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Preface for Students

You are probably about to begin your second exposure to linear algebra. Unlike
your first brush with the subject, which probably emphasized Euclidean spaces
and matrices, this encounter will focus on abstract vector spaces and linear maps.
These terms will be defined later, so don’t worry if you do not know what they
mean. This book starts from the beginning of the subject, assuming no knowledge
of linear algebra. The key point is that you are about to immerse yourself in
serious mathematics, with an emphasis on attaining a deep understanding of the
definitions, theorems, and proofs.

You cannot read mathematics the way you read a novel. If you zip through a
page in less than an hour, you are probably going too fast. When you encounter
the phrase ““as you should verify”, you should indeed do the verification, which
will usually require some writing on your part. When steps are left out, you need
to supply the missing pieces. You should ponder and internalize each definition.
For each theorem, you should seek examples to show why each hypothesis is
necessary. Discussions with other students should help.

As a visual aid, definitions are in yellow boxes and theorems are in blue boxes
(in color versions of the book). Each theorem has an informal descriptive name.

Please check the website below for additional information about the book,
including a link to videos that are freely available to accompany the book.

Your suggestions, comments, and corrections are most welcome.

Best wishes for success and enjoyment in learning linear algebra!

Sheldon Axler
San Francisco State University

website: https://linear.axler.net
e-mail: linear@axler.net
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Preface for Instructors

You are about to teach a course that will probably give students their second
exposure to linear algebra. During their first brush with the subject, your students
probably worked with Euclidean spaces and matrices. In contrast, this course will
emphasize abstract vector spaces and linear maps.

The title of this book deserves an explanation. Most linear algebra textbooks
use determinants to prove that every linear operator on a finite-dimensional com-
plex vector space has an eigenvalue. Determinants are difficult, nonintuitive,
and often defined without motivation. To prove the theorem about existence of
eigenvalues on complex vector spaces, most books must define determinants,
prove that a linear operator is not invertible if and only if its determinant equals 0,
and then define the characteristic polynomial. This tortuous (torturous?) path
gives students little feeling for why eigenvalues exist.

In contrast, the simple determinant-free proofs presented here (for example,
see 5.19) offer more insight. Once determinants have been moved to the end of
the book, a new route opens to the main goal of linear algebra—understanding
the structure of linear operators.

This book starts at the beginning of the subject, with no prerequisites other
than the usual demand for suitable mathematical maturity. A few examples
and exercises involve calculus concepts such as continuity, differentiation, and
integration. You can easily skip those examples and exercises if your students
have not had calculus. If your students have had calculus, then those examples and
exercises can enrich their experience by showing connections between different
parts of mathematics.

Even if your students have already seen some of the material in the first few
chapters, they may be unaccustomed to working exercises of the type presented
here, most of which require an understanding of proofs.

Here is a chapter-by-chapter summary of the highlights of the book:

e Chapter 1: Vector spaces are defined in this chapter, and their basic properties
are developed.

e Chapter 2: Linear independence, span, basis, and dimension are defined in this
chapter, which presents the basic theory of finite-dimensional vector spaces.

e Chapter 3: This chapter introduces linear maps. The key result here is the
fundamental theorem of linear maps: if T is a linear map on V, then dim V =
dimnull T + dimrange T. Quotient spaces and duality are topics in this chapter
at a higher level of abstraction than most of the book; these topics can be
skipped (except that duality is needed for tensor products in Section 9D).

X111
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Xiv Preface for Instructors

e Chapter 4: The part of the theory of polynomials that will be needed to un-
derstand linear operators is presented in this chapter. This chapter contains no
linear algebra. It can be covered quickly, especially if your students are already
familiar with these results.

e Chapter 5: The idea of studying a linear operator by restricting it to small sub-
spaces leads to eigenvectors in the early part of this chapter. The highlight of this
chapter is a simple proof that on complex vector spaces, eigenvalues always ex-
ist. This result is then used to show that each linear operator on a complex vector
space has an upper-triangular matrix with respect to some basis. The minimal
polynomial plays an important role here and later in the book. For example, this
chapter gives a characterization of the diagonalizable operators in terms of the
minimal polynomial. Section SE can be skipped if you want to save some time.

e Chapter 6: Inner product spaces are defined in this chapter, and their basic
properties are developed along with tools such as orthonormal bases and the
Gram—Schmidt procedure. This chapter also shows how orthogonal projections
can be used to solve certain minimization problems. The pseudoinverse is then
introduced as a useful tool when the inverse does not exist. The material on
the pseudoinverse can be skipped if you want to save some time.

e Chapter 7: The spectral theorem, which characterizes the linear operators for
which there exists an orthonormal basis consisting of eigenvectors, is one of
the highlights of this book. The work in earlier chapters pays off here with espe-
cially simple proofs. This chapter also deals with positive operators, isometries,
unitary operators, matrix factorizations, and especially the singular value de-
composition, which leads to the polar decomposition and norms of linear maps.

e Chapter 8: This chapter shows that for each operator on a complex vector space,
there is a basis of the vector space consisting of generalized eigenvectors of the
operator. Then the generalized eigenspace decomposition describes a linear
operator on a complex vector space. The multiplicity of an eigenvalue is defined
as the dimension of the corresponding generalized eigenspace. These tools are
used to prove that every invertible linear operator on a complex vector space
has a square root. Then the chapter gives a proof that every linear operator on
a complex vector space can be put into Jordan form. The chapter concludes
with an investigation of the trace of operators.

e Chapter 9: This chapter begins by looking at bilinear forms and showing that the
vector space of bilinear forms is the direct sum of the subspaces of symmetric
bilinear forms and alternating bilinear forms. Then quadratic forms are diag-
onalized. Moving to multilinear forms, the chapter shows that the subspace of
alternating n-linear forms on an n-dimensional vector space has dimension one.
This result leads to a clean basis-free definition of the determinant of an opera-
tor. For complex vector spaces, the determinant turns out to equal the product of
the eigenvalues, with each eigenvalue included in the product as many times as
its multiplicity. The chapter concludes with an introduction to tensor products.
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Preface for Instructors XV

This book usually develops linear algebra simultaneously for real and complex
vector spaces by letting F denote either the real or the complex numbers. If you and
your students prefer to think of F as an arbitrary field, then see the comments at the
end of Section 1A. I prefer avoiding arbitrary fields at this level because they intro-
duce extra abstraction without leading to any new linear algebra. Also, students are
more comfortable thinking of polynomials as functions instead of the more formal
objects needed for polynomials with coefficients in finite fields. Finally, even if the
beginning part of the theory were developed with arbitrary fields, inner product
spaces would push consideration back to just real and complex vector spaces.

You probably cannot cover everything in this book in one semester. Going
through all the material in the first seven or eight chapters during a one-semester
course may require a rapid pace. If you must reach Chapter 9, then consider
skipping the material on quotient spaces in Section 3E, skipping Section 3F
on duality (unless you intend to cover tensor products in Section 9D), covering
Chapter 4 on polynomials in a half hour, skipping Section SE on commuting
operators, and skipping the subsection in Section 6C on the pseudoinverse.

A goal more important than teaching any particular theorem is to develop in
students the ability to understand and manipulate the objects of linear algebra.
Mathematics can be learned only by doing. Fortunately, linear algebra has many
good homework exercises. When teaching this course, during each class I usually
assign as homework several of the exercises, due the next class. Going over the
homework might take up significant time in a typical class.

Some of the exercises are intended to lead curious students into important
topics beyond what might usually be included in a basic second course in linear
algebra.

The author’s top ten

Listed below are the author’s ten favorite results in the book, in order of their
appearance in the book. Students who leave your course with a good understanding
of these crucial results will have an excellent foundation in linear algebra.

e any two bases of a vector space have the same length (2.34)

e fundamental theorem of linear maps (3.21)

e existence of eigenvalues if F = C (5.19)

e upper-triangular form always exists if F = C (5.47)

e Cauchy—Schwarz inequality (6.14)

e Gram—Schmidt procedure (6.32)

e spectral theorem (7.29 and 7.31)

e singular value decomposition (7.70)

e generalized eigenspace decomposition theorem when F = C (8.22)

e dimension of alternating n-linear forms on Vis 1 if dim V = n (9.37)
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xvi Preface for Instructors

Major improvements and additions for the fourth edition

Over 250 new exercises and over 70 new examples.

Increasing use of the minimal polynomial to provide cleaner proofs of multiple
results, including necessary and sufficient conditions for an operator to have an
upper-triangular matrix with respect to some basis (see Section 5C), necessary
and sufficient conditions for diagonalizability (see Section 5D), and the real
spectral theorem (see Section 7B).

New section on commuting operators (see Section SE).
New subsection on pseudoinverse (see Section 6C).
New subsections on QR factorization/Cholesky factorization (see Section 7D).

Singular value decomposition now done for linear maps from an inner product
space to another (possibly different) inner product space, rather than only deal-
ing with linear operators from an inner product space to itself (see Section 7E).

Polar decomposition now proved from singular value decomposition, rather than
in the opposite order; this has led to cleaner proofs of both the singular value
decomposition (see Section 7E) and the polar decomposition (see Section 7F).

New subsection on norms of linear maps on finite-dimensional inner prod-
uct spaces, using the singular value decomposition to avoid even mentioning
supremum in the definition of the norm of a linear map (see Section 7F).

New subsection on approximation by linear maps with lower-dimensional range
(see Section 7F).

New elementary proof of the important result that if T is an operator on a finite-
dimensional complex vector space V, then there exists a basis of V consisting
of generalized eigenvectors of T (see 8.9).

New Chapter 9 on multilinear algebra, including bilinear forms, quadratic
forms, multilinear forms, and tensor products. Determinants now are defined
using a basis-free approach via alternating multilinear forms.

New formatting to improve the student-friendly appearance of the book. For
example, the definition and result boxes now have rounded corners instead of
right-angle corners, for a gentler look. The main font size has been reduced
from 11 point to 10.5 point.

Please check the website below for additional links and information about the

book. Your suggestions, comments, and corrections are most welcome.

Sheldon Axler
San Francisco State University

Best wishes for teaching a successful linear algebra class!

Contact the author, or Springer if the
author is not available, for permission

website: https:/linear.axler.net Jor translations or other commercial

e-mail: linear@axler.net reuse of the contents of this book.
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Chapter 1
Vector Spaces

Linear algebra is the study of linear maps on finite-dimensional vector spaces.
Eventually we will learn what all these terms mean. In this chapter we will define
vector spaces and discuss their elementary properties.

In linear algebra, better theorems and more insight emerge if complex numbers
are investigated along with real numbers. Thus we will begin by introducing the
complex numbers and their basic properties.

We will generalize the examples of a plane and of ordinary space to R"” and
C", which we then will generalize to the notion of a vector space. As we will see,
a vector space is a set with operations of addition and scalar multiplication that
satisfy natural algebraic properties.

Then our next topic will be subspaces, which play a role for vector spaces
analogous to the role played by subsets for sets. Finally, we will look at sums
of subspaces (analogous to unions of subsets) and direct sums of subspaces
(analogous to unions of disjoint sets).

a N
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René Descartes explaining his work to Queen Christina of Sweden.
Vector spaces are a generalization of the description of a plane
using two coordinates, as published by Descartes in 1637.
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2 Chapter 1 Vector Spaces
IA R"and C"

Complex Numbers

You should already be familiar with basic properties of the set R of real numbers.
Complex numbers were invented so that we can take square roots of negative
numbers. The idea is to assume we have a square root of —1, denoted by i, that
obeys the usual rules of arithmetic. Here are the formal definitions.

(1.1 A

definition: complex numbers, C

e A complex number is an ordered pair (a,b), where a,b € R, but we will
write this as a + bi.

e The set of all complex numbers is denoted by C:
C={a+bi:abeR}.
e Addition and multiplication on C are defined by

(a+bi)+ (c+di)=(a+c)+ (b+d)i,
(a + bi)(c +di) = (ac — bd) + (ad + be) 1,

here a,b,c,d € R.

. J
If a € R, we identify a + 0i with the real number a. Thus we think of R as a

subset of C. We usually write 0 + bi as just bi, and we usually write 0 + 17 as just i.

To motivate the definition of complex 4, symbol i was first used to denote

multiplication given above, pretend that /¢ by Leonhard Euler in 1777,
we knew that i> = —1 and then use the

usual rules of arithmetic to derive the formula above for the product of two
complex numbers. Then use that formula to verify that we indeed have

i?=-1.

Do not memorize the formula for the product of two complex numbers—you
can always rederive it by recalling that i> = —1 and then using the usual rules of
arithmetic (as given by 1.3). The next example illustrates this procedure.

1.2 example: complex arithmetic

The product (2 + 3i) (4 + 5i) can be evaluated by applying the distributive and
commutative properties from 1.3:
(2+3i)(4 +5i) =2 (4 +5i) + (3i)(4 + 5i)
=2-4+2-5i+3i-4+ (3i)(5)
=8+10i+12i — 15
= -7+ 22i.
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Section 1A R"™ and C* 3

Our first result states that complex addition and complex multiplication have
the familiar properties that we expect.

/1.3 properties of complex arithmetic N

commutativity
a+B=pF+aandapf = Paforalla,p e C.

associativity
(@+pB)+A=a+ (B+A)and (af)A = a(BA) foralla, B, A € C.

identities
A+0=Aand A1 = Aforall A € C.

additive inverse
For every & € C, there exists a unique § € C such thatw + = 0.

multiplicative inverse
For every « € C with a # 0, there exists a unique g € C such that ¢ = 1.

distributive property
S Ao+ B) = Aa + ABforall A, e, B € C.

J

The properties above are proved using the familiar properties of real numbers
and the definitions of complex addition and multiplication. The next example
shows how commutativity of complex multiplication is proved. Proofs of the
other properties above are left as exercises.

1.4 example: commutativity of complex multiplication

To show that a8 = Ba for all &, 8 € C, suppose
a«=a+bi and B =c+di,

where a,b,c,d € R. Then the definition of multiplication of complex numbers
shows that

ap = (a+ bi)(c +di)
= (ac — bd) + (ad + bc)i
and
B = (c +di)(a + bi)
= (ca — db) + (cb + da)i.

The equations above and the commutativity of multiplication and addition of real
numbers show that a8 = Ba.

Linear Algebra Done Right, fourth edition, by Sheldon Axler



4 Chapter 1 Vector Spaces

Next, we define the additive and multiplicative inverses of complex numbers,
and then use those inverses to define subtraction and division operations with
complex numbers.

~

/1.5 definition: —a, subtraction, 1/a, division

Suppose a, € C.

e Let —u denote the additive inverse of «. Thus —a is the unique complex
number such that
a+ (—a) =0.

e Subtraction on C is defined by
B—a=p+(—n).

e Fora #0,let1/a and % denote the multiplicative inverse of . Thus 1/« is
the unique complex number such that

a(l/a) = 1.

e For o # 0, division by « is defined by

Bla=pB/a). )

So that we can conveniently make definitions and prove theorems that apply
to both real and complex numbers, we adopt the following notation.

ﬂ .6 notation: F \

tl"hroughout this book, F stands for either R or C. J

-

Thus if we prove a theorem involving
F, we will know that it holds when F is
replaced with R and when F is replaced
with C.

Elements of F are called scalars. The word ““scalar” (which is just a fancy
word for “number”) is often used when we want to emphasize that an object is a
number, as opposed to a vector (vectors will be defined soon).

For « € F and m a positive integer, we define a” to denote the product of «
with itself m times:

The letter F is used because R and C
are examples of what are called fields.

" = q--a.
—
m times
This definition implies that
(am>” — ™ and (OLIB)m — lxmﬁm
for all o, B € F and all positive integers m, n.
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Section 1A R"™ and C* 5

Lists

Before defining R" and C”, we look at two important examples.

1.7 example: R? and R3

e The set R2 which you can think of as a plane, is the set of all ordered pairs of
real numbers:
R? = {(x,y) : x,y € R}.

e The set R3 which you can think of as ordinary space, is the set of all ordered
triples of real numbers:

R3 = {(x,y,2) : x,y,z € R}.

To generalize R? and R® to higher dimensions, we first need to discuss the
concept of lists.

~

/1.8 definition: list, length

e Suppose 7 is a nonnegative integer. A list of length n is an ordered collec-
tion of n elements (which might be numbers, other lists, or more abstract
objects).

e Two lists are equal if and only if they have the same length and the same
\_ elements in the same order. Y,

Lists are often written as elements
separated by commas and surrounded by
parentheses. Thus a list of length two is
an ordered pair that might be written as (a,b). A list of length three is an ordered
triple that might be written as (x,y, z). A list of length n might look like this:

Many mathematicians call a list of
length n an n-tuple.

(215005 2y) -

Sometimes we will use the word list without specifying its length. Remember,
however, that by definition each list has a finite length that is a nonnegative integer.
Thus an object that looks like (xq, x5, ... ), which might be said to have infinite
length, is not a list.

A list of length 0 looks like this: (). We consider such an object to be a list
so that some of our theorems will not have trivial exceptions.

Lists differ from finite sets in two ways: in lists, order matters and repetitions
have meaning; in sets, order and repetitions are irrelevant.

1.9 example: [ists versus sets |
e The lists (3,5) and (5, 3) are not equal, but the sets {3, 5} and {5, 3} are equal.

e The lists (4,4) and (4,4, 4) are not equal (they do not have the same length),
although the sets {4,4} and {4, 4,4} both equal the set {4}.

Linear Algebra Done Right, fourth edition, by Sheldon Axler



6 Chapter 1 Vector Spaces
Fn

To define the higher-dimensional analogues of R? and R3, we will simply replace
R with F (which equals R or C) and replace the 2 or 3 with an arbitrary positive
integer.

/1.1 0 notation: n h
Fix a positive integer n for the rest of this chapter. )
~

1.11 definition: F”, coordinate

F" is the set of all lists of length # of elements of F:
F" = {(x1,...,x,) :x, € Ffork =1,...,n}.

For (x,...,x,) € F'and k € {1, ...,n}, we say that x, is the k™ coordinate of

(X15ee0s X, )

-
If F = R and n equals 2 or 3, then the definition above of F" agrees with our
previous notions of R? and R®.

1.12 example: C* |

C* is the set of all lists of four complex numbers:

C4 = {(21,22,23,24) : 21,22,23,24 (S C}

If n > 4, we cannot visualize R" as Read Flatland: A Romance of Many
a physical object. Similarly, C! can be Dimensions, by Edwin A. Abbott, for
thought of as a plane, but forn > 2,the 4, amusing account of how R® would

human brain cannot provide a full image  pe perceived by creatures living in R?
of C". However, even if n is large, we  This novel, published in 1884, may
can perform algebraic manipulations in  help you imagine a physical space of
F" as easily as in R? or R® For example,  four or more dimensions.

addition in F” is defined as follows.

(1.13 definition: addition in F"

Addition in F" is defined by adding corresponding coordinates:

(X150 X)) + W1, oo Yy) = (X7 Y, Xy, 1)

Often the mathematics of F”* becomes cleaner if we use a single letter to denote
a list of n numbers, without explicitly writing the coordinates. For example, the
next result is stated with x and y in F” even though the proof requires the more
cumbersome notation of (xq,...,x,) and (yq, ..., ¥,,).
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(1.14 commutativity of addition in F"

L

Qfx,yeF",thenx+y=y+x.

Proof Suppose x = (xq,...,x,) € F*andy = (y4,...,y,,) € F" Then
X+Y = (X1,00X,) + Ypsenn V)
= (X1 + Y1, X, +Yy)
= (Y1 + X150 Yy + X))
= (Y15 e Yi) + (X1, 0000 Xy)
=y+x,

where the second and fourth equalities above hold because of the definition of
addition in F” and the third equality holds because of the usual commutativity of
addition in F.

If a single letter is used to denote an 7y, symbol
element of F” then the same letter with
appropriate subscripts is often used when
coordinates must be displayed. For example, if x € F” then letting x equal
(x1,...,X,,) is good notation, as shown in the proof above. Even better, work with
just x and avoid explicit coordinates when possible.

means “end of proof .

(1 .15 notation: 0

Let 0 denote the list of length n whose coordinates are all O:

Here we are using the symbol 0 in two different ways—on the left side of the
equation above, the symbol 0 denotes a list of length 1, which is an element of F”,
whereas on the right side, each 0 denotes a number. This potentially confusing
practice actually causes no problems because the context should always make
clear which 0 is intended.

1.16 example: context determines which 0 is intended

Consider the statement that 0 is an additive identity for F":
x+0=x forallx € F.

Here the 0 above is the list defined in 1.15, not the number 0, because we have
not defined the sum of an element of F” (namely, x) and the number 0.
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8 Chapter 1 Vector Spaces

A picture can aid our intuition. We will
draw pictures in R? because we can sketch (a,b)
this space on two-dimensional surfaces
such as paper and computer screens. A
typical element of R? is a point v = (a,b).
Sometimes we think of v not as a point !
but as an arrow starting at the origin and ~ Elements of R? can be thought of
ending at (a, b), as shown here. When we as points or as vectors.
think of an element of R? as an arrow, we
refer to it as a vector.

When we think of vectors in R? as arrows, we

can move an arrow parallel to itself (not changing /
its length or direction) and still think of it as the /

same vector. With that viewpoint, you will often

gain better understanding by dispensing with the

coordinate axes and the explicit coordinates and A vector.

just thinking of the vector, as shown in the figure here. The two arrows shown
here have the same length and same direction, so we think of them as the same
vector.

. . 2
Whenever we use pictures in R” or Mathematical models of the economy
use the somewhat vague language of can have thousands of variables, say
points and vectors, remember that these . x_  \which means that we must

are just aids to our understanding, not sub-  york in R5°%. Such a space cannot be
stitutes for the actual mathematics that  dealr with geometrically. However, the
we will develop. Although we cannot  algebraic approach works well. Thus
draw good pictures in high-dimensional  our subject is called linear algebra.
spaces, the elements of these spaces are

as rigorously defined as elements of R

For example, (2, -3,17, mt, \/§> is an element of R and we may casually
refer to it as a point in R® or a vector in R® without worrying about whether the
geometry of R has any physical meaning.

Recall that we defined the sum of two elements of F” to be the element of F"
obtained by adding corresponding coordinates; see 1.13. As we will now see,
addition has a simple geometric interpretation in the special case of R

Suppose we have two vectors u and v in R? X
that we want to add. Move the vector v parallel
to itself so that its initial point coincides with the
end point of the vector u, as shown here. The

u+o
sum u + v then equals the vector whose initial
point equals the initial point of # and whose end
point equals the end point of the vector v, as The sum of two vectors.

shown here.
In the next definition, the 0 on the right side of the displayed equation is the
list0 € F"
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/

1.17 definition: additive inverse in F", —x

~

For x € F", the additive inverse of x, denoted by —x, is the vector —x € F”
such that
x+ (—x) =0.

\Thus if x = (xq,...,x,), then —x = (—xq, ..., —x,,).

The additive inverse of a vector in R? is the ; ”
vector with the same length but pointing in the /
opposite direction. The figure here illustrates /

this way of thinking about the additive inverse

in R2 As you can see, the vector labeled —x has

the same length as the vector labeled x but points A vector and its additive inverse.
in the opposite direction.

Having dealt with addition in F”, we now turn to multiplication. We could
define a multiplication in F” in a similar fashion, starting with two elements of
F" and getting another element of F* by multiplying corresponding coordinates.
Experience shows that this definition is not useful for our purposes. Another
type of multiplication, called scalar multiplication, will be central to our subject.
Specifically, we need to define what it means to multiply an element of F” by an
element of F.

/

1.18 definition: scalar multiplication in F"

~

The product of a number A and a vector in F” is computed by multiplying
each coordinate of the vector by A:

A(Xqy eenn X)) = (AXq, eeny AX);

\here A € Fand (xq,...,x,) € F"

/

S.Ca.lar multlpl.lcat'lon Izlas a MICe 8CO0°  seqlar multiplication in F"* multiplies
metric interpretation in R If A > 0 and together a scalar and a vector, getting

2 . .

x € R* then Ax is the vector that points 4 yecror. In contrast, the dot product in
in the same direction as x and whose  R2 or R3 multiplies together two vec-
length is A times the length of x. In other tors and gets a scalar. Generalizations
words, to get Ax, we shrink or stretch x  of the dot product will become impor-
by a factor of A, depending on whether  tant in Chapter 6.
A<lorA>1.

If A < 0and x € R? then Ax is the
vector that points in the direction opposite

. . 4 —3X
to that of x and whose length is |A| times .
the length of x, as shown here. 1A
7/
Scalar multiplication.
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10 Chapter 1 Vector Spaces

Digression on Fields

A field is a set containing at least two distinct elements called 0 and 1, along with
operations of addition and multiplication satisfying all properties listed in 1.3.
Thus R and C are fields, as is the set of rational numbers along with the usual
operations of addition and multiplication. Another example of a field is the set
{0, 1} with the usual operations of addition and multiplication except that 1 + 1 is
defined to equal O.

In this book we will not deal with fields other than R and C. However, many
of the definitions, theorems, and proofs in linear algebra that work for the fields
R and C also work without change for arbitrary fields. If you prefer to do so,
throughout much of this book (except for Chapters 6 and 7, which deal with inner
product spaces) you can think of F as denoting an arbitrary field instead of R
or C. For results (except in the inner product chapters) that have as a hypothesis
that F is C, you can probably replace that hypothesis with the hypothesis that F
is an algebraically closed field, which means that every nonconstant polynomial
with coefficients in F has a zero. A few results, such as Exercise 13 in Section
1C, require the hypothesis on F that 1 + 1 # 0.

Exercises 1A

1 Showthata + S =p+aforalla,peC.

2 Showthat (a+B)+A=a+ (f+A)forala,f, A eC.
3 Show that (af) A = a(BA) forall a, B, A € C.
4 Show that A(ax + B) = Aw + ABforall A,a, 8 € C.
5 Show that for every a € C, there exists a unique p € C such thata + g = 0.
6 Show that for every « € C with & # 0, there exists a unique € C such
that o = 1.
7 Show that
-1+V3i
2

is a cube root of 1 (meaning that its cube equals 1).
8 Find two distinct square roots of i.
9 Find x € R* such that
4,-3,1,7) + 2x = (5,9, -6,8).
10 Explain why there does not exist A € C such that

A2 —3i,5+4i,—6+7i) = (12 — 5i,7 + 22i,-32 — 9i).
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Section 1A R"™ and C"

Show that (x +y) +z =x + (y + z) forall x,y,z € F".

Show that (ab)x = a(bx) for all x € F" and all a,b € F.
Show that 1x = x for all x € F".

Show that A(x +y) = Ax + Ay forall A € Fand all x,y € F"

Show that (a4 + b)x = ax + bx for alla,b € F and all x € F

11

“Can you do addition?” the White Queen asked. “What’s one and one and one
and one and one and one and one and one and one and one?”
“I don’t know,” said Alice. “I lost count.”

—Through the Looking Glass, Lewis Carroll
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12 Chapter 1 Vector Spaces

1B Definition of Vector Space

The motivation for the definition of a vector space comes from properties of
addition and scalar multiplication in F*: Addition is commutative, associative,
and has an identity. Every element has an additive inverse. Scalar multiplication
is associative. Scalar multiplication by 1 acts as expected. Addition and scalar
multiplication are connected by distributive properties.

We will define a vector space to be a set V with an addition and a scalar
multiplication on V that satisfy the properties in the paragraph above.

/1.19 definition: addition, scalar multiplication w

e An addition on a set V is a function that assigns an elementu + v € V
to each pair of elements u,v € V.

o A scalar multiplication on a set V is a function that assigns an element
N Av e Vtoeach A € Fandeachov € V.

Now we are ready to give the formal definition of a vector space.

