must have v = 0). Applied to (19.4), this means that
for some 1

Pi(a) = o,

that is, the element a satisfies a linear or quadratic equation. If a satisfied
a linear equation
a+t+ii=o

then, contrary to the assumption, it would be proportional to 1. It follows
that a satisfies an irreducible quadratic equation (19.2). Since the polyno-
mial P;(x) is irreducible, its discriminant is negative. This proves assertion
19.2.

Proof of assertion 19.3. In the subalgebra C,, we choose an element

b, such that b = —1 (b, is the “imaginary unit” in the complex algebra
Ca,). Similarly, in the subalgebra C,, we choose an element b, such that
b2 = —1. Since b,, b, differ, respectively, from a,, @, by multiples of 1,

it follows that the set of elements of the form a1 + Ba, + yas + ba,a,
coincides with the set of elements of the form a’y + 8'b, + v'b, + §'b, b,
that is, Qg, 4, coincides with Qp, 3,.

Further, it is not difficult to see that if

e, =b, e;=kb, + kab,,
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and ky # 0, then the set Q,, ., coincides with @, ;,, and thus with Q, ...
We shall show that it zs possible to choose the numbers ky and ko so that

e?=—1, e = —1, (e,e;) =—1 (19.5)

(the first of these equalities holds for arbitrary ki1, k»).
Note that, on the one hand,

(b, +b.)* = b2 + b2 + (b, + byb,) = =21 + (b,b, + biby),

and, on the other hand, the square of b, 4+ b, must be a linear combination
of1and b, + b, :

(bx + b2)2 =p1+ Q(bl + bz)-
Therefore,
b,b, + b,b, = (p+ 2)r + q(b, + b,). (19.6)

Similarly,

(by + 2b3)? = b? + 4b% 4 2(b, b, + b,b,) = =5 -1+ 2(b,b, + b,b,),
and

(by +2b2)? = p'1 + ¢(b, + 2b,);
so that 1 1
b.b, + b,b, = §(p' +5)1 + §q’(b1 + 2b,).

Suppose that ¢ # 0. By equating the two expressions we could deduce that
b, differs from b, by a multiple of 1, that is, by € Cp,. But this is ruled out
by assumption. Hence ¢ = 0 and equality (19.6) implies that

b.b, + byb, = 1. (19.1)

In other words, if by and by are two elements whose squares are —1, then
equality (19.1) holds.

By now it is easy to determine the required elements e, and e,. To this
end we consider the element ¢ = Ab, + 2b,, where A has the same value as
in (19.1). Its square is

e =-2'1—4-142X(b,b, + b,b,) = (A2 —4) 1, (19.7)

which means that A2 — 4 < 0.1° Put

1

€y = ﬂc.
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Then (19.7) implies e3 = —1, that is, the second equality in (19.5). To
prove the third equality in (19.5) note that

e,e, +e,e, =o. (19.8)
Indeed,

e, e, +eze > (bl (Ab1 +2bz) + (Ab1 +2b2)b1)

1
v4—2A
= ﬁ(—2)\ -1+ 2(b1b2 -+ b:bl)) = 0.

Using (19.8), we obtain

(er62)” = (e.e5)(e€3) = (e165)(—e5e,) = —(es€])e, = €] = —1.
(19.9)
This establishes the third equality in (19.5).
Now we show that the set of elements Q., ., of the form

a1+ fe, + ve, + be e,

(which, as mentioned earlier, coincides with Q,, 4,) is a subalgebra of the
algebra A.
For this it suffices to show that the product of any two of the four
elements
1, e, €;, €€ (19.10)

is itself a linear combination of these elements. The only products for which
this must still be verified are the products

61(6162)9 (3132)31, ez(elez)’ (6162)62-

We have
e (ee;) = ele, = —e,,
(ele,)el = —-(6261)61 = —eze? =e,,
e(e.e;) = —es(ee,) = —ele, =e, (19.11)
(elez)e, = ele; = —e,.

This ¢ompletes the proof of the assertion that Q., ., is a subalgebra.

It remains to show that this subalgebra is isomorphic to the quaternion
algebra. For this we show, firstly, that the four elements in (19.10) are a
basis of the subalgebra in question and, secondly, that the multiplication
table for this basis is the same as the multiplication table for the basis
1,1, J, k of the quaternion algebra.
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By now we know that every element of Q. ., is a linear combination
of the elements in (19.10). To prove that these elements form a basis it
remains to show that they are linearly independent, or (see section 8.3)
that none of them is a linear combination of its predecessors. That e, is
not a linear combination of 1 and e, follows from the fact that e, and e,
do not belong to a single subalgebra C,. Thus it remains to show that e, e,
is not a linear combination of 1, e, and e,, that is, that we cannot have

e.e, = pe, + qe, + ri. (19.12)

Suppose that such an equality holds. Then p and q must be different
from zero (if, say, p = 0 then, multiplying (19.12) by e, on the left, we
would obtain the inadmissible result that e, is a linear combination of 1
and e, ). Multiplying (19.12) on the left by e, we obtain

—e; =pe,e, —q1L+re;,

or

-~ r g
e e, = —;e, — —e, + —1.