(1 N

.20 definition: vector space

A vector space is a set V along with an addition on V and a scalar multiplication
on V such that the following properties hold.

commutativity
u+v=v+uforallu,v e V.

associativity
(u+9)+w=u+ (v+w)and (ab)v = a(bv) for all u,v,w € V and for
alla,b € F.

additive identity
There exists an element 0 € Vsuchthatv + 0 =vforallv € V.

additive inverse
For every v € V, there exists w € V such that v + w = 0.

multiplicative identity
lv=vforallv e V.

distributive properties
L a(u+v) =au+avand (a+b)v =av+bvforalla,b € Fandall u,v € V.

\C

The following geometric language sometimes aids our intuition.

F.21 definition: vector, point

@lements of a vector space are called vectors or points. J
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Section 1B Definition of Vector Space 13

The scalar multiplication in a vector space depends on F. Thus when we need
to be precise, we will say that V is a vector space over F instead of saying simply
that V' is a vector space. For example, R” is a vector space over R, and C" is a
vector space over C.

(1.22 definition: real vector space, complex vector space W

e A vector space over R is called a real vector space.

e A vector space over C is called a complex vector space.

Usually the choice of F is either clear from the context or irrelevant. Thus we
often assume that F is lurking in the background without specifically mentioning it.
With the usual operations of addition
and scalar multiplication, F” is a vector
space over F, as you should verify. The
example of F" motivated our definition of vector space.

The simplest vector space is {0}, which
contains only one point.

1.23 example: F~

F* is defined to be the set of all sequences of elements of F:
F® = {(x1,%,,...) tx, €Ffork =1,2,...}.
Addition and scalar multiplication on F* are defined as expected:

(x1,x2,...) + (yl,yz,...) = (x1 +y1,.X2 +y2,... ),
)L(xl,xZ, ...) = (/\xl,)LxZ, ...).

With these definitions, F* becomes a vector space over F, as you should verify.
The additive identity in this vector space is the sequence of all 0’s.

Our next example of a vector space involves a set of functions.

~
1.24 notation: F°

e If S is a set, then F° denotes the set of functions from S to F.

e For f,g € FS the sum f+ ¢ € FS is the function defined by

(f+8)(x) = f(x) +g(x)
for all x € S.
e For A € Fand f € F®, the product Af € F® is the function defined by

(Af)(x) = Af(x)
for all x € S. )

-
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14 Chapter 1 Vector Spaces

As an example of the notation above, if S is the interval [0, 1] and F = R, then
RI[%1 ig the set of real-valued functions on the interval [0, 1].
You should verify all three bullet points in the next example.

1.25 example: F° is a vector space

e If S is a nonempty set, then F® (with the operations of addition and scalar
multiplication as defined above) is a vector space over F.

e The additive identity of F° is the function 0 : S — F defined by
0(x) =0

forall x € S.
e For f € F°, the additive inverse of fis the function —f: S — F defined by

(=HHx) =—f(x)

forall x € S.

The vector space F" is a special case
of the vector space F° because each
(x1,...,x,) € F" can be thought of as lists. In general, a vector space is an
a function x from the set {1,2,...,n} to F abstract entity whose elements might
by writing x(k) instead of x; for the k" 5, lists, functions, or weird objects.
coordinate of (x4, ..., x,). In other words,
we can think of F* as F:2~", Similarly, we can think of F* as F{1:2:},

Soon we will see further examples of vector spaces, but first we need to develop
some of the elementary properties of vector spaces.

The definition of a vector space requires it to have an additive identity. The
next result states that this identity is unique.

The elements of the vector space RI%1]
are real-valued functions on [0, 1], not

(1 .26 unique additive identity w

kA vector space has a unique additive identity. J

Proof Suppose 0 and 0" are both additive identities for some vector space V.
Then
0=0+0=0+0" =0,

where the first equality holds because 0 is an additive identity, the second equality
comes from commutativity, and the third equality holds because 0’ is an additive
identity. Thus 0’ = 0, proving that V has only one additive identity.

Each element v in a vector space has an additive inverse, an element w in the

vector space such that v + w = 0. The next result shows that each element in a
vector space has only one additive inverse.
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(1 .27 unique additive inverse w

kEvery element in a vector space has a unique additive inverse. J

Proof Suppose V is a vector space. Let v € V. Suppose w and w" are additive
inverses of v. Then

w=w+0=w+ @+w)=wW+v)+w =0+w =w.

Thus w = w’, as desired.

Because additive inverses are unique, the following notation now makes sense.

F.ZS notation: —v, w — v

Letv,w € V. Then

e —v denotes the additive inverse of v;

e w — v is defined to be w + (—v).

Almost all results in this book involve some vector space. To avoid having to
restate frequently that V is a vector space, we now make the necessary declaration
once and for all.

6.29 notation: V' \

KFor the rest of this book, V denotes a vector space over F. j

In the next result, O denotes a scalar (the number 0 € F) on the left side of the
equation and a vector (the additive identity of V) on the right side of the equation.

6.30 the number 0 times a vector w

LOU = 0 foreveryv € V. )

Proof For v € V, we have

The result in 1.30 involves the additive
identity of V and scalar multiplication.
The only part of the definition of a vec-

Adding the additive inverse of Ov to both  for space that connects vector addition

sides of the equation above gives 0 = 0v, and scalar multiplication is the dis-
as desired. tributive property. Thus the distribu-

tive property must be used in the proof
of 1.30.

Ov=(0+0)v=0v+0v.

In the next result, 0 denotes the addi-
tive identity of V. Although their proofs
are similar, 1.30 and 1.31 are not identical. More precisely, 1.30 states that the
product of the scalar 0 and any vector equals the vector 0, whereas 1.31 states that
the product of any scalar and the vector 0 equals the vector 0.
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(1 .31 a number times the vector 0

NN

QIO = 0 for everya € F.

Proof Fora € F, we have
a0 = a0+ 0) = a0 + a0.

Adding the additive inverse of a0 to both sides of the equation above gives 0 = a0,
as desired.

Now we show that if an element of V is multiplied by the scalar —1, then the
result is the additive inverse of the element of V.

(1 .32 the number —1 times a vector w

u_l)v = —vforeveryv € V. J

Proof For v € V, we have

v+ (-Dv=10+ (-Dv=(1+(-1))v=00=0.

This equation says that (—1)v, when added to v, gives 0. Thus (—1)v is the
additive inverse of v, as desired.

Exercises 1B

1 Prove that —(—v) = v foreveryv € V.
2 Supposea € F,v € V,and av = 0. Prove thata = 0 or v = 0.

3 Suppose v,w € V. Explain why there exists a unique x € V such that
v+ 3x =w.

4 The empty set is not a vector space. The empty set fails to satisfy only one
of the requirements listed in the definition of a vector space (1.20). Which
one?

5 Show that in the definition of a vector space (1.20), the additive inverse
condition can be replaced with the condition that

Ov=0forallv € V.

Here the 0 on the left side is the number 0, and the 0 on the right side is the
additive identity of V.
The phrase a “condition can be replaced” in a definition means that the

collection of objects satisfying the definition is unchanged if the original
condition is replaced with the new condition.
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Let co and —oo denote two distinct objects, neither of which is in R. Define
an addition and scalar multiplication on R U {oo, —oc0} as you could guess
from the notation. Specifically, the sum and product of two real numbers is
as usual, and for t € R define

—co ift <0, oo ift <0,
too =40 ift =0, t(—o0) =40 ift=0,
%) ift >0, —oco ift >0,

and

t+ 00 =00+t =004 00 = o0,
E+ (—00) = (—00) + 1 = (—00) + (—0) = —o0,
00 + (—o0) = (—o0) + 00 = 0.

With these operations of addition and scalar multiplication, is R U {0, —c0}
a vector space over R? Explain.

Suppose S is a nonempty set. Let V° denote the set of functions from S to V.
Define a natural addition and scalar multiplication on V5, and show that V5
is a vector space with these definitions.

Suppose V is a real vector space.

e The complexification of V, denoted by V-, equals Vx V. An element of
Vc is an ordered pair (1, v), where u,v € V, but we write this as u + iv.

e Addition on V. is defined by
(Uq +107) + (Uy +10y) = (Uq + Uy) + (07 +0y)
for all uy,vq,u,,0, € V.
e Complex scalar multiplication on V. is defined by
(a + bi)(u + iv) = (au — bv) + i(av + bu)
foralla,b e Randall u,v € V.

Prove that with the definitions of addition and scalar multiplication as above,
Vi is a complex vector space.
Think of V as a subset of V- by identifying u € V with u+i0. The construc-

tion of Vi from V can then be thought of as generalizing the construction
of C" from R"
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18 Chapter 1 Vector Spaces

1C Subspaces
By considering subspaces, we can greatly expand our examples of vector spaces.

(1.33 definition: subspace w

A subset U of V is called a subspace of V if U is also a vector space with the
same additive identity, addition, and scalar multiplication as on V.

The next result gives the easiest way ¢, people use the terminology
to check whether a subset of a vector  ppear subspace, which means the

space is a subspace. same as subspace.

>

/1.34 conditions for a subspace

A subset U of V is a subspace of V if and only if U satisfies the following
three conditions.

additive identity
0el

closed under addition
u,w € Uimplies u + w € U.

closed under scalar multiplication

9 a € F and u € U implies au € U. )
Proof If U is a subspace of V, then U The additive identity condition above
satisfies the three conditions above by the  .,,.17 pe replaced with the condition
definition of vector space. that U is nonempty (because then tak-

Conversely, suppose U satisfies the  jng y € U and multiplying it by 0
three conditions above. The first condi-  would imply that 0 € U). However,
tion ensures that the additive identity of  if a subset U of V is indeed a sub-
Vis in U. The second condition ensures  space, then usually the quickest way
that addition makes sense on U. The third  fo show that U is nonempty is to show
condition ensures that scalar multiplica-  that 0 € U.
tion makes sense on U.

If u € U, then —u [which equals (—1)u by 1.32] is also in U by the third
condition above. Hence every element of U has an additive inverse in U.

The other parts of the definition of a vector space, such as associativity and
commutativity, are automatically satisfied for U because they hold on the larger
space V. Thus U is a vector space and hence is a subspace of V.

The three conditions in the result above usually enable us to determine quickly
whether a given subset of V is a subspace of V. You should verify all assertions
in the next example.
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| 1.35 example: subspaces

(a) If b € F, then
{(Xl,xz,X3,x4) e F4 : x3 = SX4 + b}

is a subspace of F* if and only if b = 0.

(b) The set of continuous real-valued functions on the interval [0, 1] is a subspace
of RIO-1]

(c) The set of differentiable real-valued functions on R is a subspace of RR,

(d) The set of differentiable real-valued functions f on the interval (0, 3) such
that f'(2) = b is a subspace of R(>:® if and only if b = 0.

(e) The set of all sequences of complex numbers with limit 0 is a subspace of C*.

Verifying some of the items ab(_)ve The set {0} is the smallest subspace of
shows the linear structure underlying v ;4 v itself is the largest subspace

parts of calculus. For example, (b) above o v The empty set is not a subspace
requires the result that the sum of tWo  of V because a subspace must be a

continuous functions is continuous. As vector space and hence must contain at
another example, (d) above requires the  least one element, namely, an additive
result that for a constant c, the derivative  identity.

of cfequals ¢ times the derivative of f.

The subspaces of R? are precisely {0}, all lines in R? containing the origin,
and R? The subspaces of R are precisely {0}, all lines in R® containing the origin,
all planes in R® containing the origin, and R To prove that all these objects are
indeed subspaces is straightforward—the hard part is to show that they are the
only subspaces of R? and R® That task will be easier after we introduce some
additional tools in the next chapter.

Sums of Subspaces

When dealing with vector spaces, we are 7y, union of subspaces is rarely a sub-

usually interested only in subspaces, as space (see Exercise 12), which is why

opposed to arbitrary subsets. The notion 0 ysually work with sums rather than
of the sum of subspaces will be useful. unions.

/

1.36 definition: sum of subspaces

~

Suppose Vi, ..., V,, are subspaces of V. The sum of V,,...,V,,, denoted by
Vi + - +V,, is the set of all possible sums of elements of V;, ..., V,,. More
precisely,

Vite+V, ={v;+-+v,:0€V,.,0,€V,}

. J
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Let’s look at some examples of sums of subspaces.

1.37 example: a sum of subspaces of F°

Suppose U is the set of all elements of F3 whose second and third coordinates
equal 0, and W is the set of all elements of F? whose first and third coordinates
equal 0:

U={(x0,0€FP:xeF} and W ={0,y,0) € F:y¢eF}.

Then
U+ W ={(x,y,0) € F:xyeF},

as you should verify.

| 1.38 example: a sum of subspaces of F* |
Suppose
U={xxyy) eF:x,yeF} and W= {(x,x,x,y) € F*:x,y € F}.

Using words rather than symbols, we could say that U is the set of elements
of F* whose first two coordinates equal each other and whose third and fourth
coordinates equal each other. Similarly, W is the set of elements of F* whose first
three coordinates equal each other.

To find a description of U + W, consider a typical element (a, 4, b, b) of U and
a typical element (c, c,c,d) of W, where a, b, c,d € F. We have

(a,a,b,b) + (¢c,c,c,d) = (a+c,a+c,b+c,b+4d),

which shows that every element of U + W has its first two coordinates equal to
each other. Thus

1.39 U+ WC{(x,x,y,z) € F*: x,y,z € F}.
To prove the inclusion in the other direction, suppose x,y,z € F. Then
(x3 X, y»z) = (x9 X, y’ y) + (03 0’ O,Z - y)3

where the first vector on the right is in U and the second vector on the right is
in W. Thus (x,x,y,z) € U+ W, showing that the inclusion 1.39 also holds in the
opposite direction. Hence

U+W = {(x,x,y,z) € F*: x,y,z € F},

which shows that U + W is the set of elements of F* whose first two coordinates
equal each other.

The next result states that the sum of subspaces is a subspace, and is in fact the
smallest subspace containing all the summands (which means that every subspace
containing all the summands also contains the sum).
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(1 40 sum of subspaces is the smallest containing subspace w

Suppose Vi, ..., V,, are subspaces of V. Then V| + --- + V,, is the smallest
subspace of V containing V, ..., V,,.

Proof The reader can verify that V; + --- + V,, contains the additive identity 0
and is closed under addition and scalar multiplication. Thus 1.34 implies that
Vi + -+ V, is asubspace of V.

) Th? subspaces Vi, ..., V;, ?_re all C.On' Sums of subspaces in the theory of vec-
tained in V; +---+V,,, (to see this, consider . spaces are analogous to unions of

sums vy + -+ + v, where all except one  gypsers in set theory. Given two sub-
of the v,’s are 0). Conversely, every sub-  spaces of a vector space, the smallest
space of V containing V7, ..., V,, contains  subspace containing them is their sum.
Vi, + -+ +V,, (because subspaces must  Analogously, given two subsets of a set,
contain all finite sums of their elements).  the smallest subset containing them is
Thus V; +---+V,,, is the smallest subspace  their union.

of V containing V;, ..., V..

Direct Sums

Suppose V;, ..., V,, are subspaces of V. Every element of V| + --- + V,, can be
written in the form

Uy + e+ Ty
where each v, € V. Of special interest are cases in which each vector in
V, + .- +V,, can be represented in the form above in only one way. This situation
is so important that it gets a special name (direct sum) and a special symbol ().

‘ D

1.41 definition: direct sum, @&

Suppose V7, ..., V,, are subspaces of V.

e The sum V] +--- +V, is called a direct sum if each elementof V; +--- +V,,
can be written in only one way as a sum v; + --- + v,,, where each v, € V,.

o If V; + ...+ V,  isadirect sum, then V; & --- ® V,, denotes V; + --- + V,,
with the @ notation serving as an indication that this is a direct sum. )

| 1.42 example: a direct sum of two subspaces |

Suppose U is the subspace of F? of those vectors whose last coordinate equals 0,
and W is the subspace of F of those vectors whose first two coordinates equal 0:

U={(xy,0 eP:x,ycF} and W ={(0,0,z) € FP:z¢e€F}.
Then F* = U @ W, as you should verify.
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1.43 example: a direct sum of multiple subspaces |

Suppose V; is the subspace of F”* of
those vectors whose coordinates are all
0, except possibly in the k' slot; for example, V, = {(0,x,0,...,0) € F* : x € F}.
Then

To produce & in TgX, type \oplus.

FF=V,eo-oV,

as you should verify.

Sometimes nonexamples add to our understanding as much as examples.

1.44 example: a sum that is not a direct sum

Suppose
V; = {(x,y,0) € F* : x,y € F},
V, ={(0,0,z) € F* : z € F},
V3 ={(0.y.y) EF°:y EF}.
Then F? = Vi + V, + V; because every vector (x,y,z) € F? can be written as
(x,v,2) = (x,4,0) + (0,0,2) + (0,0,0),

where the first vector on the right side is in V;, the second vector is in V,, and the
third vector is in V;.

However, F3 does not equal the direct sum of Vi, V,, Vi, because the vector
(0,0,0) can be written in more than one way as a sum v; + v, + v3, with each
v, € V. Specifically, we have

(0,0,0) = (0,1,0) + (0,0,1) + (0,-1,-1)

and, of course,
(0,0,0) = (0,0,0) + (0,0,0) + (0,0,0),

where the first vector on the right side of each equation above is in V;, the second
vector is in V,, and the third vector is in V5. Thus the sum V; + V, + V5 is not a
direct sum.

The definition of direct sum requires 7y, symbol ®, which is a plus sign
every vector in the sum to have a unique jqide 4 circle, reminds us that we are
representation as an appropriate SUM.  degling with a special type of sum of
The next result shows that when deciding subspaces—each element in the direct
whether a sum of subspaces is a direct  sum can be represented in only one way
sum, we only need to consider whether 0 as a sum of elements from the specified
can be uniquely written as an appropriate = subspaces.
sum.
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(1 .45 condition for a direct sum w

Suppose Vi, ..., V,, are subspaces of V. Then V; + --- + V,, is a direct sum if
and only if the only way to write 0 as a sum v; + --- + v,,, where each v, € V.,
is by taking each v, equal to 0.

Proof  First suppose V; + --- + V,,, is a direct sum. Then the definition of direct
sum implies that the only way to write 0 as a sum v, +---+7v,,,, where each v, € V,
is by taking each v, equal to 0.

Now suppose that the only way to write 0 as a sum v; + --- + v,,, where each
v, € V,, is by taking each v equal to 0. To show that V; + --- + V, is a direct
sum, letv € V; + --- + V,,. We can write

V=0, + -+ 0,

for some v; € V,,...,v,, € V,,. To show that this representation is unique,
suppose we also have
V=Up+ e+ Uy,

where u; € V4, ...,u,, € V,,. Subtracting these two equations, we have
0= —up)+-+ @, —u,).
Because v; —u; € V3, ...,v,, — u,, € V,,, the equation above implies that each

v, — uy equals 0. Thus v; = uq,...,v,, = u,,, as desired.

. 'The next r.esult gives a simple con- 4y, symbol — used below means
dition for testing whether a sum of two “if and only if : this symbol could also

subspaces is a direct sum. be read to mean “is equivalent to”.

(1 .46 direct sum of two subspaces

Suppose U and W are subspaces of V. Then

U+ Wisadirectsum < UNW = {0}.

Proof  First suppose that U+ W is a direct sum. If v € UNW, then 0 = v+ (—v),
where v € U and —v € W. By the unique representation of 0 as the sum of a
vector in U and a vector in W, we have v = 0. Thus U N W = {0}, completing
the proof in one direction.

To prove the other direction, now suppose U N W = {0}. To prove that U + W
is a direct sum, suppose u € U, w € W, and

0=u+w.

To complete the proof, we only need to show that u = w = 0 (by 1.45). The
equation above implies that u = —w € W. Thus u € UN W. Hence u = 0, which
by the equation above implies that w = 0, completing the proof.
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The result above deals only with
the case of two subspaces. When ask-

Chapter 1 Vector Spaces

Sums of subspaces are analogous to
unions of subsets. Similarly, direct

ing about a possible direct sum with ;¢ of subspaces are analogous to
more than two subspaces, it is not  disjoint unions of subsets. No two sub-
enough to test that each pair of the  spacesofavectorspace can be disjoint,
subspaces intersect only at 0. To see  because both contain 0. So disjoint-
this, consider Example 1.44. 1In that ness is replaced, at least in the case
nonexample of a direct sum, we have  of two subspaces, with the requirement
VinV,=V,NnV;=V,NV; ={0}. that the intersection equal {0}.

Exercises 1C

10

For each of the following subsets of F3, determine whether it is a subspace
of F3.

(@) {(x1,%0,%3) € F3 1 x; +2x, + 3x3 = 0}

(b) {(x1,%0,x3) € F3 1 xy +2x, +3x3 = 4}

(©) {(x1,%5,x3) € F® 1 xyxx5 = 0}

(d) {(x1,xp,%3) € F° 1 x; = 5x3}

Verify all assertions about subspaces in Example 1.35.

Show that the set of differentiable real-valued functions f on the interval
(—4,4) such that f'(=1) = 3f(2) is a subspace of R(=*%,

Suppose b € R. Show that the set of continuous real-valued functions f on
the interval [0,1] such that f; f = b is a subspace of RI®! if and only if
b=0.

Is R? a subspace of the complex vector space C>?

(@) Is {(a,b,c) € R3: a® = b®} a subspace of R>?
(b) Is {(a,b,c) € C3: a® = b®} a subspace of C3?

Prove or give a counterexample: If U is a nonempty subset of R? such that
U is closed under addition and under taking additive inverses (meaning
—u € U whenever u € U), then U is a subspace of R2

Give an example of a nonempty subset U of R? such that U is closed under
scalar multiplication, but U is not a subspace of R?

A function f: R — R is called periodic if there exists a positive number p
such that f(x) = f(x + p) for all x € R. Is the set of periodic functions
from R to R a subspace of RR? Explain.

Suppose V; and V, are subspaces of V. Prove that the intersection V; NV,
is a subspace of V.
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Prove that the intersection of every collection of subspaces of V' is a subspace
of V.

Prove that the union of two subspaces of V is a subspace of V' if and only if
one of the subspaces is contained in the other.

Prove that the union of three subspaces of V is a subspace of V if and only
if one of the subspaces contains the other two.

This exercise is surprisingly harder than Exercise 12, possibly because this
exercise is not true if we replace F with a field containing only two elements.

Suppose
U={(x-x2x)€eFP:xeF} and W ={(x,x,2x) € FP:x€F}.

Describe U + W using symbols, and also give a description of U + W that
uses no symbols.

Suppose U is a subspace of V. What is U + U?

Is the operation of addition on the subspaces of V commutative? In other
words, if U and W are subspaces of V,is U+ W = W + U?

Is the operation of addition on the subspaces of V associative? In other
words, if V;, V,, V5 are subspaces of V is

Does the operation of addition on the subspaces of V have an additive
identity? Which subspaces have additive inverses?

Prove or give a counterexample: If V;, V,, U are subspaces of V such that

Suppose
U={xxyy) €F :xyeF}.

Find a subspace W of F* such that F* = U @ W.

Suppose
U={xyx+y,x—y2x) € F°:xyeF}

Find a subspace W of F° such that F° = U @ W.

Suppose
U={(xyx+y,x—y,2x) € F :xyecF}.

Find three subspaces W, W,, W, of F°, none of which equals {0}, such that
FP=UsW, oeW,®W,.
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Chapter 1 Vector Spaces

Prove or give a counterexample: If V;, V,, U are subspaces of V such that
V=VielU and V=V,el,

then Vl = Vz.
Hint: When trying to discover whether a conjecture in linear algebra is true
or false, it is often useful to start by experimenting in F>

A function f: R — R is called even if

f(=x) = f(x)
for all x € R. A function f: R — R is called odd if
f(=x) =—fx)

for all x € R. Let V, denote the set of real-valued even functions on R
and let V, denote the set of real-valued odd functions on R. Show that
RR=V. @V,
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Chapter 2
Finite-Dimensional Vector Spaces

In the last chapter we learned about vector spaces. Linear algebra focuses not
on arbitrary vector spaces, but on finite-dimensional vector spaces, which we
introduce in this chapter.

We begin this chapter by considering linear combinations of lists of vectors.
This leads us to the crucial concept of linear independence. The linear dependence
lemma will become one of our most useful tools.

A list of vectors in a vector space that is small enough to be linearly independent
and big enough so the linear combinations of the list fill up the vector space is
called a basis of the vector space. We will see that every basis of a vector space
has the same length, which will allow us to define the dimension of a vector space.

This chapter ends with a formula for the dimension of the sum of two subspaces.

standing assumptions for this chapter w

e F denotes R or C.
e V denotes a vector space over F.

4 N

N /
The main building of the Institute for Advanced Study, in Princeton, New Jersey.
Paul Halmos (1916-2006) wrote the first modern linear algebra book in this building.
Halmos’s linear algebra book was published in 1942 (second edition published in 1958).

The title of Halmos’s book was the same as the title of this chapter.

27
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28 Chapter 2  Finite-Dimensional Vector Spaces

2A  Span and Linear Independence

We have been writing lists of numbers surrounded by parentheses, and we will
continue to do so for elements of F"*; for example, (2, —7,8) € F>. However, now
we need to consider lists of vectors (which may be elements of F” or of other
vector spaces). To avoid confusion, we will usually write lists of vectors without
surrounding parentheses. For example, (4,1,6), (9,5,7) is a list of length two of
vectors in R,

(2.1 notation: list of vectors W

LWe will usually write lists of vectors without surrounding parentheses. )

Linear Combinations and Span

A sum of scalar multiples of the vectors in a list is called a linear combination of
the list. Here is the formal definition.

(2.2 definition: linear combination

A linear combination of a list v, ..., v,, of vectors in V is a vector of the form
{IllUl + -+ amvm,

where a4, ...,a,, € F.

2.3 example: linear combinations in R®

e (17,—4,2) is a linear combination of (2,1, —3), (1, —2,4), which is a list of
length two of vectors in R3, because

(17,-4,2) = 6(2,1,-3) + 5(1,-2,4).

e (17,—4,5) is not a linear combination of (2,1, -3), (1, —2,4), which is a list
of length two of vectors in R because there do not exist numbers a,,a, € F
such that

17,-4,5) =a,(2,1,-3) +a,(1,-2,4).

In other words, the system of equations

17 = 24, +a,

5= —-3ay +4a,

has no solutions (as you should verify).
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/

2.4 definition: span

~

The set of all linear combinations of a list of vectors v, ...,v,, in V is called
the span of v4, ..., v,,, denoted by span(vy, ...,v,,). In other words,

span(vy, ..., v,,) = {4y0q + -+ +4a,,0,, * a;,...,4,, € F}.

\The span of the empty list ( ) is defined to be {0}.

J
2.5 example: span |
The previous example shows that in F°,
e (17,-4,2) € span((2,1,-3), (1,-2,4));
o (17,—4,5) & span((2,1,-3), (1,-2,4)).
(2.6 span is the smallest containing subspace w

The span of a list of vectors in V is the smallest subspace of V containing all
vectors in the list.

Proof  Suppose vy, ...,v,, is a list of vectors in V.

First we show that spa'n.(vl,. e vf'l) ?S Some mathematicians use the terminol-
a subspace of V. The additive identity is ogy linear span, which means the same

in span(vy, ..., v,,) because as span.
0=00; + -+ 00,
Also, span(vy, ...,v,,) is closed under addition because
(a0 + -+ +a,0,,) + (cquy + -+ +¢,0,) = (@ +¢1)0y + -+ (a,, +C,,) 0,
Furthermore, span(vy, ...,v,,) is closed under scalar multiplication because
AMayoy + -+ +a,,0,,) = Aagoy + -+ + Aa,,0,,.