The difference of the two expressions for e, e, yields the equality
1 T q
pt+—)es+{gt+-)e,+(r—-)Jr=o.
( p) 2+ ( p) 1+ ( p)

Here the coeflicient of e, must be zero (for otherwise es would be a linear
combination of 1 and e;), but this is impossible regardless of the choice of
the real number p.

We have shown that the elements

i,€,, €3, €5,

where e; = e, e;, form a basis of the subalgebra Q. .,.

At this point, proving the isomorphism of the subalgebra Q., ., and
the quaternion algebra Q requires just one thing, namely, showing that the
multiplication table for the algebra Q., ., with the basis

1,€,,€5,€;3

is the same as the multiplication table for the quaternion algebra Q with
basis
1,%,7, k.

But this follows directly from the relations (19.5), (19.8), and (19.11).
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19.5 Proof of the Generalized Frobenius
Theorem Based on Hurwitz’s
Theorem

> We begin with a remark bearing on the definition of an alternative
algebra. We define such an algebra as one in which the following identities

hold:
(ab)b = a(bb) and b(ba) = (bb)a.

But there is also a second definition of an alternative algebra, according to
which an algebra A is alternative if the value of any finite product of any
two of its elements a and b does not depend on the location of parentheses
in that product. This means that, for example,

(ab)b
(ab)(ba)

a(bb),
(a(bb))a,

and so on.

It is clear that the second definition of the alternative property implies
the first. That the first definition implies the second is the content of Artin’s
theorem, which we shall not prove here.

In our proof of the generalized Frobenius theorem we shall use the second
definition of the alternative property. This means that, strictly speaking,
we shall prove the following theorem: If a division algebra A has the prop-
erty that any finite product of any two of ils elements does not depend on
the distribution of parentheses in that product, then the algebra A is iso-
morphic to one of the following four algebras: the real numbers, the complex
numbers, the quaternions, and the Cayley numbers.

It is important to note that the properties 19.1, 19.2, 19.3 of an asso-
ciative division algebra hold for an alternative division algebra.

There is no need to make the slightest modification in the proofs of
assertions 19.2 and 19.3. In fact, careful scrutiny of these proofs shows that
we used the associativity of the algebra just twice, namely, in connection
with the formula a” - a™ = a™*t™, and in connection with the relation
(ere3)(eze,) = (e,€2)e,, applied in the chain of equalities (19.9). Clearly,
both of these relations hold in an alternative algebra.

The proof of assertion 19.1, however, must be slightly modified in the
alternative case. Thus, let e be the solution of the equation za = a.
Multiplying the equality e@ = a by e on the left we obtain e(ea) = ea,
or, by the alternative property, (ee)a = ea. Hence ee = e. Again using
the alternative property we have (be)e = b(ee) and e(ec) = (ee)c, that is,
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(be)e = be and e(ec) = ec. It follows that be = b and ec = c, so that e
is the identity of our algebra.

To prove the generalized Frobenius theorem we could now follow the
pattern of the proof of Frobenius’ theorem, that is, show that if the subal-
gebra Q, 3 is not all of A, then the latter contains a subalgebra isomorphic
to the algebra of Cayley numbers. Then it would be necessary to prove
that the latter subalgebra coincides with .A. While possible, such a proof is
rather long. Therefore we shall use a different approach, namely, we shall
prove that A is a normed algebra. By Hurwitz’s theorem, this will imply
the required result.

We define in the algebra A the following conjugation operation. If an
element a is proportional to 1, then we put @ = a. If a is not proportional
to 1 then, by assertion 19.2, it is contained in the subalgebra C,. C, contains
a conjugate a of a, and we shall call it the conjugate of @ in the algebra A.

It follows from the definition of @ that @ = a, and that

ka = ka (19.13)

for any real number k.

Before we can deduce further properties of our conjugation we must
clarify a certain issue. Suppose that an element a is not proportional to
1. Take any quaternion subalgebra Q,, ., containing a. This subalgebra
contains a conjugate element @ of @. The natural question is whether a = a.
We shall show that this is so.

As conjugates in a complex algebra, @ and a have the properties

a+a = (real number) -1, (19.14)

and
aa = (real number) -1. (19.15)

As conjugates in a quaternion algebra, @ and a have the analogous
properties
a+ a = (real number) -1, (19.14")

and
aa = (real number) -1. (19.15")

Forming the differences of the equalities (19.14) and (19.14’) and (19.15;
and (19.15'), we obtain the equalities '

a— a = (real number) -1,

and
a(a — a) = (real number) - 1.
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If we had a # @, then the latter relations would imply that a is a multiple
of 1—an outcome that contradicts our assumption.

Thus the conjugation of an element a is the same regardless of whether
we think of it as an element of a complex subalgebra C, (that is, as a complex
number) or an element of a quaternion subalgebra Q,, o, (that is, as a
quaternion).

Incidentally, the same is true of the absolute value of @; since (absolute
value of a)® = aa in the case of complex numbers as well as quaternions,
the absolute value of a is the same regardless of whether we think of it as an
element of a complex subalgebra or an element of a quaternion subalgebra.

From what has just been proved about the properties of conjugation it
is easy to deduce the following equalities for any two elements a and b in
the algebra A :

a+b=a+b, (19.16)

ab = ba. (19.17)

In fact, if @ and b are in the same complex subalgebra (that is, if C, and
Cp coincide), then the above equalities express properties of conjugation in
that subalgebra. If b is not in C,, than these equalities still hold for, in this
case, they express properties of conjugation in Q, 3.
Formula (19.17) and b = b imply that the conjugate of ab is ba. It
follows that
ab + ba = real number - 1.

We define in the algebra 4 a scalar product (e, b) by means of the formula
ab + ba = 2(a,b) - 1.
The properties of a scalar product are

(1) (a,a) > 0if a # o, and (0,0) = 0;
(2) (a,b) = (b,a);
3) (a,kb) = k(a, b);

(4) (a7 b, + bn) = (a7 bx) + (aa bn);

and it is easy to verify that the operation we’ve just defined satisfies all of
them. In fact, it is obvious that our operation has property (2). Formu-
las (19.13) and (19.16) imply that it has properties (3) and (4). To see that
it has property (1) it suffices to note that

(a,a) - 1 = aa = (absolute value of a)? - 1, (19.18)
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and to recall that the absolute value of a complex number is strictly positive
if @ # o and zero if a = 0.
We note that equality (19.18) implies that

V/(a,a) = absolute value of a,

that is, that the norm of an element a in the algebra A coincides with the
absolute value of @ viewed as a complex number (or a quaternion).

Since any two elements a, b in the algebra A belong to a single complex
or quaternion subalgebra, it follows that

( absolute value of ab)? = ( absolute value of a)? - ( absolute value of b)?

(for the algebra of complex numbers and the quaternion algebra are both
normed), or that
(ab, ab) = (a, a)(b, b).

But this equality states that A is a normed algebra. According to Hurwitz’s
theorem, the algebra A must be isomorphic to one of the four “standard”
algebras of real numbers, complex numbers, quaternions, and Cayley num-
bers. This completes the proof of the generalized Frobenius theorem. <«



Chapter 20

Commutative Division
Algebras

20.1 Formulation of the Main Result

In the previous chapter we found all associative division algebras. Below
we describe all commutative division algebras.

First we state without proof the following fact: The dimension of a
commutative division does not exceed two.!!

It follows that in order to solve our problem we must7find all 2-dimen-
sional division algebras.

To formulate the answer to this problem we introduce the symbol
A(e, B, 7) to denote a 2-dimensional commutative algebra with basis k, , k.
and multiplication table determined by

kiok, = aki+ Bk,
kyok, = —aky, Bk, (20.1)
kiok, = pky + vk,

where the numbers «, 3,7 satisfy the following conditions:

1) ay - B* = £1;
(2) B0
(3) a>0.If ¢ =0, then y > 0.

The following theorem holds.
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Theorem 20.1 Every 2-dimensional commautative division algebra A s
isomorphic to an algebra A(a,B,%). All algebras A(w, B,v) are divisiox
algebras and no two of them are isomorphic.

The rest of this section is devoted to a proof of this theorem.

20.2 The Connection Between
Multiplication in the Algebra A and
Multiplication of Complex Numbers

Let A be a commutative division algebra. Denote its multiplication by
xOy. Let a # o be any element of A, and consider the mapping A giver
by ® +— aOx. Obviously, this mapping is linear. Since A is a divisior
algebra, the mapping A has an inverse A~1.

We introduce in our algebra a new multiplication given by

z-y=A"Y(z)0A (). (20.2

The algebra with the multiplication @ - y is again a division algebra (th=
unique solvability of the equations aOz = b and x0a = b implies th=
unique solvability of the equations a+z = b and @ - a = b). Its identity
is the element aOa (for proof see section 18.2, where we consider a similar
construction). But the only 2-dimensional division algebra with an identity
is the algebra of complex numbers (see chapter 2). It follows that we may
regard the elements & and y as complex numbers and the operation = - y
as ordinary multiplication of complex numbers.
Now we denote A~!(z) by u and A~1(y) by v, and write (20.2) as

ulv = A(u) - A(v).