Thus span(vy, ..., v,,) is a subspace of V (by 1.34).

Each v, is a linear combination of v, ..., v,, (to show this, set a; = 1 and let
the other a’s in 2.2 equal 0). Thus span(vy, ..., v,,) contains each v,. Conversely,
because subspaces are closed under scalar multiplication and addition, every sub-
space of V that contains each v contains span(vy, ..., v,,). Thus span(vy, ...,v,,)
is the smallest subspace of V containing all the vectors vy, ..., v,,,.

(2.7 definition: spans w

Llf span(vy, ..., v,,) equals V, we say that the list vy, ..., v,, spans V. j
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2.8 example: a list that spans F"

Suppose 7 is a positive integer. We want to show that
a,o,...,0),(0,1,0,...,0),...,(0,...,0,1)

spans F". Here the k' vector in the list above has 1 in the k" slot and 0 in all other
slots.
Suppose (xq, ..., x,,) € F". Then

(X150 x,) = x1(1,0,...,0) + x,(0,1,0,...,0) + -+ + x,,(0,...,0,1).

Thus (x4, ..., x,) € span((l,O, ....,0),(0,1,0,...,0),...,(0,...,0, 1)), as desired.

Now we can make one of the key definitions in linear algebra.

(2.9 definition: finite-dimensional vector space w

A vector space is called finite-dimensional if some list of vectors in it spans
the space.

Example 2.8 above shows that F" is a Recall that by definition every list has
finite-dimensional vector space for every finite length.

positive integer n.
The definition of a polynomial is no doubt already familiar to you.

-~

2.10 definition: polynomial, P (F) h

e A function p: F — F is called a polynomial with coefficients in F if there
exist ag, ..., a,, € F such that

p(z) = ag + 4,z + a,2% + -+ + a,,z"

forall z € F.

e P(F) is the set of all polynomials with coefficients in F. )

With the usual operations of addition and scalar multiplication, (F) is a
vector space over F, as you should verify. Hence P(F) is a subspace of F¥, the
vector space of functions from F to F.

If a polynomial (thought of as a function from F to F) is represented by two
sets of coefficients, then subtracting one representation of the polynomial from
the other produces a polynomial that is identically zero as a function on F and
hence has all zero coefficients (if you are unfamiliar with this fact, just believe
it for now; we will prove it later—see 4.8). Conclusion: the coefficients of a
polynomial are uniquely determined by the polynomial. Thus the next definition
uniquely defines the degree of a polynomial.

Linear Algebra Done Right, fourth edition, by Sheldon Axler



Section 2A  Span and Linear Independence 31

/

2.11 definition: degree of a polynomial, degp h

e A polynomial p € P(F) is said to have degree m if there exist scalars
ag, a4, ...,a,, € F with a,, # 0 such that for every z € F, we have

p(z) =ay+az+ - +a,z"

e The polynomial that is identically 0 is said to have degree —oo.

\o The degree of a polynomial p is denoted by degp. )

In the next definition, we use the convention that —oo < m, which means that
the polynomial 0 is in ,,,(F).

(2.12 notation: %, (F) W

For m a nonnegative integer, 7, (F) denotes the set of all polynomials with
coeflicients in F and degree at most 1.

If m is a nonnegative integer, then 7, (F) = span(l, Zyens z”’) [here we slightly
abuse notation by letting z* denote a function]. Thus ,,(F) is a finite-dimensional
vector space for each nonnegative integer m.

(2.13 definition: infinite-dimensional vector space W

LA vector space is called infinite-dimensional if it is not finite-dimensional. J

| 2.14 example: P (F) is infinite-dimensional |

Consider any list of elements of P (F). Let m denote the highest degree of the
polynomials in this list. Then every polynomial in the span of this list has degree
at most m. Thus z*! is not in the span of our list. Hence no list spans 2 (F).
Thus P (F) is infinite-dimensional.

Linear Independence
Suppose vy, ...,v,, € Vand v € span(vy, ...,7v,,). By the definition of span, there
exist a4, ...,a,, € F such that

0 = 11101 + e+ amvm.
Consider the question of whether the choice of scalars in the equation above is
unique. Suppose cy, ..., ¢, is another set of scalars such that

0 = C1U1 + e+ CmUm.
Subtracting the last two equations, we have

0=(y—cp)oy + -+ (@, — )0y,
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Thus we have written 0 as a linear combination of (vy,...,v,,). If the only way
to do this is by using O for all the scalars in the linear combination, then each
a; — ¢, equals 0, which means that each a;, equals ¢, (and thus the choice of
scalars was indeed unique). This situation is so important that we give it a special
name—Ilinear independence—which we now define.

(- N

2.15 definition: linearly independent

e Alistvy,...,v,, of vectors in V is called linearly independent if the only
choice of a4, ...,a,, € F that makes

all)l + e+ [lml)m == 0

isay = =a, =0.

\o The empty list () is also declared to be linearly independent. )

The reasoning above shows that vy, ..., v,, is linearly independent if and only if
each vector in span(vy, ..., v,,,) has only one representation as a linear combination
of vy,...,0,,.

| 2.16 example: linearly independent lists

(a) To see that the list (1,0,0,0), (0,1,0,0), (0,0, 1,0) is linearly independent in
F* suppose a;,4,,a; € F and

a,(1,0,0,0) + a,(0,1,0,0) + a5(0,0,1,0) = (0,0,0,0).

Thus
(a]’ ﬂz, a37 0) = (07 O’ 07 0) .

Hence a; = a, = a5 = 0. Thus the list (1,0,0,0), (0,1,0,0), (0,0,1,0) is
linearly independent in F*

(b) Suppose m is a nonnegative integer. To see that the list 1, z, ..., 2" is linearly
independent in P(F), suppose 4,4y, ...,4,, € F and

ag+az+ - +a,z2" =0,
where we think of both sides as elements of P (F). Then
ag+a.z+ - +a,z" =0

for all z € F. As discussed earlier (and as follows from 4.8), this implies
thatay = a; = --- = a,, = 0. Thus 1, z, ...,z is a linearly independent list in
P(F).

(c) A list of length one in a vector space is linearly independent if and only if the
vector in the list is not 0.

(d) A list of length two in a vector space is linearly independent if and only if
neither of the two vectors in the list is a scalar multiple of the other.
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If some vectors are removed from a linearly independent list, the remaining
list is also linearly independent, as you should verify.

/2.17 definition: linearly dependent

~

e A list of vectors in V is called linearly dependent if it is not linearly inde-
pendent.

e In other words, a list v, ..., v,, of vectors in V is linearly dependent if there
existaq, ...,a,, € F, not all 0, such that a,v; + --- +4,,0,, = 0. )

2.18 example: linearly dependent lists |

e (2,3,1),(1,-1,2),(7,3,8) is linearly dependent in F° because

e The list (2,3,1), (1,—1,2), (7,3, ¢) is linearly dependent in F® if and only if
¢ = 8, as you should verify.

e If some vector in a list of vectors in V is a linear combination of the other
vectors, then the list is linearly dependent. (Proof: After writing one vector in

the list as equal to a linear combination of the other vectors, move that vector
to the other side of the equation, where it will be multiplied by —1.)

e Every list of vectors in V containing the 0 vector is linearly dependent. (This is
a special case of the previous bullet point.)

The next lemma is a terrific tool. It states that given a linearly dependent list
of vectors, one of the vectors is in the span of the previous ones. Furthermore, we
can throw out that vector without changing the span of the original list.

-

2.19 linear dependence lemma

\

Suppose v, ...,v,, is a linearly dependent list in V. Then there exists
k € {1,2,...,m} such that

U € span(vq, ..., Vx_1).

Furthermore, if k satisfies the condition above and the k™ term is removed
from v, ..., v,,, then the span of the remaining list equals span(vy, ..., v,,). )

Proof Because the list vy,...,v,, is linearly dependent, there exist numbers
a,...,a,, € F,not all 0, such that

4,01 + - +a,0,, =0.
Let k be the largest element of {1, ..., m} such that a;, # 0. Then
ay A _1

which proves that v, € span(v,, ..., vx_1), as desired.
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Now suppose k is any element of {1, ..., m} such that v, € span(vy, ..., v4_1).
Letby,...,b;_; € F be such that

220 vk:blvl+---+bk_1vk_l.
Suppose u € span(vy, ...,v,,). Then there exist ¢y, ...,c,, € F such that
u = C101 + e+ Cmvm.

In the equation above, we can replace v, with the right side of 2.20, which shows
that u is in the span of the list obtained by removing the k' term from vy, ..., v,,,.
Thus removing the k™ term of the list vy, ..., v,, does not change the span of the
list.

If k = 1 in the linear dependence lemma, then v, € span(vs, ..., vy_1) means
that v; = 0, because span( ) = {0}. Note also that parts of the proof of the linear
dependence lemma need to be modified if k = 1. In general, the proofs in the
rest of the book will not call attention to special cases that must be considered
involving lists of length 0, the subspace {0}, or other trivial cases for which the
result is true but needs a slightly different proof. Be sure to check these special
cases yourself.

2.21 example: smallest k in linear dependence lemma
Consider the list
(1,2,3), (6,5,4), (15,16,17), (8,9,7)

in R3 This list of length four is linearly dependent, as we will soon see. Thus the
linear dependence lemma implies that there exists k € {1, 2, 3,4} such that the kth
vector in this list is a linear combination of the previous vectors in the list. Let’s
see how to find the smallest value of k that works.

Taking k = 1 in the linear dependence lemma works if and only if the first
vector in the list equals 0. Because (1,2, 3) is not the 0 vector, we cannot take
k =1 for this list.

Taking k = 2 in the linear dependence lemma works if and only if the second
vector in the list is a scalar multiple of the first vector. However, there does not
exist ¢ € R such that (6,5,4) = ¢(1,2,3). Thus we cannot take k = 2 for this list.

Taking k = 3 in the linear dependence lemma works if and only if the third
vector in the list is a linear combination of the first two vectors. Thus for the list
in this example, we want to know whether there exist 4,b € R such that

(15,16,17) = a(1,2,3) + b(6,5,4).

The equation above is equivalent to a system of three linear equations in the two
unknowns a, b. Using Gaussian elimination or appropriate software, we find that
a = 3, b = 2 is a solution of the equation above, as you can verify. Thus for the
list in this example, taking k = 3 is the smallest value of k that works in the linear
dependence lemma.
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Now we come to a key result. It says that no linearly independent list in V' is
longer than a spanning list in V.

(2.22 length of linearly independent list < length of spanning list

In a finite-dimensional vector space, the length of every linearly independent
list of vectors is less than or equal to the length of every spanning list of
vectors.

Proof Suppose that u., ..., u,, is linearly independent in V. Suppose also that
wq, ..., w, spans V. We need to prove that m < n. We do so through the process
described below with m steps; note that in each step we add one of the u’s and
remove one of the w’s.

Step 1
Let B be the list wy, ..., w,,, which spans V. Adjoining u, at the beginning of
this list produces a linearly dependent list (because 1, can be written as a linear
combination of wy, ..., w,,). In other words, the list

Uy, Wy, eeey Wy,

is linearly dependent.

Thus by the linear dependence lemma (2.19), one of the vectors in the list above
is a linear combination of the previous vectors in the list. We know that u; # 0
because the list uq, ..., u,, is linearly independent. Thus u; is not in the span
of the previous vectors in the list above (because u; is not in {0}, which is the
span of the empty list). Hence the linear dependence lemma implies that we
can remove one of the w’s so that the new list B (of length #) consisting of u
and the remaining w’s spans V.

Stepk,fork=2,...,m
The list B (of length n) from step k — 1 spans V. In particular, u, is in the span of
the list B. Thus the list of length (n + 1) obtained by adjoining u, to B, placing
it just after u4, ..., u; _, is linearly dependent. By the linear dependence lemma
(2.19), one of the vectors in this list is in the span of the previous ones, and
because u4, ..., 4, is linearly independent, this vector cannot be one of the u’s.

Hence there still must be at least one remaining w at this step. We can remove
from our new list (after adjoining u, in the proper place) a w that is a linear
combination of the previous vectors in the list, so that the new list B (of length
n) consisting of u4, ..., ;. and the remaining w’s spans V.

After step m, we have added all the u’s and the process stops. At each step

as we add a u to B, the linear dependence lemma implies that there is some w to
remove. Thus there are at least as many w’s as u’s.
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The next two examples show how the result above can be used to show, without
any computations, that certain lists are not linearly independent and that certain
lists do not span a given vector space.

2.23 example: no list of length 4 is linearly independent in R3

The list (1,0, 0), (0,1,0), (0,0, 1), which has length three, spans R® Thus no
list of length larger than three is linearly independent in R

For example, we now know that (1,2, 3), (4,5, 8), (9,6,7), (—3,2,8), which
is a list of length four, is not linearly independent in R

2.24 example: no list of length 3 spans R*

The list (1,0,0,0), (0,1,0,0), (0,0, 1,0), (0,0,0, 1), which has length four, is
linearly independent in R* Thus no list of length less than four spans R*%

For example, we now know that (1, 2, 3, —5), (4,5, 8, 3), (9,6,7, —1), which
is a list of length three, does not span R*

Our intuition suggests that every subspace of a finite-dimensional vector space
should also be finite-dimensional. We now prove that this intuition is correct.

(2.25 finite-dimensional subspaces W

LEvery subspace of a finite-dimensional vector space is finite-dimensional. j

Proof Suppose V is finite-dimensional and U is a subspace of V. We need to
prove that U is finite-dimensional. We do this through the following multistep
construction.

Step 1
If U = {0}, then U is finite-dimensional and we are done. If U # {0}, then
choose a nonzero vector u; € U.

Step k
If U = span(uq, ..., u;_1), then U is finite-dimensional and we are done. If
U # span(uq, ..., 4, _1), then choose a vector 1, € U such that

U & span(iuq, ..., Uy _q).

After each step, as long as the process continues, we have constructed a list
of vectors such that no vector in this list is in the span of the previous vectors.
Thus after each step we have constructed a linearly independent list, by the linear
dependence lemma (2.19). This linearly independent list cannot be longer than
any spanning list of V (by 2.22). Thus the process eventually terminates, which
means that U is finite-dimensional.
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Exercises 2A

1 Find a list of four distinct vectors in F> whose span equals
{(x,y,2) EFP : x +y +z=0}.
2 Prove or give a counterexample: If v,,v,,v5, v, spans V, then the list
V) — Uy, Uy — Vs, U3 — Uy, Uy

also spans V.

3 Suppose vy, ...,v,, is a list of vectors in V. For k € {1, ..., m}, let
W =0 + - + U
Show that span(vy, ...,v,,) = span(wy, ..., W,,).

4 (a) Show that a list of length one in a vector space is linearly independent
if and only if the vector in the list is not 0.
(b) Show that a list of length two in a vector space is linearly independent
if and only if neither of the two vectors in the list is a scalar multiple of
the other.

5 Find a number ¢ such that
(39 19 4)’ (29 _39 5)3 (59 99 t)
is not linearly independent in R

6 Show that the list (2,3,1), (1,—-1,2), (7,3, ¢) is linearly dependent in P if
and only if c = 8.

7 (a) Show that if we think of C as a vector space over R, then the list
1+1i,1 —iis linearly independent.
(b) Show that if we think of C as a vector space over C, then the list
1+ 14,1 —iis linearly dependent.

8 Suppose vy, v,,v3,v, is linearly independent in V. Prove that the list
Ul - 02, 02 - ’03, ’03 - 04, 04
is also linearly independent.

9 Prove or give a counterexample: If v;, v, ..., v, is a linearly independent
list of vectors in V, then

501 — 40,5, 05,03, ..., Uy

is linearly independent.
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Prove or give a counterexample: If v;,v,,...,v,, is a linearly independent
list of vectors in V and A € F with A # 0, then Avy, Av,, ..., Av,, is linearly
independent.

Prove or give a counterexample: If v,,...,v,, and wy,...,w,, are linearly
independent lists of vectors in V, then the list v; + w, ..., v, + w,, is linearly
independent.

Suppose vy, ...,v,, is linearly independent in V and w € V. Prove that if
v, + W, ...,v,, + wis linearly dependent, then w € span(vy, ..., v,,).

Suppose v, ..., v, is linearly independent in V and w € V. Show that
U1, ..., Uy, W is linearly independent < w & span(vy, ..., 7,,).
Suppose v, ..., v,, is a list of vectors in V. For k € {1, ...,m}, let
W =0V + - + Vg

Show that the list v, ..., v,, is linearly independent if and only if the list
wy, ..., W, is linearly independent.

Explain why there does not exist a list of six polynomials that is linearly
independent in 7, (F).

Explain why no list of four polynomials spans 7, (F).

Prove that V is infinite-dimensional if and only if there is a sequence v, v,, ...
of vectors in V such that v4, ..., v,, is linearly independent for every positive
integer m.

Prove that F* is infinite-dimensional.

Prove that the real vector space of all continuous real-valued functions on
the interval [0, 1] is infinite-dimensional.

Suppose py, p1, ---» P, are polynomials in P, (F) such that p;(2) = 0 for each
k € {0, ...,m}. Prove that py, p;, ..., p,, is not linearly independent in 7, (F).
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2B Bases

In the previous section, we discussed linearly independent lists and we also
discussed spanning lists. Now we bring these concepts together by considering
lists that have both properties.

(2.26 definition: basis W

kA basis of V is a list of vectors in V that is linearly independent and spans VJ

| 2.27 example: bases |
(a) The list (1,0,...,0),(0,1,0,...,0), ..., (0,...,0,1) is a basis of F" called the
standard basis of F".

(b) The list (1,2), (3,5) is a basis of F% Note that this list has length two, which
is the same as the length of the standard basis of F2 In the next section, we
will see that this is not a coincidence.

(c) The list (1,2,—4), (7, -5, 6) is linearly independent in F° but is not a basis
of F3 because it does not span F>

(d) The list (1,2), (3,5), (4,13) spans F? but is not a basis of F? because it is not
linearly independent.

(e) The list (1,1,0), (0,0, 1) is a basis of {(x,x,y) € F*: x,y € F}.
(f) The list (1, -1,0), (1,0, —1) is a basis of

{(x,y,2) EF: x +y +z=0}.

(g) Thelist1,z,...,z™ is a basis of P,,(F), called the standard basis of P,,(F).

In addition to the standard basis, F” has many other bases. For example,
(7’5)a (_47 9) and (192)’ (3a 5)

are both bases of F2
The next result helps explain why bases are useful. Recall that “uniquely”
means “in only one way”

>

/2.28 criterion for basis

A list vy, ..., v, of vectors in V is a basis of V if and only if every v € V can
be written uniquely in the form

2.29 U =001 + - +a,v,,

where a4, ...,a,, € F.
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Proof  First suppose that vy, ..., v, is a This proof is essentially a repetition of

basis of V. Letv € V. Because vy, ...,v,, e ideas that led us to the definition of
spans V, there exist ay,...,a, € F such  jineqr independence.

that 2.29 holds. To show that the repre-
sentation in 2.29 is unique, suppose cy, ..., ¢, are scalars such that we also have

U= Clvl + e+ Cnvn.
Subtracting the last equation from 2.29, we get
0=(a; —cy)vg + -+ (a, —c,)v,.

This implies that each 4, — ¢, equals 0 (because vy, ..., v,, is linearly independent).
Hencea; = ¢y, ...,a,, = c¢,. We have the desired uniqueness, completing the proof
in one direction.

For the other direction, suppose every v € V can be written uniquely in the
form given by 2.29. This implies that the list v, ..., v,, spans V. To show that
vy, ..., U, is linearly independent, suppose a4, ...,a,, € F are such that

0=a,0y 4+ +4a,0,.

The uniqueness of the representation 2.29 (taking v = 0) now implies that
a; = - =a, =0. Thus vy,...,v, is linearly independent and hence is a basis
of V.

A spanning list in a vector space may not be a basis because it is not linearly
independent. Our next result says that given any spanning list, some (possibly
none) of the vectors in it can be discarded so that the remaining list is linearly
independent and still spans the vector space.

As an example in the vector space F? if the procedure in the proof below is
applied to the list (1,2), (3,6), (4,7), (5,9), then the second and fourth vectors
will be removed. This leaves (1, 2), (4,7), which is a basis of F>

(2.30 every spanning list contains a basis w

Every spanning list in a vector space can be reduced to a basis of the vector
space.

Proof  Suppose vy, ..., v, spans V. We want to remove some of the vectors from
01, ..., U, sO that the remaining vectors form a basis of V. We do this through the
multistep process described below.

Start with B equal to the list vy, ..., v,,.

Step 1
If v, = 0, then delete v; from B. If v; # 0, then leave B unchanged.

Step k
If v, is in span(vy, ..., v, _1), then delete v, from the list B. If v, is not in
span(vy, ..., U, _1), then leave B unchanged.
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Stop the process after step n, getting a list B. This list B spans V because
our original list spanned V and we have discarded only vectors that were already
in the span of the previous vectors. The process ensures that no vector in B is
in the span of the previous ones. Thus B is linearly independent, by the linear
dependence lemma (2.19). Hence B is a basis of V.

We now come to an important corollary of the previous result.

(2.31 basis of finite-dimensional vector space w

kEvery finite-dimensional vector space has a basis. j

Proof By definition, a finite-dimensional vector space has a spanning list. The
previous result tells us that each spanning list can be reduced to a basis.

Our next result is in some sense a dual of 2.30, which said that every spanning
list can be reduced to a basis. Now we show that given any linearly independent list,
we can adjoin some additional vectors (this includes the possibility of adjoining
no additional vectors) so that the extended list is still linearly independent but
also spans the space.

(2.32 every linearly independent list extends to a basis W

Every linearly independent list of vectors in a finite-dimensional vector space
can be extended to a basis of the vector space.

Proof  Suppose u4, ..., 4, is linearly independent in a finite-dimensional vector
space V. Let wy, ..., w,, be a list of vectors in V that spans V. Thus the list

Uy wens Upyyy Wy eeny Wy

spans V. Applying the procedure of the proof of 2.30 to reduce this list to a
basis of V produces a basis consisting of the vectors u, ..., u,, and some of the
w’s (none of the u’s get deleted in this procedure because uq, ..., u,, is linearly
independent).

As an example in F3, suppose we start with the linearly independent list
(2,3,4), (9,6,8). If we take wy, w,, w5 to be the standard basis of F3, then applying
the procedure in the proof above produces the list

(27 37 4)3 (97 69 8)7 (O’ 13 0)7

which is a basis of F

As an application of the result above, Using the same ideas but more ad-
we now show that every subspace of a y;;,00q tools, the next result can be
finite-dimensional vector space can be  ,roved without the hypothesis that V is
paired with another subspace to form a  finite-dimensional.
direct sum of the whole space.
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(2.33 every subspace of V is part of a direct sum equal to V W

Suppose V is finite-dimensional and U is a subspace of V. Then there is a
subspace W of V such that V = U & W.

Proof Because V is finite-dimensional, so is U (see 2.25). Thus there is a basis
Uy, ...,u,, of U (by 2.31). Of course uq, ..., u,, is a linearly independent list of
vectors in V. Hence this list can be extended to a basis u, ..., u,,, wq, ...,w, of V
(by 2.32). Let W = span(wy, ..., w,,).

To prove that V = U & W, by 1.46 we only need to show that

V=U+W and UNW = {0}.

To prove the first equation above, suppose v € V. Then, because the list
Uy ...n Uy, We, ..., W, spans V, there exist ay, ...,q,,, by, ..., b, € F such that

v =aquq + - +a,u, +byw; + - +b,w,.

u w

We have v = u + w, where u € U and w € W are defined as above. Thus
v € U+ W, completing the proof that V = U + W.

To show that U N W = {0}, suppose v € U N W. Then there exist scalars
Ay .y, by, ..., b, € F such that

v =ayuqy + - +a,u, =bjw, + - +b,w

n-n

Thus
ayuq + -+ +a,u, —byw, — - —b,w, =0.

Because uy, ..., u,,, wy, ..., w,, is linearly independent, this implies that
alz"'zamzblz'"zbnzo'

Thus v = 0, completing the proof that U N W = {0}.

Exercises 2B

1 Find all vector spaces that have exactly one basis.
2 Verify all assertions in Example 2.27.
3 (a) Let U be the subspace of R® defined by
U = {(xq,%p,X3,%4,X5) € R® : x; = 3x, and x5 = 7x,}.

Find a basis of U.
(b) Extend the basis in (a) to a basis of R%
(c) Find a subspace W of R® such that R®> = U @ W.
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(a) Let U be the subspace of C° defined by
U = {(21,2,23,24,25) € C° : 621 = z, and z; + 2z, + 3z5 = 0}.

Find a basis of U.
(b) Extend the basis in (a) to a basis of C°.
(c) Find a subspace W of C° such that C> = U @ W.

Suppose V is finite-dimensional and U, W are subspaces of V such that
V = U + W. Prove that there exists a basis of V consisting of vectors in
uuw.

Prove or give a counterexample: If py, p;, p,, ps is a list in P53 (F) such that
none of the polynomials p, p;, p,, p3 has degree 2, then py, p1, p, p3 is not
a basis of P (F).

Suppose vy, U,, U3, U, is a basis of V. Prove that
Ul + 02, 02 + 03, 03 + 04, 04
is also a basis of V.

Prove or give a counterexample: If v;,v,,v5, v, is a basis of V and U is a
subspace of V such that v;,v, € U and v3 & U and v, & U, then v;,v, isa
basis of U.

Suppose v, ..., v, is a list of vectors in V. For k € {1, ...,m}, let
wk = Z)l + e 4+ Uk.
Show that vy, ..., v,, is a basis of V if and only if w,, ..., w,, is a basis of V.

Suppose U and W are subspaces of V such that V = U & W. Suppose also
that uy, ..., u,, is a basis of U and wy, ..., w,, is a basis of W. Prove that

Uy eves Uy Wiy ees Wy,
is a basis of V.

Suppose V is a real vector space. Show that if v, ..., v,, is a basis of V (as a
real vector space), then vy, ..., v,, is also a basis of the complexification V-
(as a complex vector space).

See Exercise 8 in Section 1B for the definition of the complexification V.
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2C Dimension

Although we have been discussing finite-dimensional vector spaces, we have not
yet defined the dimension of such an object. How should dimension be defined?
A reasonable definition should force the dimension of F” to equal n. Notice that
the standard basis

(1,0,...,0),(0,1,0,...,0),..,(0,...,0,1)

of F" has length n. Thus we are tempted to define the dimension as the length of
a basis. However, a finite-dimensional vector space in general has many different
bases, and our attempted definition makes sense only if all bases in a given vector
space have the same length. Fortunately that turns out to be the case, as we now
show.

(2.34 basis length does not depend on basis W

kAny two bases of a finite-dimensional vector space have the same length. J

Proof Suppose V is finite-dimensional. Let B; and B, be two bases of V. Then
B, is linearly independent in V and B, spans V, so the length of B is at most the
length of B, (by 2.22). Interchanging the roles of B; and B,, we also see that the
length of B, is at most the length of B;. Thus the length of B, equals the length
of B,, as desired.

Now that we know that any two bases of a finite-dimensional vector space
have the same length, we can formally define the dimension of such spaces.

(2.35 definition: dimension, dim V

e The dimension of a finite-dimensional vector space is the length of any
basis of the vector space.

e The dimension of a finite-dimensional vector space V is denoted by dim V.

2.36 example: dimensions

e dim F" = n because the standard basis of F” has length .

e dim?,,(F) = m + 1 because the standard basis 1, z, ..., 2" of P, (F) has length
m+ 1.

o IfU ={(x,x,y) € F3: x,y € F}, then dim U = 2 because (1,1,0), (0,0, 1) is
a basis of U.

o If U = {(x,y,2) € FP: x + y + z = 0}, then dimU = 2 because the list
(1,-1,0), (1,0, —1) is a basis of U.
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Every subspace of a finite-dimensional vector space is finite-dimensional
(by 2.25) and so has a dimension. The next result gives the expected inequality
about the dimension of a subspace.