This expresses the multiplication in the initial algebra .4 in terms of the
multiplication of complex numbers.
As our next step, we consider the multiplication

uov=A(u-v) (20.3:

and show that the algebras with the respective multiplications uDwv and
u 0 v are isomorphic. '
To this end we write the multiplication table of the multiplication <
relative to some basis e, , e; and show that it is the same as the multiplica-
tion table of the multiplication O relative to the basis €] = A™!(e,), €] =

A_l(ez) .
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In fact, let
e; 0 e; = we; + Pey.
Then
e:.l:]e;. = A(e:) A(e;) =e e = A_l(e,' o e]-)

= A Y ae + Bes) = aA™ey) + BAT (e2) = ae] + Peb.

This proves the coincidence of the two multiplication tables.

We have shown that the initial algebra 4 is isomorphic to the alge-
bra with the multiplication (20.3), where u - v is ordinary multiplication
of complex numbers and A is a certain invertible linear transformation.
On the other hand, it is clear that such an algebra is a commutative divi-
sion algebra. Thus the problem of finding all 2-dimensional commutative
division algebras reduces to the problem of finding the nonisomorphic al-
gebras (20.3).

20.3 Determination of the Algebra
A(a, 3,7) that is Isomorphic to the
Algebra A

We must find in the algebra (20.3) a basis k,, k, relative to which the
multiplication table has the form (20.1) (with suitable conditions on ¢, 3, 7).
First we write down the multiplication table of the algebra (20.3) relative
to the basis

e, =1, €, =1.

Since
e,oe, = Ale -e)=A),

e;oe, = Ale, e;)=A(—1)=—-A(1),
e,0e, = Ale :e,)= A1),

it follows that if we put A(x) = a + b1, A(2) = ¢+ di, then

e, 0e, = aep+bes,
e, 0e;, = —ae; — beg, (20.4)
e, 0e, = ce+des.

Now we pose the following question: Is there a basis other than e,, e,
(that is, 1,2 ) relative to which the multiplication table is analogous to
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(20.4):
ki,ok, = ok + Bk,
k, (o] k, = —ak1 - ,Bkz, (205)
kyok, = 6k + vk,

In other words, are there bases in which
k,ok, = —k;,o0k,. (20.6)

Since equality (20.6) is equivalent to A(k, - k,) = —A(k, o k;), or
A(k, - k,) = A(—k, - k,), the existence of the inverse transformation A~!
implies that k, ok, = —k, - k,, or

k; = k.

Hence all bases in which the multiplication table has the form (20.5) are
given by

k,=#f, k, ==if, (20.7)
where f is an arbitrary nonzero complex number.

Of course, there are infinitely many bases (20.7). We shall show that in
one of them

B=5
that is, in one of these bases the multiplication table has the form (20.1).

To show this we again take as the initial basis the basis e, = 1,e, = 4,
and write the required basis in the form

ki = p(cosp +isingp),
ka = Zip(cosp +isinep).
To find p and ¢ we must:

1. compute the product k, o k, starting with the formulas (20.4) and
express 1t as a linear combination of k; and ko;

2. compute in a similar manner the product k, o k, and express it as a
linear combination of k; and k»;

3. equate the coefficient of kg in the first of these linear combinations
with the coefficient of k; in the second.

We leave this computational task to the reader. The result is that p is
unrestricted and ¢ is determined from the condition

b—c
a+d’

tan p =
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Figure 20.1.
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It is clear that this condition determines ¢ to within a summand n«. This
means that it determines in the plane two rays (Figure 20.1) that determine
a single line /1. On that line is a vector representing the complex number
ki (or, as we shall say, the vector k1). The second vector k, = Fik, is on
its line 5. The lengths of these vectors are the same.

Thus the totality of bases k., k, in which the multiplication table has
the form (20.1) can be describe as follows. We choose a basis vector k, on a
uniquely determined line /; and a basis vector ks on a line I5 perpendicular
to I;. Both vectors must have the same length p. We note that for a given
length there are just four of the required bases (Figure 20.2).

Upon transition from a basis k,, k, to a basis Ak, Aky, where X is a
positive real number, the coeflicients in the multiplication table (20.1) are
multiplied by A. Hence the additional condition

ay — % =+1

determines a unique value of A. In this way, the infinite set of admissible
bases is restricted to just four (Figure 20.2).
To recapitulate: There are just four bases

k, = Lk, k, = L1k,

for which the multiplication table is of the form

k,ok, = ak;+ pk,,
k, (o] k, = —ak1 - ,3’62, (201)
k,ok, = pki+ ks,
with
ay — B2 = +1.

The last step is to show that among these four bases there is one for
which # > 0 and « > 0, and such that if « =0, then v > 0.

In fact, if in the basis k,,k, we have 8 < 0, then transition to the
basis k,, —k, yields a new table with 8 > 0. Similarly, if & < 0 then, by
multiplying the first basis vector by -1, we obtain a table with & > 0 (and
the sign of # unchanged). Finally, if @ = 0, then the same transformation
enables us to change the sign of 4.

In sum, for every 2-dimensional commutative division algebra there ex-
ists a basis for which the multiplication table has the form (20.1) and

(1) ay — % = +1,

2) B >0,
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(3) a >0 and, if @ =0, then v > 0.

This basis is, in general, unique. In certain special cases (when B = 0 or
a = v = 0) there are two such bases but the table (20.1) is the same for
both.

We see that with each algebra A there is associated a unique table (20.1)
with the indicated restrictions on a,,7. In other words, the algebra A is
isomorphic to just one algebra A(a, fB,7).

That every algebra A(«, £,7) is a division algebra follows from the fact,
say, that its multiplication is of the form -

uov=A(u-v),
where the action of the transformation A is given by the formulas

A(ky) = aky + Pk,
A(kz) = ,Bkl + 7k2v

with ay — 82 #£ 0. In fact, the condition a/8 # B/v (equivalent to the
condition ay — 8% # 0 when By # 0) implies that A(k,) # AA(k2), so that
the vectors A(k;) and A{k:) form a basis. From this it readily follows that
the transformation A is invertible. In turn, this shows that the algebra with
the multiplication # o v is a division algebra. This completes the proof of
our theorem.






Chapter 21

Conclusion

Most of the discussion in this book bears on the initial stage of the devel-
opment of the theory of algebras. Now we want to touch on some newer
results in this theory.

The development of the theory of algebras began with Hamilton’s paper
on quaternions published in 1843. Subsequently, Hamilton gave a detailed
account of the results in that paper, as well as of a number of additional
results, in his Lectures on quaternions. Hamilton’s ideas were extremely
influential. They prepared the ground for a series of papers on associative
algebras that culminated in the proving of a number of deep theorems on
the structure of such algebras.

In order to describe these theorems we must first state precisely an issue
we have, so far, left out of account. It bears on the coefficients ay, as, .. ., a,
in the expression

alil +(12i2+...+(1nin (211)

for the elements of an n-dimensional algebra. So far, we’ve always assumed
that these coefficients were real numbers; in technical terms, then, we've
been discussing algebras over the field of real numbers. But there are occa-
sions when one discusses algebras whose elements are given by expressions
of the form (21.1) in which the coefficients ay, as, . .., a, are arbitrary com-
plex numbers. Such algebras are called algebras over the field of complez
numbers. In addition to the fields of real and complex numbers there are
many other fields'? (for example, the field of rational numbers), and thus
a corresponding multitude of other types of algebras.

Many results in the theory of algebras vary drastically with the field of
the coefficients ay,...,a, in the expressions (21.1), that is, the field over
which the algebra is being considered. For example, we know that over the



160 Conclusion

field of real numbers there are (in addition to the reals themselves) three
associative division algebras (and infinitely many nonassociative division
algebras), at a time when there is just one complez division algebra, namely,
the 1-dimensional algebra of complex numbers. Apart from it, there is no
additional (associative or nonassociative) division algebra over the field of
complex numbers. This is easy to prove but we won’t do it here.

We shall require certain definitions.

1. By an ideal of an algebra 4 we mean a subspace i such that
AU CU andUACU.

This means that for any elements a € A and u € U the two products
au and ua are in U. In other words, the product of an element in
the ideal by an element of the algebra (in either order) is again an
element of the ideal.

Incidentally, the two extreme cases—when the subspace U/ coincides
with all of A or consists of just the one element o are not regarded
as ideals (they are sometimes referred to as trivial ideals).

One example of an ideal is the subspace of elements 5§2 in the algebra
of dual numbers (that is, numbers of the form a + 6Q with a2 = o).
Another example is the subspace of elements of the form a(1 + E) in
the algebra of double numbers (that is, numbers of the form a + bE
with E? = 1).

2. An algebra without nontrivial ideals is called simple.

We might say that the concept of a simple algebra is a generaliza-
tion of the concept of a division algebra. Every division algebra is
necessarily simple. In fact, if an algebra has an ideal i, then the
equation

ux = b,

where u is in I/ and b is not, is not solvable. Hence such an algebra
cannot be a division algebra.