(2.37 dimension of a subspace w

klf V is finite-dimensional and U is a subspace of V, then dim U < dim V. J

Proof  Suppose V is finite-dimensional and U is a subspace of V. Think of a basis
of U as a linearly independent list in V, and think of a basis of V' as a spanning
list in V. Now use 2.22 to conclude that dim U < dim V.

To check that a list of vectors in V
is a basis of V, we must, according to sion two; the complex vector space C
the definition, show that the list in ques- ;¢ 4000 00 Ag s, 168 @
tion satisfies two properties: it must be 4, identified with C (and addition is
linearly independent and it must span V. the same on both spaces, as is scalar
The next two results show that if the list  puiriplication by real numbers). Thus
in question has the right length, then we  when we talk about the dimension of
only need to check that it satisfies one  a vector space, the role played by the
of the two required properties. First we  choice of F cannot be neglected.
prove that every linearly independent list
of the right length is a basis.

The real vector space R? has dimen-

(2.38 linearly independent list of the right length is a basis w

Suppose V is finite-dimensional. Then every linearly independent list of
vectors in V of length dim V' is a basis of V.

Proof Suppose dimV = n and v4, ..., v, is linearly independent in V. The list
vy, ..., U, can be extended to a basis of V (by 2.32). However, every basis of V has
length 7, so in this case the extension is the trivial one, meaning that no elements
are adjoined to v4, ...,v,,. Thus v4, ..., v,, is a basis of V, as desired.

The next result is a useful consequence of the previous result.

(2.39 subspace of full dimension equals the whole space W

Suppose that V is finite-dimensional and U is a subspace of V such that
dimU = dimV. Then U = V.

Proof Let uy,...,u, be a basis of U. Thus n = dim U, and by hypothesis we
also have n = dim V. Thus uq, ..., u,, is a linearly independent list of vectors in V
(because it is a basis of U) of length dim V. From 2.38, we see that u4, ..., u,, is
a basis of V. In particular every vector in V is a linear combination of u, ..., u,,.
Thus U = V.
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2.40 example: a basis of F> |

Consider the list (5,7), (4, 3) of vectors in F2 This list of length two is linearly
independent in F? (because neither vector is a scalar multiple of the other). Note
that F2 has dimension two. Thus 2.38 implies that the linearly independent list
(5,7), (4,3) of length two is a basis of F? (we do not need to bother checking that
it spans F?).

2.41 example: a basis of a subspace of P5(R)
Let U be the subspace of 7;(R) defined by

U={pe P;R):p(5) =0}

To find a basis of U, first note that each of the polynomials 1, (x — 5)2 and (x —5)3
isin U.
Suppose a,b,c € R and

a+b(x=52%2+c(x=53=0

for every x € R. Without explicitly expanding the left side of the equation above,
we can see that the left side has a cx® term. Because the right side has no x>
term, this implies that ¢ = 0. Because ¢ = 0, we see that the left side has a bx?
term, which implies that b = 0. Because b = ¢ = 0, we can also conclude that
a = 0. Thus the equation above implies thata = b = ¢ = 0. Hence the list
1, (x = 5)2 (x — 5)3 is linearly independent in U. Thus 3 < dim U. Hence

3 < dimU < dim 2;(R) = 4,

where we have used 2.37.

The polynomial x is not in U because its derivative is the constant function 1.
Thus U # P5(R). Hence dim U +# 4 (by 2.39). The inequality above now implies
that dim U = 3. Thus the linearly independent list 1, (x — 5)2 (x — 5)3 in U has
length dim U and hence is a basis of U (by 2.38).

Now we prove that a spanning list of the right length is a basis.

(2.42 spanning list of the right length is a basis w

Suppose V is finite-dimensional. Then every spanning list of vectors in V of
length dim V is a basis of V.

Proof Suppose dimV = n and v4,...,v, spans V. The list v4,...,v, can be
reduced to a basis of V (by 2.30). However, every basis of V has length 7, so in
this case the reduction is the trivial one, meaning that no elements are deleted
from vy, ...,v,,. Thus vy, ..., v, is a basis of V, as desired.
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The next result gives a formula for the dimension of the sum of two subspaces
of a finite-dimensional vector space. This formula is analogous to a familiar
counting formula: the number of elements in the union of two finite sets equals
the number of elements in the first set, plus the number of elements in the second
set, minus the number of elements in the intersection of the two sets.

(2.43 dimension of a sum

If V, and V,, are subspaces of a finite-dimensional vector space, then

Proof Letvy,...,v,, be a basis of V; N V,; thus dim(V; N V,) = m. Because

vy,...,0,, is a basis of V; N V5, it is linearly independent in V;. Hence this list can

be extended to a basis vy, ..., V,,, Uy, ..., u; of V; (by 2.32). ThusdimV; = m +j.

Also extend vy, ..., v,, to a basis v, ..., 0,,,, Wy, ..., Wy of V5; thus dim V, = m + k.
We will show that

2.44 UL vees Oy Uy ooy Uy W5 ooy Wi
is a basis of V; + V,. This will complete the proof, because then we will have
dm(V; +V,) =m+j+k
=(m+j)+(m+k)—m

The list 2.44 is contained in V; U V, and thus is contained in V; + V,. The
span of this list contains V; and contains V, and hence is equal to V; + V,. Thus
to show that 2.44 is a basis of V|, + V, we only need to show that it is linearly
independent.

To prove that 2.44 is linearly independent, suppose

a0 + -+ a,,0,, + byug + - + bjuj + cqwy + - + qwy, =0,

where all the a’s, b’s, and ¢’s are scalars. We need to prove that all the a’s, b’s,
and c’s equal 0. The equation above can be rewritten as

2.45 CLWy + 0 + Wy = —A407 — =+ — 4,0y, — by — - = by,

which shows that c;w; + - + c,w, € V;. All the w’s are in V,, so this implies
that c;w, + -+ + cuwy € V3 N'V,. Because vy, ..., v,, is a basis of V; N V,, we have

Wy + -+ + W = dyvg + - +d, v,
for some scalars d4, ...,d,,,. Butv,,...,v,,, wy, ..., wy is linearly independent, so
the last equation implies that all the ¢’s (and d’s) equal 0. Thus 2.45 becomes the

equation
A101 + -+ + 4,V + byuty + -+ bju; = 0.

Because the list v4, ..., 0,,, U1, ..., u; is linearly independent, this equation implies
that all the a’s and b’s are 0, completing the proof.
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For S a finite set, let #S denote the number of elements of S. The table below
compares finite sets with finite-dimensional vector spaces, showing the analogy
between #S (for sets) and dim V (for vector spaces), as well as the analogy between
unions of subsets (in the context of sets) and sums of subspaces (in the context of
vector spaces).

sets

vector spaces

S is a finite set

V is a finite-dimensional vector space

#S

dimV

for subsets S;, S, of S, the union S; U S,
is the smallest subset of S containing S;
and S,

for subspaces V;, V, of V, the sum V; +V,
is the smallest subspace of V containing
V, and V,

#(S, US,)
=#S, +#S, —#(5, N S,)

dim(V; + V)
=dimV; +dimV, — dim(V; N V,)

#(S, USy) = #S, + #S,
—~ 51 052 = @

dim(V; + V,) =dim V] + dim V,
— Vl N V2 = {O}

S;U--US§S, is a disjoint union <
#(S; U US,,) =#S; + - +#S,,

Vi+ - +7V,is adirect sum <<
dim(V; + - + V)

=dimV; + - +dimV,

The last row above focuses on the analogy between disjoint unions (for sets)
and direct sums (for vector spaces). The proof of the result in the last box above
will be given in 3.94.

You should be able to find results about sets that correspond, via analogy, to
the results about vector spaces in Exercises 12 through 18.

Exercises 2C

1 Show that the subspaces of R? are precisely {0}, all lines in R? containing
the origin, and R?

2 Show that the subspaces of R? are precisely {0}, all lines in R® containing
the origin, all planes in R® containing the origin, and R

3 (a) LetU = {p € P4(F) : p(6) = 0}. Find a basis of U.
(b) Extend the basis in (a) to a basis of P, (F).
(c) Find a subspace W of P, (F) such that P,(F) = U & W.

4 (a) LetU = {p € P,(R) : p"(6) = 0}. Find a basis of U.
(b) Extend the basis in (a) to a basis of 7, (R).
(c) Find a subspace W of 7, (R) such that Z,(R) = U & W.

5 (a) LetU = {p € Py(F) : p(2) = p(5)}. Find a basis of U.
(b) Extend the basis in (a) to a basis of P, (F).
(c) Find a subspace W of P, (F) such that P,(F) = U & W.
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(@) LetU = {p € P,(F) : p(2) = p(5) = p(6)}. Find a basis of U.
(b) Extend the basis in (a) to a basis of P, (F).
(c) Find a subspace W of 7, (F) such that P, (F) = U & W.

(a) LetU = {p e Py(R): f_ll p= 0}. Find a basis of U.
(b) Extend the basis in (a) to a basis of 7, (R).
(c) Find a subspace W of 7, (R) such that 7,(R) = U & W.

Suppose v4, ..., v, is linearly independent in V and w € V. Prove that
dimspan(v; + w, ...,v,, + w) > m — 1.

Suppose m is a positive integer and py, py, ..., p,, € P(F) are such that each
P has degree k. Prove that py, py, ..., p,, is a basis of P, (F).

Suppose m is a positive integer. For 0 < k < m, let
pe(x) = xK(1 —x)m -k,

Show that py, ..., p,, is a basis of 7, (F).

The basis in this exercise leads to what are called Bernstein polynomials.
You can do a web search to learn how Bernstein polynomials are used to
approximate continuous functions on [0, 1].

Suppose U and W are both four-dimensional subspaces of C° Prove that
there exist two vectors in U N W such that neither of these vectors is a scalar
multiple of the other.

Suppose that U and W are subspaces of R® such that dim U = 3, dim W = 5,
and U+ W = R® Prove that R® = U e W.

Suppose U and W are both five-dimensional subspaces of R%. Prove that
Un W # {0}.

Suppose V is a ten-dimensional vector space and V;, V,, V5 are subspaces
of V with dim V; = dimV, = dim V; = 7. Prove that V; NV, N V; # {0}.

Suppose V is finite-dimensional and V;, V,, V; are subspaces of V with
dim V; + dim V, + dim V3 > 2dim V. Prove that V; N V, N V; # {0}.

Suppose V is finite-dimensional and U is a subspace of V with U # V. Let
n = dimV and m = dim U. Prove that there exist n — m subspaces of V,
each of dimension n — 1, whose intersection equals U.

Suppose that Vi, ..., V,, are finite-dimensional subspaces of V. Prove that
Vi + -+ + V,, is finite-dimensional and

dim(V; + -+ V,,) <dimV; + - +dim V.

The inequality above is an equality if and only if V; + --- +V,, is a direct
sum, as will be shown in 3.94.
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18 Suppose V is finite-dimensional, with dim V = n > 1. Prove that there exist
one-dimensional subspaces V;, ..., V,, of V such that

V=V,@-oV,

19 Explain why you might guess, motivated by analogy with the formula for
the number of elements in the union of three finite sets, that if V;, V,, V5 are
subspaces of a finite-dimensional vector space, then

dim(V; + V, + V3)
=dimV; +dimV, + dim V;
—dim(V; N V,) —dim(V; N V3) —dim(V, N V3)
+dim(V; NV, N V3).

Then either prove the formula above or give a counterexample.

20 Prove that if V;,V,, and V; are subspaces of a finite-dimensional vector
space, then

dim(V; +V, + V3)

dim(V; N V,) +dim(V; N V3) + dim(V, N Vj)
3
dim((V;+V,)NV3) + dim((V; +V3)NV,) + dim((V, +V3) N V)
3 :

The formula above may seem strange because the right side does not look
like an integer.

I at once gave up my former occupations, set down natural history and all its
progeny as a deformed and abortive creation, and entertained the greatest disdain
for a would-be science which could never even step within the threshold of real
knowledge. In this mood I betook myself to the mathematics and the branches of
study appertaining to that science as being built upon secure foundations, and so
worthy of my consideration.

—Frankenstein, Mary Wollstonecraft Shelley
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Chapter 3
Linear Maps

So far our attention has focused on vector spaces. No one gets excited about
vector spaces. The interesting part of linear algebra is the subject to which we
now turn—linear maps.

We will frequently use the powerful fundamental theorem of linear maps,
which states that the dimension of the domain of a linear map equals the dimension
of the subspace that gets sent to O plus the dimension of the range. This will imply
the striking result that a linear map from a finite-dimensional vector space to itself
is one-to-one if and only if its range is the whole space.

A major concept that we will introduce in this chapter is the matrix associated
with a linear map and with a basis of the domain space and a basis of the target
space. This correspondence between linear maps and matrices provides much
insight into key aspects of linear algebra.

This chapter concludes by introducing product, quotient, and dual spaces.

In this chapter we will need additional vector spaces, which we call U and W,
in addition to V. Thus our standing assumptions are now as follows.

( standing assumptions for this chapter W

e F denotes R or C.
e U, V, and W denote vector spaces over F.

a N

VS-Ag OO 18§8Y0S Uejals

\_ %

The twelfth-century Dankwarderode Castle in Brunswick (Braunschweig), where Carl
Friedrich Gauss (1777-1855) was born and grew up. In 1809 Gauss published a method
for solving systems of linear equations. This method, now called Gaussian elimination,

was used in a Chinese book written over 1600 years earlier.

51
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3A Vector Space of Linear Maps

Definition and Examples of Linear Maps

Now we are ready for one of the key definitions in linear algebra.

\

/3.1 definition: linear map

A linear map from V to W is a function T: V — W with the following
properties.
additivity

Tu+v)=Tu+ Toforallu,v € V.

homogeneity
Y T(Av) = A(Tv) forall A € Fand allv € V.

J

Note that. for linear maps we often Some mathematicians use the phrase
use the notation Tv as well as the usual  jinear transformation, which means
function notation T (v). the same as linear map.

(3.2 notation: £L(V, W), £(V)

e The set of linear maps from V to W is denoted by £(V, W).

e The set of linear maps from V to V is denoted by £ (V). In other words,
L) =LV, V).

Let’s look at some examples of linear maps. Make sure you verify that each
of the functions defined in the next example is indeed a linear map:

3.3 example: linear maps

Zero
In addition to its other uses, we let the symbol 0 denote the linear map that takes
every element of some vector space to the additive identity of another (or possibly
the same) vector space. To be specific, 0 € £(V, W) is defined by

Ov=0.

The 0 on the left side of the equation above is a function from V to W, whereas
the 0 on the right side is the additive identity in W. As usual, the context should
allow you to distinguish between the many uses of the symbol 0.

identity operator
The identity operator, denoted by I, is the linear map on some vector space that
takes each element to itself. To be specific, I € £(V) is defined by

Iv =v.
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differentiation
Define D € £(P(R)) by
Dp =yp.
The assertion that this function is a linear map is another way of stating a basic
result about differentiation: (f+ )" = f' +¢" and (Af)" = Af’ whenever f, g are
differentiable and A is a constant.
integration
Define T € £(P(R),R) by

1
=] p
p 0 P
The assertion that this function is linear is another way of stating a basic result
about integration: the integral of the sum of two functions equals the sum of the

integrals, and the integral of a constant times a function equals the constant times
the integral of the function.

multiplication by x2
Define a linear map T € £(P(R)) by

(Tp)(x) = x*p(x)
for each x € R.

backward shift
Recall that F* denotes the vector space of all sequences of elements of F. Define
alinear map T € £(F~) by

T(x1,X0,X3,...) = (X, X3, ... ).
from R® to R?
Define a linear map T € £(R> R?) by
T(x,y,z) = 2x —y +3z,7x + 5y — 62).

from F” to F™
To generalize the previous example, let m and 7 be positive integers, let A; ; € F

foreachj = 1,...,mand eachk = 1, ...,n, and define a linear map T € £(F", F")
by

T(xl, ...,xn) = (A1’1x1 + .- +A1’nxn, ...,Am,1X1 + .- +Am’nxn).
Actually every linear map from F” to F” is of this form.

composition
Fix a polynomial g € P(R). Define a linear map T € £(P(R)) by

(Tp)(x) = p(q(x)).

The existence part of the next result means that we can find a linear map that
takes on whatever values we wish on the vectors in a basis. The uniqueness part
of the next result means that a linear map is completely determined by its values
on a basis.
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s

3.4 linear map lemma

Suppose vy, ...,v,, is a basis of V and w, ...,w,, € W. Then there exists a
unique linear map T: V — W such that

T'Uk = Wy

fi hk=1,..n
\or eac n

J

Proof First we show the existence of a linear map T with the desired property.
Define T: V — W by

T(cqvq + = +¢,0,) = Cqwy + +++ + C,,W,,,

where ¢y, ..., ¢, are arbitrary elements of F. The list vy, ..., v,, is a basis of V. Thus
the equation above does indeed define a function T from V to W (because each
element of V can be uniquely written in the form c¢;v, + --- + ¢,,0,)).

For each k, taking ¢, = 1 and the other c’s equal to 0 in the equation above
shows that Ty, = wy.

Ifu,o e Vwithu =ay9y + - +4a,v, and v = c;v; + -+ + ¢,,v,,, then

T(u+0) =T((ay +¢1)vy + - + (a, +¢,)v,)
=(a, +c)wy + -+ (a, +c,)w,
= (wy + - +a,w,) + (cqwy + - +c,w,)
=Tu+ To.
Similarly, if A € F and v = ¢;v; + -+ + ¢, v,,, then
T(Av) = T(Acyvq + -+ + Ac,0,,)
= Aqyw; + -+ + Ac,,w,,
= Alcgwy + -+ + c,w,,)
= ATwv.

Thus T is a linear map from V to W.

To prove uniqueness, now suppose that T € £(V, W) and that Tv, = w, for
eachk = 1,...,n. Letcq,...,c, € F. Then the homogeneity of T implies that
T (c,vy) = cywy for each k = 1, ..., n. The additivity of T now implies that

T(Clvl + e+ Cn?)n) = Clwl + -+ ann.

Thus T is uniquely determined on span(vy, ..., v,,) by the equation above. Because
04, ...,0,, is a basis of V, this implies that T is uniquely determined on V, as
desired.
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Algebraic Operations on £L(V, W)
We begin by defining addition and scalar multiplication on £(V, W).

~

/3.5 definition: addition and scalar multiplication on £(V, W)

Suppose S, T € £(V,W) and A € F. The sum S + T and the product AT are
the linear maps from V to W defined by

(S+T)(w)=Sv+Tv and (AT)(v) = A(Tv)

\for allv e V. )

You should verify that S + T and AT
as defined above are indeed linear maps. . smemarics. However, they are not as
In other words, if S,T € £(V,W) and ubiquitous as imagined by people who
A€F, thenS+T e L(V,W)and AT €  seem 1o think cos is a linear map from
L(V,W). R to R when they incorrectly write that

Because we took the trouble to de-  cos(x+y) equals cos x +cos y and that
fine addition and scalar multiplication on  cos 2x equals 2 cos x.

L (V, W), the next result should not be a
surprise.

Linear maps are pervasive throughout

(3.6 L(V,W) is a vector space w

With the operations of addition and scalar multiplication as defined above,
L(V,W) is a vector space.

The routine proof of the result above is left to the reader. Note that the additive
identity of £(V, W) is the zero linear map defined in Example 3.3.

Usually it makes no sense to multiply together two elements of a vector space,
but for some pairs of linear maps a useful product exists, as in the next definition.

~

/3.7 definition: product of linear maps

T e £(U,V)and S € £(V, W), then the product ST € £(U, W) is defined
by
(ST)(u) = S(Tu)

\for allu e U. )

Thus ST is just the usual composition S o T of two functions, but when both
functions are linear, we usually write ST instead of S o T. The product notation
ST helps make the distributive properties (see next result) seem natural.

Note that ST is defined only when T maps into the domain of S. You should
verify that ST is indeed a linear map from U to W whenever T € £(U, V) and
Se L(V,W).

Linear Algebra Done Right, fourth edition, by Sheldon Axler



56 Chapter 3  Linear Maps

/

3.8 algebraic properties of products of linear maps

N

associativity
(T, T,) T; = T;(T,T5) whenever T;, T,, and T; are linear maps such that
the products make sense (meaning T; maps into the domain of T,, and T,
maps into the domain of T;).

identity
TI = IT = T whenever T € £(V, W); here the first I is the identity operator
on V, and the second [ is the identity operator on W.

distributive properties
(51 + S))T = 5T + S,T and S(T; + T,) = ST; + ST, whenever
T,1:,T, € £(U,V)and S, S5,,S, € L(V, V). )

o

The routine proof of the result above is left to the reader.
Multiplication of linear maps is not commutative. In other words, it is not
necessarily true that ST = TS, even if both sides of the equation make sense.

3.9 example: two noncommuting linear maps from P (R) to P(R)

Suppose D € £(P(R)) is the differentiation map defined in Example 3.3
and T € £(P(R)) is the multiplication by x% map defined earlier in this section.
Then

((TD)p)(x) = x*p'(x) but ((DT)p)(x) = x?p'(x) + 2xp(x).

Thus TD # DT—differentiating and then multiplying by x? is not the same as
multiplying by x? and then differentiating.

(3.10 linear maps take 0 to 0 W

LSuppose T is a linear map from V to W. Then T(0) = 0. J

Proof By additivity, we have
T0)=T@O+0)=T©O) +T(O).

Add the additive inverse of T (0) to each side of the equation above to conclude
that T(0) = 0.

Suppose m,b € R. The function f: R — R defined by
f(x)y=mx+b
is a linear map if and only if b = 0 (use 3.10). Thus the linear functions of high

school algebra are not the same as linear maps in the context of linear algebra.
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Exercises 3A

1 Suppose b,c € R. Define T: R® - R? by
T(x,y,z) = 2x —4y + 3z + b, 6x + cxyz).
Show that T is linear if and only if b = ¢ = 0.
2 Suppose b,c € R. Define T: P(R) — R? by

2
Tp = (3;9(4) +5p'(6) + bp(l)p(Z),I : x3p(x) dx + csinp(O)).
Show that T is linear if and only if b = ¢ = 0.

3 Suppose that T € £(F",F"). Show that there exist scalars A; , € F for
j=1,..,mandk =1, ...,n such that
T(xps X)) = (Ap 10 + oo+ Ay Xy eos Ay 1 X + 0 + Ay X))

for every (x,...,x,) € F
This exercise shows that the linear map T has the form promised in the
second to last item of Example 3.3.

4 Suppose T € £(V,W) and v4,...,v,, is a list of vectors in V such that
Tvy,...,Tv,, is a linearly independent list in W. Prove that vy, ...,v,, is
linearly independent.

5 Prove that £(V, W) is a vector space, as was asserted in 3.6.

6 Prove that multiplication of linear maps has the associative, identity, and
distributive properties asserted in 3.8.

7 Show that every linear map from a one-dimensional vector space to itself is
multiplication by some scalar. More precisely, prove that if dim V' = 1 and
T € £(V), then there exists A € F such that Tv = Avforallv € V.

8 Give an example of a function ¢: R?> > R such that
¢(av) = ag(v)

for alla € R and all v € R? but ¢ is not linear.
This exercise and the next exercise show that neither homogeneity nor
additivity alone is enough to imply that a function is a linear map.

9 Give an example of a function ¢: C — C such that

pw +z) = g(w) + ¢(z)
for all w, z € C but ¢ is not linear. (Here C is thought of as a complex vector
space.)

There also exists a function ¢ R — R such that ¢ satisfies the additivity
condition above but ¢ is not linear. However, showing the existence of such
a function involves considerably more advanced tools.
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Prove or give a counterexample: If g € P(R) and T: P(R) - P(R) is
defined by Tp = g o p, then T is a linear map.

The function T defined here differs from the function T defined in the last
bullet point of 3.3 by the order of the functions in the compositions.

Suppose V is finite-dimensional and T € £(V). Prove that T is a scalar
multiple of the identity if and only if ST = TS for every S € £(V).

Suppose U is a subspace of V with U # V. Suppose S € £(U, W) and
S # 0 (which means that Su # 0 for some u € U). Define T: V — W by

T Sv ifvel,
U=
0 ifveVand ve U.

Prove that T is not a linear map on V.

Suppose V is finite-dimensional. Prove that every linear map on a subspace
of V can be extended to a linear map on V. In other words, show that if U is
a subspace of Vand S € £(U, W), then there exists T € £(V, W) such that
Tu = Suforallu € U.

The result in this exercise is used in the proof of 3.125.

Suppose V is finite-dimensional with dim V' > 0, and suppose W is infinite-
dimensional. Prove that £(V, W) is infinite-dimensional.

Suppose vy, ..., v, is a linearly dependent list of vectors in V. Suppose
also that W # {0}. Prove that there exist wy,...,w,, € W such that no
T € £(V, W) satisfies Ty, = wy foreachk =1, ..., m.

Suppose V is finite-dimensional with dim V' > 1. Prove that there exist
S, T € £(V) such that ST # TS.

Suppose V is finite-dimensional. Show that the only two-sided ideals of
L(V) are {0} and £(V).

A subspace & of L£(V) is called a two-sided ideal of £(V) if TE € & and
ETeforallE€ Eandall T € L(V).
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3B Null Spaces and Ranges

Null Space and Injectivity

In this section we will learn about two subspaces that are intimately connected
with each linear map. We begin with the set of vectors that get mapped to 0.

(3.11 definition: null space, null T

For T € £(V, W), the null space of T, denoted by null T, is the subset of V
consisting of those vectors that T maps to 0:

nullT ={ve V:Tov=0}.

3.12 example: null space

e If T is the zero map from V to W, meaning that Tv = 0 for every v € V, then
nullT = V.

e Suppose ¢ € £(C3C) is defined by ¢(zq,2,,23) = z; + 2z, + 3z3. Then
null ¢ equals {(z,,2,,23) € C® : z; + 2z, + 3z; = 0}, which is a subspace of
the domain of ¢. We will soon see that the null space of each linear map is a
subspace of its domain.

® Suppose D € L‘(?(R)) is the dif- The word “null” means zero. Thus the

ferentiation map defined by Dp = p'. o1y “uuii space” should remind you
The only functions whose derivative ¢ he connection to 0. Some mathe-

equals the zero function are the con-  aricians use the term kernel instead
stant functions. Thus the null space of  of null space.
D equals the set of constant functions.

e Suppose that T € £(P(R)) is the multiplication by x> map defined by
(Tp)(x) = x2p(x). The only polynomial p such that xzp(x) =0forallx e R
is the 0 polynomial. Thus null T = {0}.

e Suppose T € £(F>) is the backward shift defined by
T(xl, xz, X3, “es ) = (xZ, X3, “ee ).

Then T (x4, x5, X3, ... ) equals 0 if and only if the numbers x,, x5, ... are all 0.
Thus null T = {(a,0,0,...) : a € F}.

The next result shows that the null space of each linear map is a subspace of
the domain. In particular, 0 is in the null space of every linear map.

(3.13 the null space is a subspace W

buppose T € £(V,W). Then null T is a subspace of V. J
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Proof Because T is a linear map, T(0) = 0 (by 3.10). Thus 0 € null T.
Suppose u,v € null T. Then

Twu+v)=Tu+To=0+0=0.
Hence u + v € null T. Thus null T is closed under addition.
Suppose u € null T and A € F. Then
T(Au) = ATu = A0 =0.
Hence Au € null T. Thus null T is closed under scalar multiplication.

We have shown that null T contains 0 and is closed under addition and scalar
multiplication. Thus null T is a subspace of V (by 1.34).

As we will soon see, for a linear map the next definition is closely connected
to the null space.

(3. 14 definition: injective W

LA function T: V — W is called injective if Tu = Tv implies u = v. )

We could rephrase the definition
above to say that T is injective if u # v
implies that Tu # To. Thus T is injective
if and only if it maps distinct inputs to distinct outputs.

The next result says that we can check whether a linear map is injective
by checking whether 0 is the only vector that gets mapped to 0. As a simple
application of this result, we see that of the linear maps whose null spaces we
computed in 3.12, only multiplication by x? is injective (except that the zero map
is injective in the special case V = {0}).

The term one-to-one means the same
as injective.

ﬁ.15 injectivity < null space equals {0} W

kLet T € £(V,W). Then T is injective if and only if null T = {0}. )

Proof First suppose T is injective. We want to prove that null T = {0}. We
already know that {0} C null T (by 3.10). To prove the inclusion in the other
direction, suppose v € null T. Then

T(w)=0=T(0).

Because T is injective, the equation above implies that v = 0. Thus we can
conclude that null T = {0}, as desired.
To prove the implication in the other direction, now suppose null T = {0}. We
want to prove that T is injective. To do this, suppose u,v € V and Tu = Tv. Then
0=Tu—-To=T(u—-"0).

Thus u — v is in null T, which equals {0}. Hence u — v = 0, which implies that
u = v. Hence T is injective, as desired.
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Range and Surjectivity

Now we give a name to the set of outputs of a linear map.

3.16 definition: range

For T € £(V, W), the range of T is the subset of W consisting of those vectors
that are equal to Tv for some v € V:

rangeT = {Tv : v € V}.

3.17 example: range

e If T is the zero map from V to W, meaning that Tv = 0 for every v € V, then
range T = {0}.
e Suppose T € £(R%R?) is defined by T(x,y) = (2x,5y,x +y). Then
range T = {(2x,5y,x +y) : x,y € R}.
Note that range T is a subspace of R3. We will soon see that the range of each

element of £(V, W) is a subspace of W.

e Suppose D € £(P(R)) is the differentiation map defined by Dp = p’. Because
for every polynomial g € P(R) there exists a polynomial p € P (R) such that
p’ = q, the range of D is P(R).

The next result shows that the range of each linear map is a subspace of the
vector space into which it is being mapped.

/3.18 the range is a subspace )

\If T € £(V,W), then range T is a subspace of W. )

Proof Suppose T € £(V,W). Then T(0) = 0 (by 3.10), which implies that
0 € range T.

If wy,w, € rangeT, then there exist v;,v, € V such that To; = w; and
Tv, = w,. Thus

T('Ul + 'Uz) = Tv1 + T'Uz = ZU1 + ZU2.

Hence w; + w, € range T. Thus range T is closed under addition.
If w € range T and A € F, then there exists v € V such that Tv = w. Thus

T(Av) = ATv = Aw.

Hence Aw &€ range T. Thus range T is closed under scalar multiplication.
We have shown that range T contains 0 and is closed under addition and scalar
multiplication. Thus range T is a subspace of W (by 1.34).
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(3.19 definition: surjective W

LA function T: V — W is called surjective if its range equals W. )

To illustrate the definition above, note that of the ranges we computed in 3.17,
only the differentiation map is surjective (except that the zero map is surjective in
the special case W = {0}).

Whether a linear map is surjective de-
pends on what we are thinking of as the
vector space into which it maps.

Some people use the term onto, which
means the same as surjective.

3.20 example: surjectivity depends on the target space

The differentiation map D € £(P5(R)) defined by Dp = p’ is not surjective,
because the polynomial x° is not in the range of D. However, the differentiation
map S € ZI(S’{;,(R), 5’34(R)) defined by Sp = p’ is surjective, because its range
equals 7, (R), which is the vector space into which S maps.

Fundamental Theorem of Linear Maps

The next result is so important that it gets a dramatic name.

FS.21 fundamental theorem of linear maps

Suppose V is finite-dimensional and T € £(V, W). Then range T is finite-
dimensional and

dimV = dimnull T + dim range T.

Proof Let uq,...,u,, be a basis of nullT; thus dimnull T = m. The linearly
independent list u4, ..., u,, can be extended to a basis

Uiy eees Upyys Uy ens Uy

of V (by 2.32). Thus dim V' = m + n. To complete the proof, we need to show that
range T is finite-dimensional and dimrange T = n. We will do this by proving
that Tvq, ..., Tv,, is a basis of range T.

Letv € V. Because uy, ..., u,,, vy, ..., 0, spans V, we can write

v =aguqy + - +a,u,, +bjog + - +b,0,,
where the a’s and b’s are in F. Applying T to both sides of this equation, we get
Tv =b;Toy + - +b,To,,,

where the terms of the form Tu; disappeared because each u; is in null T. The
last equation implies that the list Tv4, ..., Tv,, spans range T. In particular, range T
is finite-dimensional.
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To show Tvy, ..., Tv, is linearly independent, suppose c;, ...,c,, € F and
cToy + -+ +c¢c,Tv, =0.

Then

T(civq + - +¢,0,) =0.
Hence

€01 + -+ +¢,v, €null T.
Because u, ..., u,, spans null T, we can write

€10y + -+ ¢,v, =dyuy + - +d,u,,

where the d’s are in F. This equation implies that all the ¢’s (and d’s) are 0
(because uy, ..., u,,, v, ..., v, is linearly independent). Thus Tvy, ..., Tv,, is linearly
independent and hence is a basis of range T, as desired.

Now we can show that no linear map from a finite-dimensional vector space
to a “smaller” vector space can be injective, where “smaller” is measured by
dimension.

(3.22 linear map to a lower-dimensional space is not injective w

Suppose V and W are finite-dimensional vector spaces such that
dim V > dim W. Then no linear map from V to W is injective.

Proof LetT € £(V,W). Then
dimnull T = dimV — dimrange T
>dimV —dim W
> 0,

where the first line above comes from the fundamental theorem of linear maps
(3.21) and the second line follows from 2.37. The inequality above states that
dimnull T > 0. This means that null T contains vectors other than 0. Thus T is
not injective (by 3.15).

3.23 example: linear map from F* to F° is not injective |

Define a linear map T: F* — F° by
T(zq,25,23,24) = (\/721 + T2y + 24,9721 + 325 + 223,25, + 625 + 724).

Because dim F* > dim F3 we can use 3.22 to assert that T is not injective, without
doing any calculations.
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The next result shows that no linear map from a finite-dimensional vector
space to a “bigger” vector space can be surjective, where “bigger” is measured by
dimension.

(3.24 linear map to a higher-dimensional space is not surjective w

Suppose V and W are finite-dimensional vector spaces such that
dim V' < dim W. Then no linear map from V to W is surjective.

Proof LetT € £(V,W). Then
dimrange T = dimV — dimnull T

<dimV

< dim W,

where the equality above comes from the fundamental theorem of linear maps
(3.21). The inequality above states that dimrange T < dim W. This means that
range T cannot equal W. Thus T is not surjective.

As we will soon see, 3.22 and 3.24 have important consequences in the theory
of linear equations. The idea is to express questions about systems of linear
equations in terms of linear maps. Let’s begin by rephrasing in terms of linear
maps the question of whether a homogeneous system of linear equations has a
nonzero solution.

Fix positive integers m and n, and let Homogeneous, in this context, means

A €F forj=1,...mandk =1,...0  tput the constant term on the right side
Consider the homogeneous system of lin- ¢ oqch equation below is 0.

ear equations

n
Z Al’kxk - O
k=1

n
Z Am’kxk = 0
k=1

Clearly x; = --- = x,, = 0 is a solution of the system of equations above; the
question here is whether any other solutions exist.
Define T: F'" — F" by

n n
3.25 T(xl,...,xn) == ( Z Alykxk,..., Z Amykxk>.
k=1 k=1

The equation T (xq, ..., x,,) = 0 (the 0 here is the additive identity in F", namely,
the list of length m of all 0’s) is the same as the homogeneous system of linear
equations above.

Thus we want to know if null T is strictly bigger than {0}, which is equivalent
to T not being injective (by 3.15). The next result gives an important condition
for ensuring that T is not injective.
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(3.26 homogeneous system of linear equations w

A homogeneous system of linear equations with more variables than equations
has nonzero solutions.

Proof Use the notation and result from the discussion above. Thus T is a linear
map from F” to F”, and we have a homogeneous system of m linear equations
with n variables x4, ..., x,,. From 3.22 we see that T is not injective if n > m.

Example of the result above: a homogeneous system of four linear equations
with five variables has nonzero solutions.

Now we consider the question of whether a system of linear equations has no
solutions for some choice of the constant terms. To rephrase this question in terms
of a linear map, fix positive integers m and n, and let Aj, cEFforallj=1,..,m
andallk = 1,...,n. For ¢y, ...,c,, € F, consider the system of linear equations

n
Z Aj X =0
k=1

3.27

|
o

n
Z Am,kxk =
k=1

With this notation, the question here is whether there is some choice of the constant
terms ¢4, ..., c,, € F such that no solution exists to the system above.

Define T: F* — F" as in 3.25. The The results 3.26 and 3.28, which com-

equation T'(xy, ..., x,,) = (cq, ---».Cm) is the pare the number of variables and
same as the system of equations 3.27. e number of equations, can also

Thus we want to know if range T # F™. pe proved using Gaussian elimina-
Hence we can rephrase our question  tion. The abstract approach taken here
about not having a solution for some  seems to provide cleaner proofs.
choice of ¢y, ..., ¢, € F as follows: What

condition ensures that T is not surjective? The next result gives one such condition.

(3.28 system of linear equations with more equations than variables W

A system of linear equations with more equations than variables has no solution
for some choice of the constant terms.

Proof Use the notation from the discussion above. Thus T is a linear map from
F" to F", and we have a system of m equations with n variables x, ..., x,,; see
3.27. If n < m, then 3.24 implies that T is not surjective. As discussed above,
this shows that if we have more equations than variables in a system of linear
equations, then there is no solution for some choice of the constant terms.

Example of the result above: a system of five linear equations with four
variables has no solution for some choice of the constant terms.
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Exercises 3B

N S A

10

11

12

13

14

15

Give an example of a linear map T with dimnull T = 3 and dimrange T = 2.

Suppose S, T € £(V) are such that range S C null T. Prove that (ST)? = 0.

Suppose vy, ..., v, is a list of vectors in V. Define T € £(F", V) by
T(ZqyeeesZyy) = 2901 + =+ + 2,0,

(a) What property of T corresponds to vy, ..., v,, spanning V?
(b) What property of T corresponds to the list v4,...,v,, being linearly
independent?

Show that {T € £(R%R*) : dimnull T > 2} is not a subspace of £(R5 R*).
Give an example of T € £(R*) such that range T = null T.
Prove that there does not exist T € £(R®) such that range T = null T.

Suppose V and W are finite-dimensional with 2 < dim V < dim W. Show
that {T € £(V, W) : T is not injective} is not a subspace of £(V, W).

Suppose V and W are finite-dimensional with dimV > dim W > 2. Show
that {T € £(V, W) : T is not surjective} is not a subspace of £(V, W).

Suppose T € £(V, W) is injective and v, ..., v,, is linearly independent in V.
Prove that Tv,, ..., Tv, is linearly independent in W.

Suppose vy, ..., v,, spans V and T € £(V, W). Show that Tv, ..., Tv,, spans
range T.

Suppose that V is finite-dimensional and that T € £(V, W). Prove that there
exists a subspace U of V such that

UNnullT ={0} and rangeT = {Tu:u € U}.
Suppose T is a linear map from F* to F? such that
null T = {(xy,%y,%3,%4) € F* 1 x; = 5x, and x5 = 7x,}.
Prove that T is surjective.

Suppose U is a three-dimensional subspace of R® and that T is a linear map
from R® to R® such that null T = U. Prove that T is surjective.

Prove that there does not exist a linear map from F° to F> whose null space
equals {(x;, Xy, %3, X4,%5) € F° 1 x; = 3x, and x5 = x4 = x5}

Suppose there exists a linear map on V whose null space and range are both
finite-dimensional. Prove that V is finite-dimensional.
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Suppose V and W are both finite-dimensional. Prove that there exists an
injective linear map from V to W if and only if dim V' < dim W.

Suppose V and W are both finite-dimensional. Prove that there exists a
surjective linear map from V onto W if and only if dim V > dim W.

Suppose V and W are finite-dimensional and that U is a subspace of V.
Prove that there exists T € £(V, W) such that null T = U if and only if
dimU > dim V — dim W.

Suppose W is finite-dimensional and T € £(V, W). Prove that T is injective
if and only if there exists S € £(W, V') such that ST is the identity operator
on V.

Suppose W is finite-dimensional and T € £(V, W). Prove that T is surjective
if and only if there exists S € £(W, V) such that TS is the identity operator
on W.

Suppose V is finite-dimensional, T € £(V, W), and U is a subspace of W.
Prove that {v € V : Tv € U} is a subspace of V and

dim{fv € V: To € U} = dimnull T + dim(U Nrange T).

Suppose U and V are finite-dimensional vector spaces and S € £(V, W) and
T e £(U,V). Prove that

dimnull ST < dimnull S + dimnull T.

Suppose U and V are finite-dimensional vector spaces and S € £(V, W) and
T € £(U,V). Prove that

dimrange ST < min{dimrange S, dimrange T}.

(a) SupposedimV =5and S, T € £(V) are such that ST = 0. Prove that
dimrange TS < 2.
(b) Give an example of S, T € £(F°) with ST = 0 and dimrange TS = 2.

Suppose that W is finite-dimensional and S,T € £(V,W). Prove that
null S C null T if and only if there exists E € £(W) such that T = ES.

Suppose that V is finite-dimensional and S, T € £(V,W). Prove that
range S C range T if and only if there exists E € £(V) such that S = TE.

Suppose P € £(V) and P? = P. Prove that V = null P & range P.

Suppose D € £(P(R)) is such that deg Dp = (degp) — 1 for every non-
constant polynomial p € P(R). Prove that D is surjective.

The notation D is used above to remind you of the differentiation map that
sends a polynomial p to p'.
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Suppose p € P(R). Prove that there exists a polynomial 4 € P(R) such
that 59" + 39" = p.
This exercise can be done without linear algebra, but it’s more fun to do it
using linear algebra.

Suppose ¢ € L(V,F) and ¢ # 0. Suppose u € V is not in null ¢. Prove
that
V=nullg & {au:a & F}.

Suppose V is finite-dimensional, X is a subspace of V, and Y is a finite-
dimensional subspace of W. Prove that there exists T &€ £(V, W) such that
null T = X and range T = Y if and only if dim X + dim Y = dim V.

Suppose V is finite-dimensional with dim V' > 1. Show thatif ¢: £(V) - F
is a linear map such that ¢(ST) = @(S)@(T) for all S,T € £(V), then
¢ =0.

Hint: The description of the two-sided ideals of £(V) given by Exercise 17

in Section 3A might be useful.

Suppose that V and W are real vector spaces and T € £(V,W). Define
TC: VC g WC by
Te(u+iv) =Tu+ilv
forall u,v € V.
(a) Show that T is a (complex) linear map from V- to W..
(b) Show that T is injective if and only if T is injective.
(c) Show that range T- = W if and only if range T = W.

See Exercise 8 in Section 1B for the definition of the complexification V.
The linear map T is called the complexification of the linear map T.
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3C Matrices

Representing a Linear Map by a Matrix

We know that if v, ..., v, is a basis of V.and T: V — W is linear, then the values
of Tvy, ..., Tv,, determine the values of T on arbitrary vectors in V—see the linear
map lemma (3.4). As we will soon see, matrices provide an efficient method of
recording the values of the Tv,’s in terms of a basis of W.

/3.29 definition: matrix, Aj’k )

Suppose m and n are nonnegative integers. An m-by-n matrix A is arectangular
array of elements of F with m rows and n columns:

A o Ay
A= 2 :
Am,l Am,n
The notation Aj « denotes the entry in row j, column k of A.
’ J
3.30 example: A; ;. equals entry in row j, column k of A |
S A = 8 4 5-3i
uppose - 1 9 7 * When dealing with matrices, the first

Thus A,  refers to the entry in the sec- index refers to the row number; the sec-
ond row, third column of A, which means ond index refers to the column number.
that A2’3 = 7.

Now we come to the key definition in this section.

(331 )

definition: matrix of a linear map, M (T)

Suppose T € £(V,W) and vy, ...,v,, is a basis of V and w, ..., w,, is a basis
of W. The matrix of T with respect to these bases is the m-by-n matrix M (T)
whose entries A; ; are defined by

To = Ay jwq + - + A, Wy,

If the bases vy, ..., v,, and wy, ..., w,, are not clear from the context, then the
notation M (T, (vy, ...,0,), (W1, ..., w,,)) is used. )

The matrix M (T) of alinear map T € £(V, W) depends on the basis vy, ..., 7,
of V and the basis wy, ..., w,, of W, as well as on T. However, the bases should be
clear from the context, and thus they are often not included in the notation.

To remember how M (T) is constructed from T, you might write across the
top of the matrix the basis vectors vy, ..., v,, for the domain and along the left the
basis vectors wy, ..., w,, for the vector space into which T maps, as follows:
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vl cee ’vk cee Z)n
Wy Aqk
M(T) = :
Wy, Am,k

In the matrix above only the k" col-
umn is shown. Thus the second index of
each displayed entry of the matrix above
is k. The picture above should remind you i
that T, can be computed from M (T) by To, =) A w;.
multiplying each entry in the k™ column j=1
by the corresponding w; from the left col-
umn, and then adding up the resulting
vectors.

If T is a linear map from F” to F”, If T is a linear map from an
then unless stated otherwise, assume the  ,_ 7 oncional vector space 1o an
bases in question are the standard ones ;_gimensional vector space, then
(where the k™ basis vector is 1 in the k™ 7 (T) is an m-by-n matrix.
slot and O in all other slots). If you think
of elements of F” as columns of m numbers, then you can think of the k™ column
of M (T) as T applied to the k™ standard basis vector.

The k™ column of M (T) consists of
the scalars needed to write Tv; as a
linear combination of W, ..., w,,:

3.32 example: the matrix of a linear map from F? to F®
Suppose T € £(F2F°) is defined by
T(x,y) = (x+3y,2x + 5y, 7x + 9y).

Because T(1,0) = (1,2,7) and T(0,1) = (3,5,9), the matrix of T with respect
to the standard bases is the 3-by-2 matrix below:

M(T) =

NN =
O U1 W

When working with 7, (F), use the standard basis 1, x, x2 ..., x™ unless the
context indicates otherwise.

3.33 example: matrix of the differentiation map from P5(R) to P,(R)

Suppose D € £(P3(R), P,(R)) is the differentiation map defined by Dp = p'.
Because (x") = nx"~ %, the matrix of D with respect to the standard bases is the
3-by-4 matrix below:

M(D) =

o O O
SO
o N O
W o o
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Addition and Scalar Multiplication of Matrices

For the rest of this section, assume that U, V, and W are finite-dimensional and
that a basis has been chosen for each of these vector spaces. Thus for each linear
map from V to W, we can talk about its matrix (with respect to the chosen bases).

Is the matrix of the sum of two linear maps equal to the sum of the matrices of
the two maps? Right now this question does not yet make sense because although
we have defined the sum of two linear maps, we have not defined the sum of two
matrices. Fortunately, the natural definition of the sum of two matrices has the
right properties. Specifically, we make the following definition.

-

~

3.34 definition: matrix addition
The sum of two matrices of the same size is the matrix obtained by adding
corresponding entries in the matrices:
Arq A1n Cia Cin
: : + : :
Am,l Am,n Cm,l Cm,n
A1 +Cip o A+ Gy
Am1+cml Amn+cmn
- ’ ’ ’ ’ )

In the next result, the assumption is that the same bases are used for all three
linear maps S + T, S, and T.

(3.35 matrix of the sum of linear maps w

buppose S,T € L(V,W). Then M(S+T) = M(S) + M(T). )

The verification of the result above follows from the definitions and is left to
the reader.

Still assuming that we have some bases in mind, is the matrix of a scalar times
a linear map equal to the scalar times the matrix of the linear map? Again, the
question does not yet make sense because we have not defined scalar multiplication
on matrices. Fortunately, the natural definition again has the right properties.

-~

3.36 definition: scalar multiplication of a matrix

\

The product of a scalar and a matrix is the matrix obtained by multiplying
each entry in the matrix by the scalar:

Arn o A AAyq - AAq,
A : 2 = 2 3
A Apn A, 1 - Ay, )

m,1
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| 3.37 example: addition and scalar multiplication of matrices |

231+42_62+42_1O4
-1 5 1 6 )\ =2 10 1 6 )\ -1 16
In the next result, the assumption is that the same bases are used for both the
linear maps AT and T.

(3.38 the matrix of a scalar times a linear map W

kSuppose AeFand T € £(V,W). Then M (AT) = AM(T). J

The verification of the result above is also left to the reader.

Because addition and scalar multiplication have now been defined for matrices,
you should not be surprised that a vector space is about to appear. First we
introduce a bit of notation so that this new vector space has a name, and then we
find the dimension of this new vector space.

/3.39 notation: F>" )

For m and n positive integers, the set of all m-by-n matrices with entries in F
is denoted by F"™".
N J

/3.40 dim F"™"" = mn N

Suppose m and 7 are positive integers. With addition and scalar multiplication
defined as above, F"-" is a vector space of dimension mn. )

Proof The verification that F”" is a vector space is left to the reader. Note that
the additive identity of F"" is the m-by-n matrix all of whose entries equal 0.

The reader should also verify that the list of distinct m-by-n matrices that have
0 in all entries except for a 1 in one entry is a basis of F"". There are mn such
matrices, so the dimension of F"-" equals mn.

Matrix Multiplication

Suppose, as previously, that vy, ..., v, is a basis of V and wy, ..., w,), is a basis of W.
Suppose also that u, ..., u, is a basis of U.

Consider linear maps T: U — Vand S: V — W. The composition ST is a
linear map from U to W. Does M (ST) equal M (S) M (T)? This question does
not yet make sense because we have not defined the product of two matrices. We
will choose a definition of matrix multiplication that forces this question to have
a positive answer. Let’s see how to do this.
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Suppose M (S) = Aand M (T) = B. For 1 < k < p, we have
(ST)u; = s( Yy B,’kv,)
r=1

n
= Z Br,ksvr
r=1
n
= Z Br,k
=1 j

Aj w;

m
=1

<

m n
= Z < Z Aj’rBr’k>wj.
j=1 r=1
Thus M (ST) is the m-by-p matrix whose entry in row j, column k, equals

Z Aj,rBr,k
r=1
Now we see how to define matrix multiplication so that the desired equation
M(ST) = M (S) M(T) holds.
Vs

3.41 definition: matrix multiplication

~

Suppose A is an m-by-n matrix and B is an n-by-p matrix. Then AB is defined
to be the m-by-p matrix whose entry in row j, column k, is given by the equation

n
(AB)]',k = Z Aj,rBr,k
r=1

Thus the entry in row j, column k, of AB is computed by taking row j of A and
column k of B, multiplying together corresponding entries, and then summing)

Note .that we define the product of -y, may have learned this definition
two matrices only when the number of of matrix multiplication in an earlier
columns of the first matrix equals the  course, although you may not have
number of rows of the second matrix. seen this motivation for it.

3.42 example: matrix multiplication

Here we multiply together a 3-by-2 matrix and a 2-by-4 matrix, obtaining a
3-by-4 matrix:

;2(6543
5 e V210 -1

Matrix multiplication is not commutative—AB is not necessarily equal to
BA even if both products are defined (see Exercise 10). Matrix multiplication is
distributive and associative (see Exercises 11 and 12).

=| 26 19 12 5

) 10 7 4 1
42 31 20 9
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In the next result, we assume that the same basis of V is used in considering
T € £(U,V)and S € £(V,W), the same basis of W is used in considering
S e L(V,W)and ST € £(U, W), and the same basis of U is used in considering
Te LUV)and ST € LU, W).

(3.43 matrix of product of linear maps w
QfTEﬁ(U,V) and S € £L(V, W), then M (ST) = M (S) M (T). j

The proof of the result above is the calculation that was done as motivation
before the definition of matrix multiplication.

In the next piece of notation, note that as usual the first index refers to a row
and the second index refers to a column, with a vertically centered dot used as a
placeholder.

/3.44 notation: A]-,_ s A_’k

~

Suppose A is an m-by-n matrix.

e If 1 <j<m,thenA;. denotes the 1-by-n matrix consisting of row j of A.

e If1 <k < n,then A ; denotes the m-by-1 matrix consisting of column k

3.45 example: A; . equals j™ row of A and Ay equals k™ column of A |

The notation A,y denotes the second row of A and A, denotes the second

. 8 4 5
column of A. Thusif A = ( 19 7 ),then

A, =(1 9 7) and A‘,2:(g).

The product of a 1-by-n matrix and an n-by-1 matrix is a 1-by-1 matrix. How-
ever, we will frequently identify a 1-by-1 matrix with its entry. For example,

6
(3 4)(5])=(2)
because 3 - 6 + 4 - 2 = 26. However, we can identify ( 26 ) with 26, writing

6
(3 4), =2
The next result uses the convention discussed in the paragraph above to give
another way to think of matrix multiplication. For example, the next result and
the calculation in the paragraph above explain why the entry in row 2, column 1,

of the product in Example 3.42 equals 26.
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N

/

3.46 entry of matrix product equals row times column

Suppose A is an m-by-n matrix and B is an n-by-p matrix. Then
(AB)]‘,k = A]',. B.,k

if1 <j<mand1 <k < p. In other words, the entry in row j, column k, of
\AB equals (row j of A) times (column k of B). )

Proof Supposel <j<mand1 < k < p. The definition of matrix multiplication
states that

3.47 (AB)],k = Aj,lBl,k + -+ Aj,an,k'

The definition of matrix multiplication also implies that the product of the 1-by-n
matrix A;. and the n-by-1 matrix B_  is the 1-by-1 matrix whose entry is the
number on the right side of the equation above. Thus the entry in row j, column k,
of AB equals (row j of A) times (column k of B).

The next result gives yet another way to think of matrix multiplication. In the
result below, (AB). ; is column k of the m-by-p matrix AB. Thus (AB).  is an
m-by-1 matrix. Also, AB. ; is an m-by-1 matrix because it is the product of an
m-by-n matrix and an n-by-1 matrix. Thus the two sides of the equation in the
result below have the same size, making it reasonable that they might be equal.

(3.48 column of matrix product equals matrix times column

Suppose A is an m-by-n matrix and B is an n-by-p matrix. Then
(AB),,k - AB,’k

if 1 < k < p. In other words, column k of AB equals A times column k of B.

Proof As discussed above, (AB). and AB. ; are both m-by-1 matrices. If 1 <
j < m, then the entry in row j of (AB).  is the left side of 3.47 and the entry in
row j of AB.  is the right side of 3.47. Thus (AB). , = AB_,.

Our next result will give another way of thinking about the product of an
m-by-n matrix and an n-by-1 matrix, motivated by the next example.

3.49 example: product of a 3-by-2 matrix and a 2-by-1 matrix
Use our definitions and basic arithmetic to verify that

1 2 5 7 1 2

3 4 ( 1 ) =] 19 |=5 3 |+1] 4

5 6 31 5 6

Thus in this example, the product of a 3-by-2 matrix and a 2-by-1 matrix is a
linear combination of the columns of the 3-by-2 matrix, with the scalars (5 and 1)
that multiply the columns coming from the 2-by-1 matrix.
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The next result generalizes the example above.