At the end of the 19th century research in the theory of algebras
centered, for the most part, on associative algebras (as noted earlier,
the term “algebra” was taken to mean “associative algebra”). This
produced a fairly clear understanding of the structure of associative
algebras. The first substantial result dealt with simple algebras and
was obtained in 1893 by Molien. Frobenius and Cartan discovered
the same result independently of Molien. It turned out that, up to
isomorphism, all complex simple algebras are full matrix algebras of
order n (that is, algebras consisting of all square matrices of order n).
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In 1907 the American mathematician Wedderburn proved a more gen-
eral result for algebras over an arbitrary field P. Wedderburn’s result
was to the effect that all simple associative algebras over a field P are
precisely the full matriz algebras with elements from an associative
division algebra over P.

For example, according to this theorem the simple associative algebras
over the field R of real numbers form three series:

(a) the algebras of matrices whose elements are real numbers;

(b) the algebras of matrices whose elements are complex nurbers
(these algebras are to be regarded as algebras over the field R,
so that the algebra of complex numbers, say, has dimension 2
and, similarly, the algebra of all complex matrices of order n has
dimension 2n?);

(c) the algebras of matrices whose elements are quaternions (the

dimension of the algebra of quaternion matrices of order n is
4n?).

If we bear in mind that the only complex division algebra is the alge-
bra of complex numbers, then Wedderburn’s theorem readily implies
the previously mentioned theorem on complex simple algebras.

After the determination of all simple associative algebras it was found
(by the same authors) that the structure of arbitrary associative al-
gebras is determined to a large extent by the structure of simple asso-
ciative algebras. A precise formulation of the latter assertion requires
the introduction of additional concepts.

. Let Y; and U, be two algebras. Their direct sum is the new algebra

A whose elements are all pairs
('u'u u'z) ('U'1 clUi,us € uZ)

and whose rules of addition and multiplication are given by

(w2, us) + (), ;)

(ul + ullauz + u;),
(s, us) - (u),u;)

(w,u!, usul).

It is easy to see that the elements of the form (u, , 0) form a subalgebra
of the algebra A isomorphic to U/;; we denote it by A;. Similarly, the
elements of the form (o, u,) form a subalgebra A, isomorphic to Us.
Both of these subalgebras are ideals. For example, the equalities

(us,0)(ul,u) = (u,u),0), (u,u])(u,,0)=(u,u,,o0)
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show that A; is an ideal.

We note that the subalgebras A; and A, are complementary. This
means of any number of algebras is defined similarly. The
elements of the direct sum of algebras Uy, Us, ..., Uy are all k-tuples

(s gy ..., up)(u, EUL, ..., ux €EUp).

An example of a direct sum is the algebra of matrices of order p - ¢
with “block-diagonal” structure

(A
o)

Here A and B are arbitrary matrices of order p and g, respectively.
It is easy to verify that the multiplication of these matrices satisfies

the rule
Alo Ao N _ (A4 o
0B 0 |B)~\ 0 |BB )’
which shows that this algebra is isomorphic to the direct sum of the

algebra of all matrices of order p and the algebra of all matrices of
order gq.

It is a curious fact the algebra 4 of dual numbers considered in the
early part of this book (see chapter 2) is isomorphic to the direct sum
of two algebras of real numbers. In fact, take the following basis of
the algebra A

i,=(1-E)/2, i,=(1+ E)/2.

Clearly,

2 =14,, i2=1,, i,i;=o0.
Each element a € A can be uniquely represented as a sum
a1ty + asia,
and the multiplication of two elements satisfies the rule
(@121 + a2i2)(b121 + batiz) = a1biéy + asbyzs.

If we associate with an element a the pair of numbers (a1, a,), then
we see that our algebra is the direct sum of two copies of the algebra
R of real numbers.
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4. A semisimple algebra is the direct sum of simple algebras. Since a

direct sum is uniquely determined by its summands, it follows that if
we know all simple associative algebras, then we know all semisimple
associative algebras.

For example, every semisimple associative algebra over the field of
complex numbers is isomorphic to the algebra of all “block-diagonal”

matrices with blocks of order p1, pa, ..., pr on the diagonal (the num-
bers p1,pa,...,pr are fixed). In particular, for £ = 3 we obtain ma-
trices of the form :

Al0]O

0{B|0

010]|C

. An algebra is called nilpotent if there is a number k such that the

product of any k of its elements, with arbitrary distribution of paren-
theses, is zero. (Our definition of a nilpotent algebra is general in the
sense that we don’t assume associativity of multiplication. Hence the
need for the remark about the arbitrary distribution of parentheses.)

A subalgebra of an algebra is nilpotent if it is nilpotent when viewed
as an algebra in its own right.

The simplest example of a nilpotent algebra is the null algebra (the
product of any two elements is zero). Another example is furnished
by the algebra with basis 4, ,%,,%; and multiplication table

118, = i,
the other ¢,ig are o.