/3.50 linear combination of columns )

by
Suppose A is an m-by-n matrix and b = : | is an n-by-1 matrix. Then
b

n

Ab = blA,l + .- + bnA~,n'

In other words, Ab is a linear combination of the columns of A, with the
scalars that multiply the columns coming from b. Y

Proof If k € {1, ..., m}, then the definition of matrix multiplication implies that
the entry in row k of the m-by-1 matrix Ab is

Ak,lbl + b +Ak,nbn'

The entry inrow k of b; A, | +---+b,, A, , also equals the number displayed above.
Because Ab and b;A. | + --- + b, A, have the same entry in row k for each
k € {1,...,m}, we conclude that Ab = b1A_; + -+ b, A_,.

Our two previous results focus on the columns of a matrix. Analogous results
hold for the rows of a matrix. Specifically, see Exercises 8 and 9, which can be
proved using appropriate modifications of the proofs of 3.48 and 3.50.

The next result is the main tool used in the next subsection to prove the
column—row factorization (3.56) and to prove that the column rank of a matrix
equals the row rank (3.57). To be consistent with the notation often used with the
column—row factorization, including in the next subsection, the matrices in the
next result are called C and R instead of A and B.

(351 A

matrix multiplication as linear combinations of columns or rows

Suppose C is an m-by-c matrix and R is a c-by-n matrix.

(a) If k € {1,...,n}, then column k of CR is a linear combination of the
columns of C, with the coefficients of this linear combination coming
from column k of R.

(b) Ifj € {1,...,m}, then row j of CR is a linear combination of the rows of R,
with the coefficients of this linear combination coming from row j of C. )
Proof  Suppose k € {1,...,n}. Then column k of CR equals CR_; (by 3.48),
which equals the linear combination of the columns of C with coefficients coming
from R_ (by 3.50). Thus (a) holds.
To prove (b), follow the pattern of the proof of (a) but use rows instead of
columns and use Exercises 8 and 9 instead of 3.48 and 3.50.
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Column—Row Factorization and Rank of a Matrix

We begin by defining two nonnegative integers associated with each matrix.

/

3.52 definition: column rank, row rank

~

Suppose A is an m-by-n matrix with entries in F.

e The column rank of A is the dimension of the span of the columns of A
in F™-1,

e The row rank of A is the dimension of the span of the rows of A in F-".

/

If A is an m-by-n matrix, then the column rank of A is at most n (because A has
n columns) and the column rank of A is also at most m (because dim F"™! = m).
Similarly, the row rank of A is also at most min{m, n}.

| 3.53 example: column rank and row rank of a 2-by-4 matrix |

47 1 8
A= ( 35209 )'

The column rank of A is the dimension of

sl ($1()(2)(3))

in F>1. Neither of the first two vectors listed above in F>! is a scalar multiple of
the other. Thus the span of this list of length four has dimension at least two. The
span of this list of vectors in F>! cannot have dimension larger than two because
dim F?! = 2. Thus the span of this list has dimension two, which means that the
column rank of A is two.

The row rank of A is the dimension of

span(( 47 18)(3529))

in F-% Neither of the two vectors listed above in F1# is a scalar multiple of the
other. Thus the span of this list of length two has dimension two, which means
that the row rank of A is two.

Suppose

We now define the transpose of a matrix.

~

3.54 definition: transpose, A

The transpose of a matrix A, denoted by A', is the matrix obtained from A by
interchanging rows and columns. Specifically, if A is an m-by-n matrix, then
A' is the n-by-m matrix whose entries are given by the equation

t —
\ (A >k,j - Aj,k' /
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3.55 example: transpose of a matrix

5 -7
IfA=| 3 8 ,thenA‘:(_57 g _24 )
-4 2

Note that here A is a 3-by-2 matrix and A" is a 2-by-3 matrix.

The transpose has nice algebraic properties: (A + B)' = A' + BY, (AA)! = AA,
and (AC)' = C'A" for all m-by-n matrices A, B, all A € F, and all n-by-p matrices
C (see Exercises 14 and 15).

The next result will be the main tool used to prove that the column rank equals
the row rank (see 3.57).

(3.56 column—row factorization

Suppose A is an m-by-n matrix with entries in F and column rank ¢ > 1. Then
there exist an m-by-c matrix C and a c-by-n matrix R, both with entries in F,
such that A = CR.

Proof Each column of A is an m-by-1 matrix. The list A_ 4, ..., A, of columns
of A can be reduced to a basis of the span of the columns of A (by 2.30). This
basis has length c, by the definition of the column rank. The ¢ columns in this
basis can be put together to form an m-by-c matrix C.

If k € {1, ...,n}, then column k of A is a linear combination of the columns
of C. Make the coeficients of this linear combination into column k of a c-by-n
matrix that we call R. Then A = CR, as follows from 3.51(a).

In Example 3.53, the column rank and row rank turned out to equal each other.
The next result states that this happens for all matrices.

(3.57 column rank equals row rank W

LSuppose A € F"™". Then the column rank of A equals the row rank of A. J

Proof Let ¢ denote the column rank of A. Let A = CR be the column-row
factorization of A given by 3.56, where C is an m-by-c matrix and R is a c-by-n
matrix. Then 3.51(b) tells us that every row of A is a linear combination of the
rows of R. Because R has c rows, this implies that the row rank of A is less than
or equal to the column rank c of A.

To prove the inequality in the other direction, apply the result in the previous
paragraph to A', getting

column rank of A = row rank of A*
< column rank of A'

= row rank of A.

Thus the column rank of A equals the row rank of A.
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Because the column rank equals the row rank, the last result allows us to
dispense with the terms “column rank” and “row rank” and just use the simpler
term “rank”.

(3.58 definition: rank \

kThe rank of a matrix A € F™" is the column rank of A. )

See 3.133 and Exercise 8 in Section 7A for alternative proofs that the column
rank equals the row rank.

Exercises 3C

1 Suppose T € £(V, W). Show that with respect to each choice of bases of V
and W, the matrix of T has at least dim range T nonzero entries.

2 Suppose T € £(V, W), where V and W are finite-dimensional and nonzero.
Prove that dimrange T = 1 if and only if there exist a basis of V and a basis
of W such that with respect to these bases, all entries of M (T) equal 1.

3 Suppose v, ..., v, is a basis of V and wy, ..., w,, is a basis of W.

(a) Show thatif S, T € £(V,W), then M (S + T) = M(S) + M(T).
(b) Show thatif A € Fand T € £(V,W), then M (AT) = AM(T).

This exercise asks you to verify 3.35 and 3.38.

4 Suppose that D € £(P5(R), P,(R)) is the differentiation map defined by
Dp = p'. Find a basis of P;(R) and a basis of P, (R) such that the matrix of
D with respect to these bases is

1 0 0 O
0100
0 010
Compare with Example 3.33. The next exercise generalizes this exercise.

5 Suppose V and W are finite-dimensional and T € £(V, W). Prove that there
exist a basis of V and a basis of W such that with respect to these bases, all
entries of M (T) are 0 except that the entries in row k, column k, equal 1 if
1 <k < dimrangeT.

6 Suppose vy, ...,v,, is a basis of V and W is finite-dimensional. Suppose
T € £(V,W). Prove that there exists a basis w;, ..., w, of W such that all
entries in the first column of M (T) [with respect to the bases vy, ..., v,, and
wy, ..., w,] are 0 except for possibly a 1 in the first row, first column.

In this exercise, unlike Exercise 5, you are given the basis of V instead of
being able to choose a basis of V.
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Suppose wy, ..., w,, is a basis of W and V is finite-dimensional. Suppose
T € £(V,W). Prove that there exists a basis vy, ...,v,, of V such that all
entries in the first row of M (T) [with respect to the bases vy, ...,v,, and
wy, ..., w,] are 0 except for possibly a 1 in the first row, first column.

In this exercise, unlike Exercise 5, you are given the basis of W instead of
being able to choose a basis of W.
Suppose A is an m-by-n matrix and B is an n-by-p matrix. Prove that
(AB);.=A;.B
foreach 1 < j < m. In other words, show that row j of AB equals (row j of A)
times B.
This exercise gives the row version of 3.48.
Suppose a = ( a, - a, ) is a 1-by-n matrix and B is an n-by-p matrix.

Prove that
aB=a,By .+ +a,B, ..

In other words, show that aB is a linear combination of the rows of B, with
the scalars that multiply the rows coming from a.

This exercise gives the row version of 3.50.
Give an example of 2-by-2 matrices A and B such that AB # BA.

Prove that the distributive property holds for matrix addition and matrix
multiplication. In other words, suppose A, B, C, D, E, and F are matrices
whose sizes are such that A(B + C) and (D + E) F make sense. Explain why
AB + AC and DF + EF both make sense and prove that

AB+C)=AB+AC and (D+E)F =DF + EF.

Prove that matrix multiplication is associative. In other words, suppose A, B,
and C are matrices whose sizes are such that (AB) C makes sense. Explain
why A(BC) makes sense and prove that

(AB)C = A(BC).

Try to find a clean proof that illustrates the following quote from Emil Artin:
“It is my experience that proofs involving matrices can be shortened by 50%
if one throws the matrices out.”

Suppose A is an n-by-n matrix and 1 < j,k < n. Show that the entry in
row j, column k, of A3 (which is defined to mean AAA) is

3 ZA]p pr

p=1r=1

Suppose m and n are positive integers. Prove that the function A — A'is a
linear map from F"™" to F"»™.
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Prove that if A is an m-by-n matrix and C is an n-by-p matrix, then

(AC)! = C'Al.
This exercise shows that the transpose of the product of two matrices is the
product of the transposes in the opposite order.

Suppose A is an m-by-n matrix with A # 0. Prove that the rank of A is 1
if and only if there exist (cy,...,c,,) € F" and (dy, ...,d,)) € F" such that

A]-’k = c]-dk foreveryj=1,...,mandeveryk = 1,...,n.

Suppose T € £(V), and uq, ..., u,, and vy, ..., v,, are bases of V. Prove that
the following are equivalent.

(a) T is injective.

(b) The columns of M (T) are linearly independent in F"*1,

(c) The columns of M (T) span F*1

(d) The rows of M (T) span F!-".

(e) The rows of M (T) are linearly independent in F'-".

Here M (T) means M (T, (uq, ..., u,), (U1, ..., 0,)).
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3D Invertibility and Isomorphisms

Invertible Linear Maps

We begin this section by defining the notions of invertible and inverse in the
context of linear maps.

( )

3.59 definition: invertible, inverse

e Alinear map T € £(V, W) is called invertible if there exists a linear map
S € £L(W, V) such that ST equals the identity operator on V and TS equals
the identity operator on W.

e A linear map S € £(W, V) satisfying ST = [ and TS = [ is called an
inverse of T (note that the first I is the identity operator on V and the second
[ is the identity operator on W). )

The definition above mentions “an inverse”. However, the next result shows
that we can change this terminology to “the inverse”.

( 3.60 inverse is unique \

kAn invertible linear map has a unique inverse. J

Proof  Suppose T € £(V, W) is invertible and S; and S, are inverses of T. Then
Sl = SlI = 81 (TSz) = (SlT) Sz = ISZ = Sz.
Thus 51 = Sz.

Now that we know that the inverse is unique, we can give it a notation.

(3.61 notation: T~1

If T is invertible, then its inverse is denoted by T-1 1In other words, if
T € £(V,W) is invertible, then T~ is the unique element of £(W, V) such
that T-'T =Tand TT"! = I.

3.62 example: inverse of a linear map from R3 to R3

Suppose T € £(R®) is defined by T(x,y,z) = (—y,x,4z). Thus T is a
counterclockwise rotation by 90° in the xy-plane and a stretch by a factor of 4 in
the direction of the z-axis.

Hence the inverse map T~! € £(R?) is the clockwise rotation by 90° in the
xy-plane and a stretch by a factor of % in the direction of the z-axis:

T (x,y.2) = (y, —x, %z).
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The next result shows that a linear map is invertible if and only if it is one-to-
one and onto.

(3.63 invertibility < injectivity and surjectivity W

LA linear map is invertible if and only if it is injective and surjective. J

Proof Suppose T € £(V, W). We need to show that T is invertible if and only
if it is injective and surjective.
First suppose T is invertible. To show that T is injective, suppose u,v € V
and Tu = To. Then
u=T"YTu) = T Y(Tov) = v,

so u = v. Hence T is injective.

We are still assuming that T is invertible. Now we want to prove that T is
surjective. To do this, let w € W. Then w = T(T~'w), which shows that w is
in the range of T. Thus range T = W. Hence T is surjective, completing this
direction of the proof.

Now suppose T is injective and surjective. We want to prove that T is invertible.
For each w € W, define S(w) to be the unique element of V such that T(S(w)) =
w (the existence and uniqueness of such an element follow from the surjectivity
and injectivity of T). The definition of S implies that T o S equals the identity
operator on W.

To prove that S o T equals the identity operator on V, let v € V. Then

T((SoT)v) = (ToS)(Tv) = I(Tv) = To.

This equation implies that (So T)v = v (because T is injective). Thus S o T equals
the identity operator on V.

To complete the proof, we need to show that S is linear. To do this, suppose
wq, wy € W. Then

T(S(wy) + S(w,)) = T(S(wy)) + T(S(wy)) = wy + w,.

Thus S(w;) + S(w,) is the unique element of V that T maps to w; + w,. By the
definition of S, this implies that S(w; + w,) = S(w;) + S(w,). Hence S satisfies
the additive property required for linearity.

The proof of homogeneity is similar. Specifically, if w € W and A € F, then

T(AS(w)) = AT(S(w)) = Aw.

Thus AS(w) is the unique element of V that T maps to Aw. By the definition of S,
this implies that S(Aw) = AS(w). Hence S is linear, as desired.

For a linear map from a vector space to itself, you might wonder whether
injectivity alone, or surjectivity alone, is enough to imply invertibility. On infinite-
dimensional vector spaces, neither condition alone implies invertibility, as illus-
trated by the next example, which uses two familiar linear maps from Example 3.3.
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3.64 example: neither injectivity nor surjectivity implies invertibility

e The multiplication by x? linear map from P (R) to P(R) (see 3.3) is injective
but it is not invertible because it is not surjective (the polynomial 1 is not in
the range).

e The backward shift linear map from F* to F* (see 3.3) is surjective but it is
not invertible because it is not injective [the vector (1,0,0,0,...) is in the null
space].

In view of the example above, the next result is remarkable—it states that for
a linear map from a finite-dimensional vector space to a vector space of the same
dimension, either injectivity or surjectivity alone implies the other condition.
Note that the hypothesis below that dim V' = dim W is automatically satisfied in
the important special case where V is finite-dimensional and W = V.

ﬁ.65 injectivity is equivalent to surjectivity (if dimV = dim W < o0)

Suppose that V and W are finite-dimensional vector spaces, dim V = dim W,
and T € £(V,W). Then

T is invertible < T is injective <« T is surjective.

Proof The fundamental theorem of linear maps (3.21) states that
3.66 dimV = dimnull T + dimrange T.

If T is injective (which by 3.15 is equivalent to the condition dimnull T = 0),
then the equation above implies that

dimrange T = dim V —dimnullT = dim V = dim W,

which implies that T is surjective (by 2.39).
Conversely, if T is surjective, then 3.66 implies that

dimnullT = dimV — dimrange T = dimV — dim W = 0,

which implies that T is injective.

Thus we have shown that T is injective if and only if T is surjective. Thus if
T is either injective or surjective, then T is both injective and surjective, which
implies that T is invertible. Hence T is invertible if and only if T is injective if
and only if T is surjective.

The next example illustrates the power of the previous result. Although it is

possible to prove the result in the example below without using linear algebra, the
proof using linear algebra is cleaner and easier.
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3.67 example: there exists a polynomial p such that ((x* + 5x + 7)p)” =q |

The linear map
pe (% +5x+7)p)

from P (R) to itself is injective, as you can show. Thus we are tempted to use 3.65
to show that this map is surjective. However, Example 3.64 shows that the magic
of 3.65 does not apply to the infinite-dimensional vector space P(R). We will
get around this problem by restricting attention to the finite-dimensional vector
space P, (R).

Suppose g € P(R). There exists a nonnegative integer m such thatg € 7, (R).
Define T: 7,,(R) - 2,,(R) by

Tp = ((x* +5x + 7)p)".

Multiplying a nonzero polynomial by (x? + 5x + 7) increases the degree by 2, and
then differentiating twice reduces the degree by 2. Thus T is indeed a linear map
from 7, (R) to itself.

Every polynomial whose second derivative equals 0 is of the form ax + b,
where a,b € R. Thus null T = {0}. Hence T is injective.

Thus T is surjective (by 3.65), which means that there exists a polynomial
p € P,,(R) such that ((x* +5x+7) p)" = g, as claimed in the title of this example.

Exercise 35 in Section 6A gives a similar but more spectacular example of
using 3.65.

The hypothesis in the result below that dim V = dim W holds in the important
special case in which V is finite-dimensional and W = V. Thus in that case, the
equation ST = [ implies that ST = TS, even though we do not have multiplicative
commutativity of arbitrary linear maps from V to V.

(3.68 ST =1 < TS = I (on vector spaces of the same dimension) w

Suppose V and W are finite-dimensional vector spaces of the same dimension,
Se LW,V),and T € £(V,W). Then ST = [ if and only if TS = I.

Proof  First suppose ST = I. If v € V and Tv = 0, then
v=1Iv=(ST)v=5(Tv) =S5(0) =0.

Thus T is injective (by 3.15). Because V and W have the same dimension, this
implies that T is invertible (by 3.65).
Now multiply both sides of the equation ST = I by T~! on the right, getting

S=T"%
Thus TS = TT-! = I, as desired.
To prove the implication in the other direction, simply reverse the roles of S

and T (and V and W) in the direction we have already proved, showing that if
TS =1, then ST = I.
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Isomorphic Vector Spaces

The next definition captures the idea of two vector spaces that are essentially the
same, except for the names of their elements.

ﬁ%.GQ definition: isomorphism, isomorphic

e An isomorphism is an invertible linear map.

e Two vector spaces are called isomorphic if there is an isomorphism from
one vector space onto the other one.

Think of an isomorphism T: V — W as relabeling v € V as Tv € W. This
viewpoint explains why two isomorphic vector spaces have the same vector space
properties. The terms “isomorphism” and “invertible linear map” mean the same
thing. Use “isomorphism” when you want to emphasize that the two spaces are
essentially the same.

It can be difficult to determine whether two mathematical structures (such as
groups or topological spaces) are essentially the same, differing only in the names
of the elements of underlying sets. However, the next result shows that we need
to look at only a single number (the dimension) to determine whether two vector
spaces are isomorphic.

FS.?O dimension shows whether vector spaces are isomorphic W

Two finite-dimensional vector spaces over F are isomorphic if and only if they
have the same dimension.

Proof  First suppose V and W are isomorphic finite-dimensional vector spaces.
Thus there exists an isomorphism T from V onto W. Because T is invertible, we
have null T = {0} and range T = W. Thus

dimnullT =0 and dimrangeT = dim W.

The formula
dimV = dimnull T + dimrange T

(the fundamental theorem of linear maps, which is 3.21) thus becomes the equation
dim V = dim W, completing the proof in one direction.

To prove the other direction, suppose V and W are finite-dimensional vector
spaces of the same dimension. Let v, ..., v, be a basis of V and wy, ..., w,, be a
basis of W. Let T € £(V, W) be defined by

T(civq + - +¢,0,) = cqwy + - + c,Ww,,.

Then T is a well-defined linear map because vy, ..., v,, is a basis of V. Also, T
is surjective because wy, ..., w,, spans W. Furthermore, nullT = {0} because
ws, ..., w, is linearly independent. Thus T is injective. Because T is injective and
surjective, it is an isomorphism (see 3.63). Hence V and W are isomorphic.
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The previous result implies that each Every finite-dimensional vector space
finite-dimensional vector space V is iso- ;¢ isomorphic to some F". Thus why not
morphic to F", where n = dim V. For Jjust study F" instead of more general
example, if m is a nonnegative integer,  vecror spaces? To answer this ques-
then 2, (F) is isomorphic to F"* L tion, note that an investigation of F"

Recall that the notation F™*" denotes  would soon lead to other vector spaces.
the vector space of m-by-n matrices with  For example, we would encounter the
entries in F. If vq,...,v, is a basis of V' null space and range of linear maps.
and wy, ..., w,, is a basis of W, then for  Although each of these vector spaces
each T € £(V,W), we have a matrix S isomorphic to some ¥, thinking of
M(T) € F™" Thus once bases have them that way often adds complexity
been fixed for V and W, M becomes a  but no new insight.
function from £(V, W) to F">". Notice
that 3.35 and 3.38 show that /M is a lin-
ear map. This linear map is actually an
isomorphism, as we now show.

(3.71 L(V,W) and ™" are isomorphic w

Suppose v, ..., v, is a basis of V and w, ..., w,, is a basis of W. Then M is
an isomorphism between £(V, W) and F"™".

Proof We already noted that ) is linear. We need to prove that M is injective
and surjective.

We begin with injectivity. If T € £(V, W) and M (T) = 0, then Tv, = 0 for
eachk =1, ...,n. Because v4, ..., v, is a basis of V, this implies T = 0. Thus M
is injective (by 3.15).

To prove that M is surjective, suppose A € F"™". By the linear map lemma
(3.4), there exists T € £(V, W) such that

m
Tvk = Z A]-’kwj
j=1

for each k = 1,...,n. Because M (T) equals A, the range of M equals F™" as
desired.

Now we can determine the dimension of the vector space of linear maps from
one finite-dimensional vector space to another.

6.72 dim £(V,W) = (dim V) (dim W)

Suppose V and W are finite-dimensional. Then £(V, W) is finite-dimensional
and
dim £(V,W) = (dim V) (dim W).

Proof The desired result follows from 3.71, 3.70, and 3.40.
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Linear Maps Thought of as Matrix Multiplication

Previously we defined the matrix of a linear map. Now we define the matrix of a
vector.

-

3.73 definition: matrix of a vector, M (v)

\

Suppose v € V and v4, ..., v,, is a basis of V. The matrix of v with respect to
this basis is the n-by-1 matrix

by
M@ =| : |,
b

n

where by, ..., b, are the scalars such that

L v=>bv+-+b,0,. )

The matrix M (v) of a vector v € V depends on the basis vy, ...,v,, of V, as
well as on v. However, the basis should be clear from the context and thus it is
not included in the notation.

3.74 example: matrix of a vector

o The matrix of the polynomial 2 — 7x + 5x° + x* with respect to the standard
basis of P, (R) is

= 01 O

e The matrix of a vector x € F" with respect to the standard basis is obtained by
writing the coordinates of x as the entries in an n-by-1 matrix. In other words,
ifx = (xq,...,x,) € F", then

X1
M(x) =

Xn

Occasionally we want to think of elements of V as relabeled to be n-by-1
matrices. Once a basis vy, ..., v,, is chosen, the function M that takes v € V to
M (v) is an isomorphism of V onto F»! that implements this relabeling.

Recall that if A is an m-by-n matrix, then A_; denotes the k™ column of A,
thought of as an m-by-1 matrix. In the next result, M (Tv;) is computed with
respect to the basis wy, ..., w,, of W.
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ﬁ75 M(T)’k = M(T'Uk).

Suppose T € £(V,W) and vy, ..., v, is a basis of V and w, ..., w,, is a basis
of W. Let 1 < k < n. Then the k™ column of M (T), which is denoted by
M(T). y, equals M (Toy).

Proof The desired result follows immediately from the definitions of M (T) and
M (Toy).

The next result shows how the notions of the matrix of a linear map, the matrix
of a vector, and matrix multiplication fit together.

f&?B linear maps act like matrix multiplication

Suppose T € £(V,W) and v € V. Suppose v, ...,v, is a basis of V and
Wy, ..., W,, is a basis of W. Then

M(Tv) = M(T) M (v).

Proof Suppose v = b;v; + --- + b,,v,,, where by, ...,b,, € F. Thus
3.77 Tv=bTvy + - +0,Tv,.
Hence

M(Tv) = by M (Tvy) + - + b, M (Tv,)
= ble[(T)J + e+ bnM(T)-,n
= M(T) M (v),

where the first equality follows from 3.77 and the linearity of M, the second
equality comes from 3.75, and the last equality comes from 3.50.

Each m-by-n matrix A induces a linear map from F*! to F”>!, namely the
matrix multiplication function that takes x € F*! to Ax € F™ % The result above
can be used to think of every linear map (from a finite-dimensional vector space
to another finite-dimensional vector space) as a matrix multiplication map after
suitable relabeling via the isomorphisms given by M. Specifically, if T € £(V, W)
and we identify v € V with M (v) € F1, then the result above says that we can
identify Tv with M (T) M (v).

Because the result above allows us to think (via isomorphisms) of each linear
map as multiplication on F"-! by some matrix A, keep in mind that the specific
matrix A depends not only on the linear map but also on the choice of bases. One
of the themes of many of the most important results in later chapters will be the
choice of a basis that makes the matrix A as simple as possible.

In this book, we concentrate on linear maps rather than on matrices. However,
sometimes thinking of linear maps as matrices (or thinking of matrices as linear
maps) gives important insights that we will find useful.
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Notice that no bases are in sight in the statement of the next result. Although
M (T) in the next result depends on a choice of bases of V and W, the next result
shows that the column rank of M (T) is the same for all such choices (because
range T does not depend on a choice of basis).

(3.78 dimension of range T equals column rank of M (T) w

Suppose V and W are finite-dimensional and T € £(V, W). Then dimrange T
equals the column rank of M (T).

Proof  Suppose vy, ..., v,, is a basis of V and wy, ..., w,, is a basis of W. The linear
map that takes w € W to M (w) is an isomorphism from W onto the space F"!
of m-by-1 column vectors. The restriction of this isomorphism to range T [ which
equals span(Tvy, ..., Tv,)) by Exercise 10 in Section 3B] is an isomorphism from
range T onto span(M (Tv,), ..., M (Tv,)). For each k € {1,...,n}, the m-by-1
matrix M (Tv,) equals column k of M (T). Thus

dimrange T = the column rank of M (T),

as desired.

Change of Basis
In Section 3C we defined the matrix
M(T, (01, .0y 0,), Wy, ey W)y,) )

of a linear map T from V to a possibly different vector space W, where v, ...,v,,
is a basis of V and wy, ..., w,,, is a basis of W. For linear maps from a vector space
to itself, we usually use the same basis for both the domain vector space and the
target vector space. When using a single basis in both capacities, we often write
the basis only once. In other words, if T € £(V) and vy, ...,v,, is a basis of V,
then the notation M (T, (v;, ...,v,) ) is defined by the equation

M(T, (v1,...,0,)) = M(T, (01, ..., 0,), (U1, ..., 0y,) ) -
If the basis v4, ..., v,, is clear from the context, then we can write just M (T).

/3.79 definition: identity matrix, [

~

Suppose 7 is a positive integer. The n-by-n matrix
1 0
0 1
with 1’s on the diagonal (the entries where the row number equals the column
\number) and O’s elsewhere is called the identity matrix and is denoted by I. )
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In the definition above, the 0 in the lower left corner of the matrix indicates that
all entries below the diagonal are 0, and the O in the upper right corner indicates
that all entries above the diagonal are 0.

With respect to each basis of V, the matrix of the identity operator I € £(V)
is the identity matrix I. Note that the symbol I is used to denote both the identity
operator and the identity matrix. The context indicates which meaning of [ is
intended. For example, consider the equation M (I) = I; on the left side I denotes
the identity operator, and on the right side I denotes the identity matrix.

If A is a square matrix (meaning it has the same number of rows as columns)
with the same size as I, then Al = [A = A, as you should verify.

ﬁ.BO definition: invertible, inverse, A~1 W

A square matrix A is called invertible if there is a square matrix B of the same
size such that AB = BA = I; we call B the inverse of A and denote it by AL

The same proof as used in 3.60 shows Some mathematicians use the terms
that if A is an invertible square matrix, nonsingular and singular, which
then there is a unique matrix B such that .41 the same as invertible and non-
AB = BA = I (and thus the notation  j;yersible.

B = A1 is justified).
If A is an invertible matrix, then (A‘l)_1 = A because

ATTA=AAT =11

Also, if A and C are invertible square matrices of the same size, then AC is
invertible and (AC)~! = C~1A~1 because

(AC)(C1A1) = A(CC1) A

and similarly (C7'A71)(AC) = L.

The next result holds because we defined matrix multiplication to make it
true—see 3.43 and the material preceding it. Now we are just being more explicit
about the bases involved.

/3.81 matrix of product of linear maps )

Suppose T € £(U,V)and S € £(V,W). Ifuy,...,u,, isabasisof U, v, ..., v,

is a basis of V, and wq, ..., w, is a basis of W, then

M (ST, (thy, es thy,), (W1, o0y W,)) =
M(S, (vq,...,0,), (w1, ...,wp))JV[(T, Uy oo Uyy)s (0150, 0,) ).

J
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The next result deals with the matrix of the identity operator I with respect
to two different bases. Note that the k™ column of M (I, (uy, ..., u,,), (01, ..., 0,))
consists of the scalars needed to write u; as a linear combination of the basis
V15 Uy

In the statement of the next result, I denotes the identity operator from V to V.
In the proof, I also denotes the n-by-n identity matrix.

/3.82 matrix of identity operator with respect to two bases w

Suppose that u,, ..., u,, and v4, ..., v, are bases of V. Then the matrices

ML (g, .esttyy), (01, ..,0,))  and - M (L (vy, ..., 0,), (Uq, ..., 1))

are invertible, and each is the inverse of the other.

.
Proof In 3.81, replace w; with u;, and replace S and T with I, getting

I =ML (1, .0y 0,), (Uqy ooy ) ) M (Lt oo 1y, (01, .0,0,,) ) -
Now interchange the roles of the u’s and v’s, getting
I =ML (s ey thy), (U1, 00y 0,) ) M (L (0150, 0,), (U ey 1hy,) )

These two equations above give the desired result.

3.83 example: matrix of identity operator on F> with respect to two bases |

Consider the bases (4,2), (5,3) and (1,0), (0,1) of F2 Because I(4,2) =
4(1,0) +2(0,1) and I(5,3) = 5(1,0) + 3(0, 1), we have

4 5
M(L(4.2),5.3), (1,0, (0, 1)) ) = ( 5 )
The inverse of the matrix above is
3 5
2 T2
-1 2 )
as you should verify. Thus 3.82 implies that

3 _3
M (L ((1,0),(0.D), (4.2),(5,3))) :( 5o )

Our next result shows how the matrix of T changes when we change bases. In
the next result, we have two different bases of V, each of which is used as a basis for
the domain space and as a basis for the target space. Recall our shorthand notation
that allows us to display a basis only once when it is used in both capacities:

M(T, (uq,.eytty)) = M(T, (U, ey tty,), (Uq,y ooy ity,))
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/3.84 change-of-basis formula A
Suppose T' € £(V). Suppose iy, ..., 4, and vy, ..., v,, are bases of V. Let
A=M(T, (uq,....,u,)) and B=M(T, (vq,...,0,))
and C = M (L, (uy,...,u,), (vy, ...,v,) ). Then
_ -1
N A =CBC. )

Proof In 3.81, replace w; with u; and replace S with I, getting
3.85 A =CIM(T, (uy, ey tty), (01, .0 0,))s

where we have used 3.82.
Again use 3.81, this time replacing w, with v,. Also replace T with I and
replace S with T, getting

M(T, (uy,...,uy), (vq,...,v,)) = BC.

Substituting the equation above into 3.85 gives the equation A = C™'BC.

The proof of the next result is left as an exercise.

(3.86 matrix of inverse equals inverse of matrix

Suppose that v, ...,v, is a basis of V.and T € £(V) is invertible. Then
M(TY) = (M (T))_l, where both matrices are with respect to the basis
V15 eees Uy

Exercises 3D

1 Suppose T € £(V,W) is invertible. Show that T~ is invertible and
(T ' =T
2 Suppose T € £L(U,V)and S € £(V,W) are both invertible linear maps.
Prove that ST € £ (U, W) is invertible and that (ST)~' = T-15~L

3 Suppose V is finite-dimensional and T € £(V). Prove that the following
are equivalent.
(a) Tis invertible.
(b) Tvq,...,Tv, is a basis of V for every basis vy, ...,v,, of V.
(¢) Tvq,...,Tv, is a basis of V for some basis vy, ...,v,, of V.

4 Suppose V is finite-dimensional and dim V' > 1. Prove that the set of
noninvertible linear maps from V to itself is not a subspace of £(V).
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Suppose V is finite-dimensional, U is a subspace of V, and S € £(U, V).
Prove that there exists an invertible linear map T from V to itself such that
Tu = Su for every u € U if and only if S is injective.

Suppose that W is finite-dimensional and S,T € £(V,W). Prove that
null S = null T if and only if there exists an invertible E € £ (W) such that
S=ET.

Suppose that V is finite-dimensional and S,T € £(V,W). Prove that
range S = range T if and only if there exists an invertible E € £(V) such
that S = TE.

Suppose V and W are finite-dimensional and S,T € £(V, W). Prove that
there exist invertible E; € £(V) and E, € £(W) such that S = E,TE, if
and only if dimnull S = dimnull T.

Suppose V is finite-dimensional and T: V — W is a surjective linear map
of V onto W. Prove that there is a subspace U of V such that T|;; is an
isomorphism of U onto W.

Here T|; means the function T restricted to U. Thus T\ is the function
whose domain is U, with T|y; defined by T|;;(u) = Tu for every u € U.

Suppose V and W are finite-dimensional and U is a subspace of V. Let
E={Te L(V,W):UCnull T}.

(a) Show that & is a subspace of £(V, W).
(b) Find a formula for dim & in terms of dim V, dim W, and dim U.

Hint: Define ®: L(V,W) - LU, W) by ®(T) = Tl;. What is null d?
What is range & ?

Suppose V is finite-dimensional and S, T € £(V). Prove that
ST is invertible < S and T are invertible.

Suppose V is finite-dimensional and S, T, U € £(V) and STU = I. Show
that T is invertible and that T~ = US.

Show that the result in Exercise 12 can fail without the hypothesis that V is
finite-dimensional.

Prove or give a counterexample: If V is a finite-dimensional vector space
and R,S, T € £(V) are such that RST is surjective, then S is injective.

Suppose T € £(V) andvy,...,v,, isalistin V such that Tv,, ..., Tv,, spans V.
Prove that v4, ..., v,, spans V.

Prove that every linear map from F»! to F™-! is given by a matrix multipli-
cation. In other words, prove thatif T € £ (F”’l, F'”’l), then there exists an
m-by-n matrix A such that Tx = Ax for every x € F»1,
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Suppose V is finite-dimensional and S € £(V). Define A € £(£(V)) by
A(T) = ST
forT € £(V).

(a) Show that dimnull A = (dim V) (dim null S).
(b) Show that dimrange A = (dim V') (dimrange S).

Show that V and £ (F, V') are isomorphic vector spaces.

Suppose V is finite-dimensional and T € £(V). Prove that T has the same
matrix with respect to every basis of V if and only if T is a scalar multiple
of the identity operator.

Suppose g € P(R). Prove that there exists a polynomial p € P (R) such
that
g(x) = (x% + x)p"(x) + 2xp'(x) + p(3)
for all x € R.
Suppose 7 is a positive integer and A; ; € F for all j, k = 1,...,n. Prove that

the following are equivalent (note that in both parts below, the number of
equations equals the number of variables).

(a) The trivial solution x; = -+ = x, = 0 is the only solution to the
homogeneous system of equations
n
Z A rxe =0
k=1

n
Z An’kxk = 0
k=1

(b) Foreveryc,...,c, € F, there exists a solution to the system of equations

n
Z A X =0
k=1

|
a

n
Z An,kxk =
k=1

Suppose T € £(V) and v4, ..., v,, is a basis of V. Prove that
M (T, (v1, ...,vn)) is invertible < T is invertible.

Suppose that #4, ..., u,, and vy, ..., v,, are bases of V. Let T € £(V) be such
that Tv, = u; for each k = 1, ..., n. Prove that

M(T, (vq, ...;v,)) = ML (uq, .cstty,), (01,...,0,)) -

Suppose A and B are square matrices of the same size and AB = I. Prove
that BA = L.
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3E Products and Quotients of Vector Spaces

Products of Vector Spaces

As usual when dealing with more than one vector space, all vector spaces in use
should be over the same field.

(A N

3.87 definition: product of vector spaces

Suppose Vi, ..., V,, are vector spaces over F.
e The product V; x --- x V, is defined by

Vix-xV, ={(vy,....,0,) :v; EV],..,0, €V, }.

e Addition on V; x --- x V, is defined by

(Ups ey Uyy) + (U1, .., 0,,) = (U + 0p,y s Uy, +0,,) .

e Scalar multiplication on V; x --- x V, is defined by

A1, s Uyy) = (AVq, ooy AT, .
N (01 ) = (Avy )

3.88 example: product of the vector spaces P5(R) and R® |

Elements of P5(R) x R3 are lists of length two, with the first item in the list
an element of #5(R) and the second item in the list an element of R3

For example, (5 — 6x + 4x% (3,8,7)) and (x + 9x°, (2,2,2)) are elements of
P5s(R) x R® Their sum is defined by

(5—6x+4x%(3,8,7)) + (x +9x°,(2,2,2))
= (5 —5x + 4x% + 915, (5,10,9)).

Also, 2(5 — 6x + 4x% (3,8,7)) = (10 — 12x + 8x2 (6,16,14)).

The next result should be interpreted to mean that the product of vector spaces
is a vector space with the operations of addition and scalar multiplication as
defined by 3.87.

(3.89 product of vector spaces is a vector space w

Suppose Vi, ..., V,, are vector spaces over F. Then V| x --- x V, is a vector
space over F.

The proof of the result above is left to the reader. Note that the additive identity
of Vi x--xV,, is (0,...,0), where the 0 in the k™ slot is the additive identity of V.
The additive inverse of (vy,...,v,,) € V} X - x V,, is (-0, ..., —70,,).
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3.90 example: R? x R® # R but R? x R3 is isomorphic to R®

Elements of the vector space R? x R? are lists

((x1$x2)’ (-x3’ x4$ x5))$

where x;, X5, X3, X4, X5 € R. Elements of R are lists

(x1, x5, X3, Xy, x5),

where x4, X, X3, X4, X5 € R.

Although elements of R? x R and R® look similar, they are not the same kind
of object. Elements of R? x R3 are lists of length two (with the first item itself a
list of length two and the second item a list of length three), and elements of R®
are lists of length five. Thus R? x R® does not equal R>.

The linear map This isomorphism is so natural that

we should think of it as a relabel-
ing. Some people informally say that
is an isomorphism of the vector space  R*xR®equals RS which is not techni-
R2 x R3 onto the vector space R° Thus cally correct but which captures the
these two vector spaces are isomorphic, al-  $Pirit of identification via relabeling.
though they are not equal.

((xpxz), (x37x47x5)) — (xl,xz,x3,x4,x5)

The next example illustrates the idea that we will use in the proof of 3.92.

3.91 example: a basis of P, (R) x R?
Consider this list of length five of elements of 7, (R) x RZ:
(17 (O’ O))’ (x’ (07 0))’ (xz’ (07 O))? (07 (]" O))? (O’ (0’ 1)) .

The list above is linearly independent and it spans 7, (R) x R2 Thus it is a basis
of P,(R) x R2

ﬁ%.92 dimension of a product is the sum of dimensions

Suppose V;, ..., V,, are finite-dimensional vector spaces. Then V; x --- x V, is
finite-dimensional and

dim(V; x---xV, ) =dimV; + .- + dim V.

Proof Choose a basis of each V. For each basis vector of each V,, consider the
element of V; x --- x V,, that equals the basis vector in the k™ slot and 0 in the other
slots. The list of all such vectors is linearly independent and spans V; x --- x V..
Thus it is a basis of V] x --- x V, .. The length of this basis is dim V; + --- + dim V,,,,
as desired.
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In the next result, the map I' is surjective by the definition of V; +---+V,,. Thus
the last word in the result below could be changed from “injective” to “invertible’.

/3.93 products and direct sums )

Suppose that Vi,...,V,, are subspaces of V. Define a linear map
Ir:vix...xV, -V, +.-+V, by

I'(vy,...,v,) =01 + -+ 0,

\Then Vi, + .- + V,, is a direct sum if and only if I is injective. p
Proof By 3.15, I is injective if and only if the only way to write 0 as a sum
v, + -+ +v,,, Wwhere each v, is in V|, is by taking each v, equal to 0. Thus 1.45
shows that I' is injective if and only if V; + --- + V,, is a direct sum, as desired.

3.94 a sum is a direct sum if and only if dimensions add up

Suppose V is finite-dimensional and V7, ..., V,, are subspaces of V. Then
Vi + -+ +V,, is a direct sum if and only if

dim(V; + -+ V,,) =dimV; + - + dim V,,,.

Proof The map I in 3.93 is surjective. Thus by the fundamental theorem of
linear maps (3.21), I is injective if and only if

dim(V; + -+ V,,) =dim(V; x -+ x V).

Combining 3.93 and 3.92 now shows that V; + --- + V,, is a direct sum if and only
if
dim(V; + -+ V,,) =dimV; + - +dimV,,,

as desired.

In the special case m = 2, an alternative proof that V; + V; is a direct sum if
and only if dim(V; + V,) = dim V; + dim V;, can be obtained by combining 1.46
and 2.43.

Quotient Spaces

We begin our approach to quotient spaces by defining the sum of a vector and a
subset.

(3.95 notation: v + U

Suppose v € V and U C V. Then v + U is the subset of V defined by

v+U={v+u:uel}.
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3.96 example: sum of a vector and a one-dimensional subspace of R?

Suppose 20 (10,20) (17,20)

U={(x,2x) € R?: x € R}.

Hence U is the line in R? through the origin with
slope 2. Thus

u (17,20) + U
(17,20) + U
is the line in R? that contains the point (17,20) ‘ ‘
and has slope 2. /10 17
Because (17,20) + U is parallel

(10,20) € U and (17.20) € (17.20) + U, {0 the subspace U.

we see that (17,20) + U is obtained by moving U
to the right by 7 units.

ﬁ.97 definition: translate W
@or v € Vand U a subset of V, the set v + U is said to be a translate of U. J

| 3.98 example: translates |

e If U is the line in R? defined by U = {(x,2x) € R? : x € R}, then all lines in
R? with slope 2 are translates of U. See Example 3.96 above for a drawing of
U and one of its translates.

e More generally, if U is a line in R? then the set of all translates of U is the set
of all lines in R? that are parallel to U.

o If U ={(x,y,0) € R3: x,y € R}, then the translates of U are the planes in
R? that are parallel to the xy-plane U.

e More generally, if U is a plane in R then the set of all translates of U is the
set of all planes in R? that are parallel to U (see, for example, Exercise 7).

(3.99 definition: quotient space, V/U w

Suppose U is a subspace of V. Then the quotient space V/U is the set of all
translates of U. Thus

VU= {v+U:veV).
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| 3.100 example: quotient spaces
o If U = {(x,2x) € R? : x € R}, then R¥ U is the set of all lines in R? that have
slope 2.

e If U is a line in R® containing the origin, then R3/U is the set of all lines in R®
parallel to U.

e If U is a plane in R® containing the origin, then R% U is the set of all planes in
R? parallel to U.

Our next goal is to make V/U into a vector space. To do this, we will need the
next result.

3.101 two translates of a subspace are equal or disjoint

Suppose U is a subspace of V and v,w € V. Then

v—wel = v+U=w+U = @+U)nNw+U) +0.

Proof First suppose v —w € U. If u € U, then
v+tu=w+(@w-—w)+u) ew+U.

Thusv+ U C w+ U. Similarly, w+ U C v+ U. Thus v+ U = w+ U, completing
the proof thatv — w € U impliesv + U = w + U.

The equation v + U = w + U implies that (v + U) N (w + U) # 0.

Now suppose (v + U) N (w + U) # @. Thus there exist u, u, € U such that

U+u1:w+u2.

Thus v — w = u, — u;. Hence v — w € U, showing that (v + U) N (w+ U) #+ 0
implies v — w € U, which completes the proof.

Now we can define addition and scalar multiplication on V/U.

/

3.102 definition: addition and scalar multiplication on V/U

~

Suppose U is a subspace of V. Then addition and scalar multiplication are
defined on V/U by

w+U)+w+U) =@+w)+U
Av+U) = (Av) + U

\forall v,we Vandall A € F. )

As part of the proof of the next result, we will show that the definitions above
make sense.
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(3.1 03 quotient space is a vector space W

Suppose U is a subspace of V. Then V/U, with the operations of addition and
scalar multiplication as defined above, is a vector space.

Proof The potential problem with the definitions above of addition and scalar
multiplication on V/U is that the representation of a translate of U is not unique.
Specifically, suppose vy, v,, wy,w, € V are such that

nn+U=0v,+U and w;+U=w,+ U.

To show that the definition of addition on V/U given above makes sense, we must
show that (v; + wy) + U = (v, + wy) + U.
By 3.101, we have

v, —-v,el and w;, —w, € U.

Because U is a subspace of V and thus is closed under addition, this implies that
(01 — Up) + (wy —w,) € U. Thus (vy + wy) — (v, + w,) € U. Using 3.101 again,
we see that

(01 +wy) + U = (v, + wy) + U,

as desired. Thus the definition of addition on V/U makes sense.

Similarly, suppose A € F. We are still assuming that v; + U = v, + U.
Because U is a subspace of V and thus is closed under scalar multiplication, we
have A(v; —v,) € U. Thus Av; — Av, € U. Hence 3.101 implies that

(/\'01) + U = (/\'02) + u

Thus the definition of scalar multiplication on V/U makes sense.

Now that addition and scalar multiplication have been defined on V/U, the
verification that these operations make V/U into a vector space is straightforward
and is left to the reader. Note that the additive identity of V/U is 0 + U (which
equals U) and that the additive inverse of v + U is (—v) + U.

The next concept will lead to a computation of the dimension of V/U.

/

3.104 definition: quotient map, 7

~

Suppose U is a subspace of V. The quotient map w: V — V/U is the linear
map defined by
nw)=v+U

\for eachv e V. )

The reader should verify that 77 is indeed a linear map. Although 7r depends
on U as well as V, these spaces are left out of the notation because they should be
clear from the context.
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(3.1 05 dimension of quotient space w

Suppose V is finite-dimensional and U is a subspace of V. Then

dim V/U = dim V — dim U.

Proof Let 7t denote the quotient map from Vto V/U. Ifv € V,thenv+U = 0+U
if and only if v € U (by 3.101), which implies that null 77 = U. The definition of
7t implies range 77 = V/U. The fundamental theorem of linear maps (3.21) now
implies dim V' = dim U + dim V/U, which gives the desired result.

Each linear map T on V induces a linear map T on V/(mull T), as defined
below.

3.106 notation: T

Suppose T € £(V,W). Define T: V/(null T) - W by
T(v +mullT) = To.

To show that the definition of T makes sense, suppose u,v € V are such that
u+nullT = v+ nullT. By 3.101, we have u — v € null T. Thus T(u —v) = 0.
Hence Tu = To. Thus the definition of T indeed makes sense. The routine
verification that T is a linear map from V/(null T) to W is left to the reader.

The next result shows that we can think of T as a modified version of T, with
a domain that produces a one-to-one map.

o

g ~
3.107 null space and range of T

Suppose T € £(V, W). Then
(a) Torm= T, where 7t is the quotient map of V onto V/(null T);

(b) Tis injective;

(c) range T= range T}

\(d) V/(null T) and range T are isomorphic vector spaces.

J

Proof
(a) Ifv € V, then (T o 7t)(v) = T(7t(v)) = T(v + null T) = To, as desired.

(b) Suppose v € V and ’T(U +nullT) = 0. Then Tv = 0. Thus v € null T.
Hence 3.101 implies that v + null T = 0 + null T. This implies that null T =
{0 + null T}. Hence T is injective, as desired.

(c) The definition of T shows that range T= range T.
(d) Now (b) and (c) imply that if we think of T as mapping into range T, then T

is an isomorphism from V/(null T) onto range T.
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Exercises 3E

1

10

Suppose T is a function from V to W. The graph of T is the subset of Vx W
defined by
graphof T = {(v,Tv) € Vx W:v € V}.
Prove that T is a linear map if and only if the graph of T is a subspace of
Vx W.
Formally, a function T from V to W is a subset T of V x W such that for
each v € V, there exists exactly one element (v,w) € T. In other words,
formally a function is what is called above its graph. We do not usually
think of functions in this formal manner. However, if we do become formal,
then this exercise could be rephrased as follows: Prove that a function T
from V to W is a linear map if and only if T is a subspace of Vx W.

Suppose that Vi, ..., V,, are vector spaces such that V; x --- x V, is finite-
dimensional. Prove that V| is finite-dimensional for each k = 1, ..., m.

Suppose Vi, ..., V,, are vector spaces. Prove that £(V; x --- x V,,, W) and
LV, W) x - x £L(V,,, W) are isomorphic vector spaces.
There is no assumption in the exercise above or in the two following exercises
that the vector spaces are finite-dimensional.

Suppose Wi, ..., W,, are vector spaces. Prove that £(V, W; x .- x W) and
L(V,W;) x --- x £L(V,W,,) are isomorphic vector spaces.

For m a positive integer, define V" by
Vit =Vx..xV.
-'/_/
m times
Prove that V™ and £(F™ V) are isomorphic vector spaces.

Suppose that v, x are vectors in V and that U, W are subspaces of V such
thatv + U = x + W. Prove that U = W.

Let U = {(x,y,z) € R® : 2x + 3y + 5z = 0}. Suppose A C R> Prove that
A is a translate of U if and only if there exists ¢ € R such that

A ={(x,y,z) € R®: 2x + 3y + 5z = c}.

(a) Suppose T € £L(V,W) and c € W. Prove that {x € V : Tx = c} is
either the empty set or is a translate of null T.

(b) Explain why the set of solutions to a system of linear equations such as
3.27 is either the empty set or is a translate of some subspace of F".

Prove that a nonempty subset A of V is a translate of some subspace of V if
and only if A\v + (1 —A)w € Aforallv,w € Aand all A € F.

Suppose A; = v+ U; and A, = w + U, for some v,w € V and some
subspaces U, U, of V. Prove that the intersection A; N A, is either a
translate of some subspace of V or is the empty set.
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11

12

13

14

15
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17

18
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Suppose U = {(xy, Xy, ... ) € F* : x; # 0 for only finitely many k}.

(a) Show that U is a subspace of F*.
(b) Prove that F*°/U is infinite-dimensional.

Suppose v4, ...,v,, € V. Let
A={ANog+-+ A0, A, A, EFand Ay + -+ A, =1}.

(a) Prove that A is a translate of some subspace of V.
(b) Prove that if B is a translate of some subspace of V and {v,,...,v,,} C B,
then A C B.

(c) Prove that A is a translate of some subspace of V of dimension less
than m.

Suppose U is a subspace of V such that V/U is finite-dimensional. Prove
that V is isomorphic to U x (V/U).

Suppose U and W are subspaces of V and V = U & W. Suppose wy, ..., w,,
is a basis of W. Prove that w, + U, ...,w,, + U is a basis of V/U.

Suppose U is a subspace of V and v, + U, ...,v,, + U is a basis of V/U and
Ui, ..., u, is a basis of U. Prove that v, ..., v,,, 4, ..., u,, is a basis of V.

Suppose ¢ € £L(V,F) and ¢ # 0. Prove that dim V/(null ¢) = 1.

Suppose U is a subspace of V such that dim V/U = 1. Prove that there exists
¢ € L(V,F) such that null¢p = U.

Suppose that U is a subspace of V such that V/U is finite-dimensional.
(a) Show that if W is a finite-dimensional subspace of Vand V = U + W,
then dim W > dim V/U.

(b) Prove that there exists a finite-dimensional subspace W of V such that
dmW =dimV/Uand V =U&® W.

Suppose T € £(V, W) and U is a subspace of V. Let 7t denote the quotient
map from V onto V/U. Prove that there exists S € £(V/U, W) such that
T =Somifandonly if U C null T.
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3F Duality

Dual Space and Dual Map

Linear maps into the scalar field F play a special role in linear algebra, and thus
they get a special name.

(3.108 definition: linear functional w

A linear functional on V is a linear map from V to F. In other words, a linear
functional is an element of £(V, F).

| 3.109 example: linear functionals |

e Define ¢: R® —» R by ¢(x,1,z) = 4x — 5y + 2z. Then ¢ is a linear functional
on R®.

e Fix (cy,...,c,,) € F". Define ¢: F" —» F by ¢(xq,...,x,)) = ¢1X1 + -+ + ¢, X,,.
Then ¢ is a linear functional on F”".

e Define ¢: P(R) —» R by
@(p) =3p"(5) + 7p(4).
Then ¢ is a linear functional on P(R).

e Define ¢: P(R) —» R by
1
op = | p
for each p € P(R). Then ¢ is a linear functional on P (R).

The vector space £(V, F) also gets a special name and special notation.

/- N

3.110 definition: dual space, V'
The dual space of V, denoted by V', is the vector space of all linear functionals
on V. In other words, V' = £(V,F).
S v B J
/3.111 dim V' = dimV
Suppose V is finite-dimensional. Then V' is also finite-dimensional and
N dim V' = dim V. )

Proof By 3.72 we have
dimV’' =dim £(V,F) = (dim V) (dimF) = dim V,

as desired.
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In the following definition, the linear map lemma (3.4) implies that each ¢; is
well defined.

/3.1 12 definition: dual basis h

If v, ...,v, is a basis of V, then the dual basis of vy, ..., v, is the list 1, ..., ¢,
of elements of V', where each ¢; is the linear functional on V' such that

o 2! ifk =],
7% =19 if k # .

-

3.113 example: the dual basis of the standard basis of F" |

Suppose 7 is a positive integer. For 1 < j < n, define ¢; to be the linear
functional on F" that selects the j coordinate of a vector in F”. Thus

Pj(X5 e Xy) = X

for each (xy,...,x,) € F".
Letey, ..., ¢, be the standard basis of F". Then

o= [1 =
PR =00 itk ).

Thus ¢y, ..., ¢, is the dual basis of the standard basis ey, ..., e, of F".

The next result shows that the dual basis of a basis of V consists of the linear
functionals on V that give the coefficients for expressing a vector in V as a linear
combination of the basis vectors.

FSJ 14 dual basis gives coefficients for linear combination

Suppose vy, ..., v, is a basis of V and ¢, ..., ¢,, is the dual basis. Then
v =@(0)v; + -+ @,(0)V,

for eachv € V.

Proof Suppose v € V. Then there exist ¢, ..., ¢,, € F such that

3.115 U =01 + -+ +C,0,.

Ifj € {1,...,n}, then applying ¢; to both sides of the equation above gives
go]-(v) = ¢

Substituting the values for ¢4, ..., ¢,, given by the equation above into 3.115 shows
thatv = @ (V) vy + -+ + @, (V) V,,.
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The next result shows that the dual basis is indeed a basis of the dual space.
Thus the terminology “dual basis” is justified.

(3.1 16  dual basis is a basis of the dual space \

LSuppose V is finite-dimensional. Then the dual basis of a basis of V' is a basisJ
of V'.