We note that the properties of nilpotent algebras are, in a sense,
opposite to the properties of semisimple algebras. For example if A
is a nilpotent algebra, a certain “power” AF of A, that is, the set of
finite sums of products of elements of 4 taken k at a time, consists
of zero alone. On the other hand, any power of a semisimple algebra
coincides with that algebra.

It is easy to show that if V; and V; are two nilpotent ideals of
any algebra A, then their sum (that is, all elements of the form
v, +v;, v; € Vi, va € Vy) is again a nilpotent ideal. It follows
readily that among the nilpotent ideals of an algebra A there must
be a mazimal one, that is a nilpotent ideal containing all other nilpo-
tent ideals.

We can now formulate the fundamental theorem of the theory of asso-

ciative algebras.
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The Wedderburn theorem. In any associative algebra A there is a
semisimple subalgebra U complementary to its mazimal nilpotent ideal V.

In other words, every element a € A can be uniquely represented as
a sum u + v, where u belongs to a semisimple subalgebra U/ and v to
the maximal nilpotent ideal V. It follows that we can associate with every
element a the pair (u,v), u €U, v € V. The product of any two elements
of the algebra A satisfies the rule

(u19”1)(u2’ 'Uz) = (u1u2, ’l’), (21.2)

where v = u, v, + v,u, + v,v, € V {one must bear in mind that V is an
ideal).

In the special case when U is also an ideal, each of the products u, v,
and v,u, is o (for these products are simultaneously in { and V ), and the
multiplication rule takes the form

(“17”1)(“27 va) = (ulua, vlvz)-

In this case the algebra A is the direct sum of the algebras &/ and V. In
the general case, the structure of the algebra A4 is not entirely determined
by the structure of the algebras U and V taken separately, for the element
v in (21.2) depends not only on v,, v, but also on u,,u,. Nevertheless,
the fact that every associative algebra A can be represented by a set of
pairs (u, v), where u ranges over a certain semisimple algebra and v over a
nilpotent algebra, sheds a great deal of light on the structure of associative
algebras.

To illustrate Wedderburn’s theorem we consider the algebra of matrices
of order p + ¢ in which the elements in the last ¢ rows are zero. All such
matrices can be written in the form

()

where u is a square matrix of order p and v is a rectangular matrix with
p rows and ¢ columns. It is easy to show that the maximal nilpotent ideal
V consists of the matrices (21.3) with v = 0 (and is a null algebra). As a
complementary semisimple algebra I/ we can take the set of matrices (21.3)
with » = 0 (in this case the subalgebra U is simple).

To emphasize the comprehensive nature of Wedderburn’s theorem we
shall give examples of 2-dimensional (necessarily nonassociative) algebras
to which the theorem doesn’t apply.

In the first example, the multiplication table has the form

ee =e, +e, ee, =0, €6€; =e,;, €€ =o.
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It is easy to see that the elements of the form ke, constitute a 1-dimensional
nilpotent ideal A/, This ideal is maximal, for the only subspace that contains
it is the algebra itself and that algebra is not nilpotent (no power of e, is
zero). It is easy to check that A contains no other subalgebras and therefore
no subalgebra complementary to A.

The second example is that of the algebra with the multiplication table

ee =€, €6, —€;, €,€; — €,, €3;€&, = 0.

This algebra contains no nilpotent ideals. If this algebra “satisfied” Wed-
derburn’s theorem, it would be simple or semisimple. The first possibility
does not arise, for the algebra contains the ideal of elements of the form
kes. The second possibility does not arise because this ideal is the only
ideal in our algebra.

The results obtained in the theory of associative algebras have served as
a model for further investigations. Many subsequent papers were devoted
to showing that Wedderburn’s theorem holds for other classes of algebras
(we just saw that the theorem cannot be true for all algebras) and to listing
the simple algebras of these classes.

Zorn showed that Wedderburn’s theorem applies to the class of alterna-
tive algebras that is larger than the class of associative algebras. Here we
mention the interesting and unexpected fact that the class of alternative
algebras is not much larger than that of associative algebras. In fact, in
the case of the field of complex numbers, the larger class is obtained from
the smaller one by the addition of the single algebra of “complex” Cayley
numbers, and in the case of the field of real numbers—by the addition of a
few algebras of the same type as the Cayley numbers.

We shall say a few words about two more classes of algebras for which
Wedderburn’s theorem is true. Start with any associative algebra .4 and
use it to construct two more algebras A* and A~ consisting of the same
elements as A but with the following rules of multiplication:

in At aOb = ab + ba,

in A~ aob=ab-— ba.
The algebra At is commutative and, as is easily verified,

(b’0a)0b = b*0(aOb). (21.3)
The algebra A4~ is anticommutative (that is, a 0 b= —b o a) and

ao(boc)+bo(coa)+co(aob)=o. V (21.4)
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A commutative algebra in which (21.3) holds is called a Jorden algebra
(named for the German mathematician P. Jordan). An anticommutative
algebra in which (21.4) holds is called a Lie algebre, in honor of the Nor-
wegian mathematician Sophus Lie who, at the end of the 19th century, was
the first to investigate these algebras in connection with the theory of “con-
tinuous groups of transformations.” Lie algebras play a very important role
in modern mathematics and find applications in virtually every one of its
areas.

The classification of Jordan algebras was carried out by the American
mathematician Albert,who also proved the validity of Weddeburn’s theorem
for these algebras.

The fundamental theorems on the structure of Lie algebras were ob-
tained by E. Cartan, one of the greatest mathematicians of the 20th cen-
tury. In particular, Cartan classified the simple Lie groups. The extension
of Wedderburn’s theorem to Lie algebras is due to Levi. Here it turned
out that the concept of a nilpotent ideal had to be replaced with that of a
solvable ideal. A more detailed study of these matters is beyond the scope
of the present book.
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Notes

1. If ¢; and ¢ are two nonzero vectors, then we say that ¢; is carried to ¢
by a rotation about (the directed line, or axis, determined by) [g1, ¢2]
through ¢, where @ is the directed angle from ¢, to g3,0° < ¢ < 180%;
cf. section 4.3. (Translator)

2. We assume the usual geometric interpretation of the sum of vectors
and the multiplication of a vector by a number. We recall that vectors
are added in accordance with the “parallelogram law,” and multipli-
cation of a vector by a number amounts to stretching it by a factor
|k| and, if & < 0, reversing the orientation of the stretched vector.

3. The word “nonzero” in the statement of the theorem is essential, for
the zero vector is orthogonal to every vector y. This follows from the
equalities

(0,9) = 0y, y) = 0(y, y) = 0.

4. Here and in the rest of the book we make use of the general properties
of inner products established in chapter 12.

5. The square of an element that is not orthogonal to 1, that is, an
element of the forma =k1 +a’ withk #0and a’ L 1 is

(kr + a')(k1 + a') = k%1 + a'? + 2ka’ = k%1 + p1 + 2ka’.
If this element were proportional to 1, then it would follow that

a’ = o, and so @ = k1. But the square of the latter element is not
equal to Ax with A < 0.
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10.

11.

12.

Notes

The equality b = k1 + b implies that (b, ') = k?(1,1) + (b, b).
Also, (1,1) = 1. This follows readily from the fundamental equal-
ity (17.1) fora = b = 1.

Incidentally, the existence of the transformations A~! and B~! im-
plies that each of the equations

zoe=aandeoy=a

has a unique solution. The fact that |e| = 1 is immaterial: what
counts is that e # o. We conclude that every normed algebra is a
division algebra.

In order actually to find the forms ®, we must write

= (Z xaea)(z yﬁkﬁ) = Zxayﬂeakp
a ]

a

and replace each product eqkp with a suitable linear combination of
the basis vectors 2,,%,,...,%5.

In fact, (19.2) implies that a? = —sa — t1. Hence the set of elements
of the form a1 + Ba is closed under multiplication. As such, it is
a 2-dimensional hypercomplex system. In view of section 2.2 | if
(s2/4) —t < 0 (the case of a negative discriminant), then the system
is isomorphic to the complex numbers.

If we had p = A2 — 4 > 0, then ¢ = p1 would imply that (¢ — \/p -
1)(c+\/_ 1) = o, that is, that ¢ = \/p-1,and ¢ = —/p - 1. But
this is impossible, for b, and b, do not belong to the same complex
subalgebra.

The following ingenious proof, due to G. Spiz, relies on topological
considerations. It is intended for readers familiar with elementary
topological concepts.

Let A be a n-dimensional commutative division algebra. If ® and
y are two elements such that #* = y*® then, by commutativity, the
product ( — y) (# + y) = o. The absence of divisors of zero implies
that @ = y or « = —y. Hence the mapping & — ? induces a con-
tinuous monomorphism of the sphere S™~! into the projective space
RP™ 1 As is well known, such a mapping is possible only for n = 2.

A field is defined as follows. Let P be a set of elements with two
operations called addition and multiplication denoted, respectively,
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by a+b and a-b. The set P is called a field if both operations defined
in it are commutative and associative, multiplication is distributive
over addition, and it is possible to subtract (that is, the equation
a + z = b is uniquely solvable) and divide. The latter means that if
a # 0, then the equation ax = b is uniquely solvable; here 0 is the
element of P such that ¢ + 0 = a for all a € P (the existence of such
an element is easily demonstrated).

In our definition, the word “operation” refers to any rule that as-
sociates with every pair of elements a € P,b € P a definite third
element ¢ € P.
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