Proof  Suppose vy, ...,v, is a basis of V. Let ¢,, ..., ¢,, denote the dual basis.
To show that ¢, ..., ¢, is a linearly independent list of elements of V', suppose
aq,...,a, € F are such that

3.117 aypq + - +a,p, =0.

Now
(191 + -+ +8,90,) (V) = ay

foreach k = 1,...,n. Thus 3.117 shows thata; = --- =4, = 0. Hence ¢, ..., ¢,
is linearly independent.

Because ¢4, ..., ¢, is a linearly independent list in V' whose length equals
dim V' (by 3.111), we can conclude that ¢, ..., ,, is a basis of V' (see 2.38).

In the definition below, note that if T is a linear map from V to W then T" is a
linear map from W' to V'.

FB.HS definition: dual map, T'

Suppose T € £(V, W). The dual map of T is the linear map T" € £L(W', V")
defined for each ¢ € W'by

T(p)=¢oT.

IfT € £(V,W)and ¢ € W', then T'(¢) is defined above to be the composition
of the linear maps ¢ and T. Thus T'(¢) is indeed a linear map from V to F; in
other words, T'(¢) € V".

The following two bullet points show that T' is a linear map from W’ to V".

o If ¢, p € W/, then
T@+Pp)=(p+P)oT=@poT+1poT =T'(p) + T'(¥).
e If A € Fand ¢ € W/, then

TAp) = (Ap) o T = A(@p o T) = AT ().

The prime notation appears with two unrelated meanings in the next example:
D’ denotes the dual of the linear map D, and p’ denotes the derivative of a
polynomial p.
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3.119 example: dual map of the differentiation linear map
Define D: P(R) —» P(R) by Dp =p".

e Suppose ¢ is the linear functional on (R) defined by ¢(p) = p(3). Then
D'(¢) is the linear functional on P(R) given by

(D(@) () = (9o D)(p) = ¢(Dp) = ¢(p') =p3).
Thus D'(¢) is the linear functional on P (R) taking p to p'(3).

e Suppose ¢ is the linear functional on P(R) defined by ¢(p) = fol p. Then
D'(¢) is the linear functional on P(R) given by

(D'(@))(p) = (¢ o D)(p)

= ¢(Dp)

=o(p)
1

= I p,
0

= p(1) —p(0).

Thus D'(¢) is the linear functional on P (R) taking p to p(1) — p(0).

In the next result, (a) and (b) imply that the function that takes T to T" is a
linear map from £(V, W) to L(W',V").
In (c) below, note the reversal of order from ST on the left to T'S’ on the right.

N

/3.120 algebraic properties of dual maps

Suppose T € £(V, W). Then
(@ (S+T) =S +T forallS e £(V,W);

(b) (AT)" = AT’ for all A € F;
ST) =T'S forall S € £(W, U).
\(C) (8T) or a ( ) J

Proof The proofs of (a) and (b) are left to the reader.
To prove (c), suppose ¢ € U". Then

(STY (@) =@ o (ST) = (9oS) o T=T(pS) =T (S(¢)) = (T'S) (),

where the first, third, and fourth equal- Some books use the notation V* and

ities above hold because of the defini- = for duality instead of V' and T

tion of the dual map, the second equality  goyever; here we reserve the notation

holds because composition of functions  T* for the adjoint, which will be intro-

is associative, and the last equality fol-  gyced when we study linear maps on

lows from the definition of composition.  jnner product spaces in Chapter 7.
The equation above shows that

(ST)(¢) = (T'S')(¢) for all p € U-

Thus (ST)' = T'S".
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Null Space and Range of Dual of Linear Map

Our goal in this subsection is to describe null T" and range T” in terms of range T
and null T. To do this, we will need the next definition.

3.121 definition: annihilator, U°

For U C V, the annihilator of U, denoted by U", is defined by
U'={pe V' :pwu)=0foraluec U}.

3.122 example: element of an annihilator

Suppose U is the subspace of (R) consisting of polynomial multiples of x2.
If ¢ is the linear functional on P(R) defined by ¢(p) = p'(0), then ¢ € ue.

For U C V, the annihilator U° is a subset of the dual space V. Thus U°
depends on the vector space containing U, so a notation such as UY, would be
more precise. However, the containing vector space will always be clear from the
context, so we will use the simpler notation U°.

| 3.123 example: the annihilator of a two-dimensional subspace of R®

Let ey, ey, €5, €4, €5 denote the standard basis of R>; let @y, @5, @3, ¢4, 95 €
(R®) denote the dual basis of e;, e,, €5, ¢4, €5. Suppose

U = span(e;,e,) = {(x1,%,,0,0,0) € R® : xq,x, € R}.

We want to show that U° = span(g@s, ¢4, ¢5).

Recall (see 3.113) that ¢; is the linear functional on R® that selects the jth
coordinate: @ (X1, X2, X3, X4, X5) = X;.

First suppose ¢ € span(g@s, ¢4, ¢5). Then there exist c3, c4, c5 € R such that
@ = 3¢5 + C494 + C5¢5. If (x1,%,,0,0,0) € U, then

@(x1,%,0,0,0) = (c3¢3 + c4¢4 + C5¢05) (X4, %,,0,0,0) = 0.

Thus ¢ € U°. Hence we have shown that span (g3, ¢4, ¢5) C U°.

To show the inclusion in the other direction, suppose that ¢ € U’ Be-
cause the dual basis is a basis of (RS)', there exist ¢y, ¢, C3, C4, 5 € R such that
@ = 11 + Ca@y + C305 + C4p4 + C5p5. Because e; € U and ¢ € U°, we have

0=g(er) = (11 + 295 + C3¢3 + C4@4 + C5¢5) (1) = Cq.

Similarly, e, € U and thus ¢, = 0. Hence ¢ = c3¢3 + c4¢4 + c5¢5. Thus
@ € span(@s, @4, ¢5), which shows that U° C span(gs, ¢4, @s).
Thus U° = span(gs, ¢4, ¢s)-
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(3.124 the annihilator is a subspace w

buppose U C V. Then U is a subspace of V". J

Proof Note that 0 € U° (here 0 is the zero linear functional on V) because the
zero linear functional applied to every vector in U equals 0 € F.
Suppose ¢, € U°. Thus ¢,y € V' and @(u) = ¢(u) = 0 for every u € U.
If u € U, then
(p+P)(u) = @) +Pp(u) =0+0=0.

Thus ¢ + ¢ € U°.
Similarly, U° is closed under scalar multiplication. Thus 1.34 implies that U°
is a subspace of V.

The next result shows that dim U° is the difference of dim V and dim U. For
example, this shows that if U is a two-dimensional subspace of R®, then U° is a
three-dimensional subspace of (R5)’, as in Example 3.123.

The next result can be proved following the pattern of Example 3.123: choose
abasis uy,...,u,, of U, extend to abasis uq, ..., u,,, ..., u, of V,let ¢, ..., ¢, ..., @,
be the dual basis of V', and then show that ¢, 1, ..., @,, is a basis of U°, which
implies the desired result. You should construct the proof just outlined, even
though a slicker proof is presented here.

3.125 dimension of the annihilator

Suppose V is finite-dimensional and U is a subspace of V. Then

dim U° = dim V — dim U.

Proof Leti € £(U, V) be the inclusion map defined by i(u) = u foreachu € U.
Thus 7' is a linear map from V' to U". The fundamental theorem of linear maps
(3.21) applied to i" shows that

dimrangei’ + dimnull{" = dim V"

However, nulli’ = U° (as can be seen by thinking about the definitions) and
dim V' = dim V (by 3.111), so we can rewrite the equation above as

3.126 dimrangei’ + dim U° = dim V.

If ¢ € U, then ¢ can be extended to a linear functional ¥ on V (see, for
example, Exercise 13 in Section 3A). The definition of i’ shows that i'(¢) = ¢.
Thus ¢ € range i, which implies that range i’ = U". Hence

dimrangei’ = dim U’ = dim U,

and then 3.126 becomes the equation dim U + dim U = dim V;, as desired.
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The next result can be a useful tool to show that a subspace is as big as
possible—see (a)—or to show that a subspace is as small as possible—see (b).

(3.127 condition for the annihilator to equal {0} or the whole space

Suppose V is finite-dimensional and U is a subspace of V. Then
@ U'={0} = U=V,
(b) U=V <= U ={0)}.

Proof To prove (a), we have
U’ ={0} < dimu®=0
= dimU =dimV
= U=Y,

where the second equivalence follows from 3.125 and the third equivalence follows
from 2.39.
Similarly, to prove (b) we have

U=V < dimU° =dimV’
= dimU° =dimV
< dimU =0
= U = {0},

where one direction of the first equivalence follows from 2.39, the second equiva-
lence follows from 3.111, and the third equivalence follows from 3.125.

The proof of (a) in the next result does not use the hypothesis that V and W
are finite-dimensional.

(3.128 the null space of T'

Suppose V and W are finite-dimensional and T € £(V, W). Then
(@) null T" = (range T)°;
(b) dimnull 7" = dimnull T + dim W — dim V.

Proof
(a) First suppose ¢ € nullT". Thus 0 = T'(p) = ¢ o T. Hence

0=(poT)(v) =¢(Tv) foreveryv e V.
Thus ¢ € (range T)°. This implies that null T’ C (range T)°.

To prove the inclusion in the opposite direction, now suppose ¢ € (range T)°.
Thus ¢(Tv) = 0 for every vectorv € V. Hence 0 = ¢ o T = T'(¢). In other
words, ¢ € null T, which shows that (range T)° C null T, completing the
proof of (a).
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(b) We have
dimnull T’ = dim(range T)°
= dim W — dimrange T
=dimW — (dimV — dimnull T)
=dimnull T + dim W — dim V,

where the first equality comes from (a), the second equality comes from
3.125, and the third equality comes from the fundamental theorem of linear
maps (3.21).

The next result can be useful because sometimes it is easier to verify that T"
is injective than to show directly that T is surjective.

3.129 T surjective is equivalent to T' injective

Suppose V and W are finite-dimensional and T € £(V, W). Then

T is surjective < T’ is injective.

Proof We have
T € £(V,W) is surjective < rangeT = W
= (rangeT)" = {0}
< nullT" = {0}
< T’ is injective,
where the second equivalence comes from 3.127(a) and the third equivalence
comes from 3.128(a).

(3.130 the range of T’

Suppose V and W are finite-dimensional and T € £(V, W). Then
(a) dimrange T’ = dimrange T;

(b) range T' = (null T)°.

Proof
(a) We have

dimrange T’ = dim W’ — dimnull T’
= dim W — dim(range T)°
= dimrange T,
where the first equality comes from 3.21, the second equality comes from

3.111 and 3.128(a), and the third equality comes from 3.125.
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(b) First suppose ¢ & range T'. Thus there exists ¢ € W' such that ¢ = T'(y).
If v € null T, then

@) = (T'())v = (Yo T)(v) = p(Tv) = P(0) = 0.
Hence ¢ € (null T)°. This implies that range T' C (null T)°.

We will complete the proof by showing that range T’ and (null T)° have the
same dimension. To do this, note that

dimrange T’ = dimrange T
=dimV —dimnull T
= dim(null T)°,

where the first equality comes from (a), the second equality comes from 3.21,
and the third equality comes from 3.125.

The next result should be compared to 3.129.

(3.131 T injective is equivalent to T' surjective

Suppose V and W are finite-dimensional and T € £(V, W). Then

T is injective < T’ is surjective.

Proof We have
T is injective < null T = {0}
= mullT)° =V
< rangeT' =V

where the second equivalence follows from 3.127(b) and the third equivalence
follows from 3.130(b).

Matrix of Dual of Linear Map

The setting for the next result is the assumption that we have a basis vy, ..., v,, of
V, along with its dual basis ¢4, ..., ¢, of V. We also have a basis w,, ..., w,, of W,
along with its dual basis ¢, ..., ¢, of W. Thus M (T) is computed with respect
to the bases just mentioned of V and W, and M (T’) is computed with respect to
the dual bases just mentioned of W’ and V. Using these bases gives the following
pretty result.

ﬁ%.132 matrix of T' is transpose of matrix of T w

Suppose V and W are finite-dimensional and T € £(V, W). Then

M(T') = (M(D))".
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Proof Let A =M(T)and C = M(T"). Suppose 1 <j<mand1<k<n.
From the definition of M (T") we have

T = 2. Crpr

The left side of the equation above equals ; o T. Thus applying both sides of the
equation above to v, gives

o)) = ) Cpipp(v)
r=1

= Ck’]'.
We also have
(0 T)(0p) = 9;(Ty)

= ¢j(r§1 A,,kw,>

Z Ar,klpj(wr)
r=1

= j,k’
Comparing the last line of the last two sets of equations, we have Gy ; = A, ;.
Thus C = A". In other words, M (T') = (M(T))t, as desired.

Now we use duality to give an alternative proof that the column rank of a
matrix equals the row rank of the matrix. This result was previously proved using
different tools—see 3.57.

(3.133 column rank equals row rank w

buppose A € F"™" Then the column rank of A equals the row rank of A. J

Proof Define T: F»! — F"™1 by Tx = Ax. Thus M (T) = A, where M (T) is
computed with respect to the standard bases of F>! and F">1, Now
column rank of A = column rank of M (T)
= dimrange T
= dimrange T’
= column rank of M (T")
= column rank of A'

= row rank of A,

where the second equality comes from 3.78, the third equality comes from 3.130(a),
the fourth equality comes from 3.78, the fifth equality comes from 3.132, and the
last equality follows from the definitions of row and column rank.

See Exercise 8 in Section 7A for another alternative proof of the result above.
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Exercises 3F

10

11

Explain why each linear functional is surjective or is the zero map.
Give three distinct examples of linear functionals on R[%-1]

Suppose V is finite-dimensional and v € V with v # 0. Prove that there
exists ¢ € V' such that ¢(v) = 1.

Suppose V is finite-dimensional and U is a subspace of V such that U # V.
Prove that there exists ¢ € V' such that ¢(u) = 0 forevery u € Ubut ¢ # 0.

Suppose T € £(V, W) and wy, ..., w,, is a basis of range T. Hence for each
v € V, there exist unique numbers ¢, (v), ..., ¢,,,(v) such that

To = @(0)wy + - + @, (V) W,

thus defining functions ¢, ..., ¢,, from V to F. Show that each of the func-
tions ¢4, ..., ¢,, is a linear functional on V.

Suppose ¢, € V. Prove that null ¢ C null 8 if and only if there exists
¢ € F such that 8 = ce.

Suppose that V;, ..., V,, are vector spaces. Prove that (V; x --- x V, )" and
V)" x -+ x V" are isomorphic vector spaces.

Suppose vy, ..., v, is a basis of V and ¢, ..., ¢,, is the dual basis of V". Define
I':vV-Frand A: F* - V by

L) = (¢1(0),...,9,(v)) and A(ay,...,a,) = a;0, + - +a,0,.
Explain why I" and A are inverses of each other.

Suppose m is a positive integer. Show that the dual basis of the basis
1,x,...,x" of P, (R) is ¢y, ¢1, ..., ¢,,,, Where

p(k)(O)
Pep) = =

Here p®) denotes the k™ derivative of p, with the understanding that the 0"
derivative of p is p.

Suppose m is a positive integer.

(a) Show that1,x —5,..., (x — 5)™ is a basis of 7, (R).
(b) What is the dual basis of the basis in (a)?

Suppose v, ..., v,, is a basis of V and ¢, ..., ¢, is the corresponding dual
basis of V. Suppose ¢ € V. Prove that

lP = 1/’(7)1)4’1 +oet ¢(vn)§0n'
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Suppose S, T € L(V,W).

(a) Provethat (S+T) =S5 +T"
(b) Prove that (AT)" = AT’ forall A € F.

This exercise asks you to verify (a) and (b) in 3.120.

Show that the dual map of the identity operator on V is the identity operator
on V"

Define T: R®> — R? by
T(x,y,z) = (4x + 5y + 6z,7x + 8y + 9z).

Suppose ¢;, ¢, denotes the dual basis of the standard basis of R? and
1, ¥, 5 denotes the dual basis of the standard basis of R

(a) Describe the linear functionals T'(¢) and T'(¢,).
(b) Write T'(¢;) and T'(¢,) as linear combinations of ¥y, 1,, 5.

Define T: P(R) — P(R) by
(Tp) (x) = x*p(x) + p'(x)

for each x € R.

(a) Suppose ¢ € P(R)’ is defined by ¢(p) = p'(4). Describe the linear
functional T'(¢) on P(R).
(b) Suppose ¢ € P(R)" is defined by ¢(p) = fol p. Evaluate (T'(¢)) (x?).

Suppose W is finite-dimensional and T € £(V, W). Prove that
T"=0 & T=0.

Suppose V and W are finite-dimensional and T € £(V, W). Prove that T is
invertible if and only if T" € £(W', V') is invertible.

Suppose V and W are finite-dimensional. Prove that the map that takes
T € £LV,W)to T € £(W,V') is an isomorphism of £(V, W) onto
L(W, V).

Suppose U C V. Explain why
U ={pe V' :UCnullg}.
Suppose V is finite-dimensional and U is a subspace of V. Show that
U={veV:e¢p) =0 forevery ¢ € U%}.

Suppose V is finite-dimensional and U and W are subspaces of V.

(a) Prove that W° C UY if and only if U C W.
(b) Prove that W° = U if and only if U = W.
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Suppose V is finite-dimensional and U and W are subspaces of V.

(a) Show that (U + W)° = U° n WO,
(b) Show that (U N W)? = U° + WO

Suppose V is finite-dimensional and ¢, ..., ¢,, € V. Prove that the follow-
ing three sets are equal to each other.

(a) span(g@q,...,9,,)

() ((nullgy) N - N (null g,,))°

© {pe V' :mullg))N--N(nullg,) C null g}

Suppose V is finite-dimensional and vy, ...,v,, € V. Define a linear map
[:V' 5> F by [(g) = (¢(01), ... (0,)).
(a) Prove that vy, ...,v,, spans V if and only if T is injective.

(b) Prove that vy, ...,v,, is linearly independent if and only if I' is surjective.

Suppose V is finite-dimensional and ¢, ..., ¢,, € V' Define a linear map
[:V > FrbyL(©) = (¢1(0),.... 9, (0)).
(a) Prove that ¢4, ..., ¢, spans V' if and only if I' is injective.
(b) Prove that ¢, ..., ¢,, is linearly independent if and only if I is surjective.
Suppose V is finite-dimensional and Q) is a subspace of V". Prove that
QO={veV:pw =0forevery ¢ € 0)°.
Suppose T & A(SDS(R)) and nullT" = span(¢), where ¢ is the linear
functional on 5(R) defined by ¢(p) = p(8). Prove that
rangeT = {p € P5(R) : p(8) = 0}.

Suppose V is finite-dimensional and ¢, ..., ¢,, is a linearly independent list
in V'. Prove that

dim((null¢;) N -+ N (nullg,,,)) = (dim V) — m.
Suppose V and W are finite-dimensional and T € £(V, W).
(a) Prove thatif ¢ € W’ and null T’ = span(¢), then range T = null ¢.
(b) Prove thatif ¢y € V' and range T" = span(¢), then null T = null .

Suppose V is finite-dimensional and ¢, ..., ¢,, is a basis of V. Show that
there exists a basis of V whose dual basis is ¢, ..., ¢,,.

Suppose U is a subspace of V. Leti: U — V be the inclusion map defined

by i(u) = u. Thus i’ € £(V,U").

(a) Show that nulli = U°

(b) Prove that if V is finite-dimensional, then range i’ = U’

(c) Prove that if V is finite-dimensional, then 7 is an isomorphism from
V'7U° onto U".

The isomorphism in (c) is natural in that it does not depend on a choice of
basis in either vector space.
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The double dual space of V, denoted by V", is defined to be the dual space
of V. In other words, V" = (V’)’. Define A: V — V" by

(Av)(9p) = ¢(v)
foreachv € Vandeachp € V.

(a) Show that A is a linear map from V to V",

(b) Show thatif T € £(V),then T” o A = Ao T, where T" = (T")"

(c) Show that if V is finite-dimensional, then A is an isomorphism from V
onto V",

Suppose V is finite-dimensional. Then V and V' are isomorphic, but finding
an isomorphism from V onto V' generally requires choosing a basis of V.
In contrast, the isomorphism A from V onto V" does not require a choice
of basis and thus is considered more natural.

Suppose U is a subspace of V. Let r: V — V/U be the usual quotient map.
Thus 7' € £((V/U), V).

(a) Show that 7’ is injective.

(b) Show that range 7" = U°.

(c) Conclude that 7t is an isomorphism from (V/U)" onto U°.

The isomorphism in (c) is natural in that it does not depend on a choice of
basis in either vector space. In fact, there is no assumption here that any of
these vector spaces are finite-dimensional.
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Chapter 4
Polynomials

This chapter contains material on polynomials that we will use to investigate
linear maps from a vector space to itself. Many results in this chapter will already
be familiar to you from other courses; they are included here for completeness.

Because this chapter is not about linear algebra, your instructor may go through
it rapidly. You may not be asked to scrutinize all the proofs. Make sure, however,
that you at least read and understand the statements of all results in this chapter—
they will be used in later chapters.

This chapter begins with a brief discussion of algebraic properties of the
complex numbers. Then we prove that a nonconstant polynomial cannot have
more zeros than its degree. We also give a linear-algebra-based proof of the
division algorithm for polynomials, which is worth reading even if you are already
familiar with a proof that does not use linear algebra.

As we will see, the fundamental theorem of algebra leads to a factorization of
every polynomial into degree-one factors if the scalar field is C or to factors of
degree at most two if the scalar field is R.

( standing assumption for this chapter W

ko F denotes R or C. J

a N

A8 D0 Usyener ezely

\_ %

Statue of mathematician and poet Omar Khayyam (1048-1131), whose algebra
book written in 1070 contained the first serious study of cubic polynomials.
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Before discussing polynomials with complex or real coefficients, we need to
learn a bit more about the complex numbers.

FM definition: real part, Re z, imaginary part, Im z

Suppose z = a + bi, where a and b are real numbers.

e The real part of z, denoted by Re z, is defined by Rez = a.

e The imaginary part of z, denoted by Im z, is defined by Imz = b.

Thus for every complex number z, we have

z=Rez+ (Imz)i.

4.2 definition: complex conjugate, z, absolute value, |z|

Suppose z € C.
e The complex conjugate of z € C, denoted by z, is defined by

z=Rez— (Imz)i.

e The absolute value of a complex number z, denoted by |z|, is defined by

21 = /(Re2)2 + (Im2)2.

- /

4.3 example: real and imaginary part, complex conjugate, absolute value |

Suppose z = 3 + 2i. Then

e Rez=3andImz = 2;
e Z=3-2i;
o Izl = V32 +22=13.

Identifying a complex number z € C with the ordered pair (Re z, Imz) € R?
identifies C with R% Note that C is a one-dimensional complex vector space,
but we can also think of C (identified with R?) as a two-dimensional real vector
space.

The absolute value of each complex number is a nonnegative number. Specif-
ically, if z € C, then |z| equals the distance from the origin in R? to the point
(Rez,Imz) € R

The real and imaginary parts, com-
plex conjugate, and absolute value have
the properties listed in the following
multipart result.

You should verify that z = z if and only
if z is a real number.
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/

4.4 properties of complex numbers

Suppose w, z € C. Then the following equalities and inequalities hold.

sum of z and z
z+z=2Rez.

difference of z and z
z—z=2(Imz)i.

product of z and z
2z = |z]~

additivity and multiplicativity of complex conjugate
w+z=w+zandwz = w Zz.

double complex conjugate
Z=2z.

real and imaginary parts are bounded by ||
|Rez| < |z| and | Imz| < |z|.

absolute value of the complex conjugate
Z| = IzI. z

multiplicativity of absolute value
lwz| = [w] |z.

triangle inequality w+z

lw + z| < |w| + |z].
\

J

Proof Except for the last item above,
the routine verifications of the assertions
above are left to the reader. To verify the
triangle inequality, we have

lw + z2 = (w + 2) (W + Z)
= WW + zZ + WZ + ZW
= W + |z1? + wz + wz
= [wl* + |zI* + 2Re(wZ)
< [wP + |z1* + 2wz
= [w]* + |21 + 2lw] |z]
= (lw| + |zI)%.

Taking square roots now gives the desired

inequality |w + z| < |w| + Iz]. inequality.

Linear Algebra Done Right, fourth edition, by Sheldon Axler

Geometric interpretation of triangle in-
equality: The length of each side of a
triangle is less than or equal to the sum
of the lengths of the two other sides.

See Exercise 2 for the reverse triangle
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Zeros of Polynomials

Recall that a function p: F — F is called a polynomial of degree m if there exist
ag, ...,a,, € F with a,, # 0 such that

p(z) =ay+az+ - +a,z"
for all z € F. A polynomial could have more than one degree if the representation
of p in the form above were not unique. Our first task is to show that this cannot
happen.

The solutions to the equation p(z) = 0 play a crucial role in the study of a
polynomial p € P (F). Thus these solutions have a special name.

4.5 definition: zero of a polynomial

A number A € F is called a zero (or root) of a polynomial p € P (F) if

p(A) =0.

The next result is the key tool that we will use to show that the degree of a
polynomial is unique.

/4.6 each zero of a polynomial corresponds to a degree-one factor

Suppose m is a positive integer and p € P (F) is a polynomial of degree m.
Suppose A € F. Then p(A) = 0 if and only if there exists a polynomial
q € P(F) of degree m — 1 such that

p(z) = (z—-A)q(2)

for every z € F.
NS Y,

Proof  First suppose p(A) = 0. Letay, a4, ...,4,, € F be such that
p(z) =ag+az+ - +a,z"

for all z € F. Then

47 pz) =pz) —pA) =ay(z— A) + - +a,(z" — A™)

for all z € F. For each k € {1, ..., m}, the equation

k
KA =(z-)) Z N —1zk=]
i=1

shows that z¥ — A¥ equals z — A times some polynomial of degree k — 1. Thus 4.7
shows that p equals z — A times some polynomial of degree m — 1, as desired.

To prove the implication in the other direction, now suppose that there is
a polynomial g € P(F) such that p(z) = (z — A)g(z) for every z € F. Then
p(A) = (A = A)q(A) =0, as desired.
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Now we can prove that polynomials do not have too many zeros.

0.8 degree m implies at most m zeros W

Suppose m is a positive integer and p € P (F) is a polynomial of degree m.
Then p has at most m zeros in F.

Proof We will use induction on m. The desired result holds if m = 1 because
if a; # 0 then the polynomial a, + a,z has only one zero (which equals —a,/a,).
Thus assume that m > 1 and the desired result holds for m — 1.

If p has no zeros in F, then the desired result holds and we are done. Thus
suppose p has a zero A € F. By 4.6, there is polynomial g € P (F) of degree
m — 1 such that

p(z) = (z—MN)q(2)
for every z € F. Our induction hypothesis implies that g has at most m — 1 zeros
in F. The equation above shows that the zeros of p in F are exactly the zeros of g
in F along with A. Thus p has at most m zeros in F.

The result above implies that the coefficients of a polynomial are uniquely
determined (because if a polynomial had two different sets of coefficients, then
subtracting the two representations of the polynomial would give a polynomial
with some nonzero coefficients but infinitely many zeros). In particular, the degree
of a polynomial is uniquely defined.

R.eca'll that the degree of the 0 poly- The 0 polynomial is declared to have
nomial is defined to be —co. When degree —oo so that exceptions are not

necessary, use the expected arithmetic  ,pedeq for various reasonable results
with —oco. For example, —oco < m and such as deg(pq) = degp + deg q.
—oo + m = —oo for every integer m.

Division Algorithm for Polynomials

If p and s are nonnegative integers, with s # 0, then there exist nonnegative
integers g and r such that

p=sq+r
and r < s. Think of dividing p by s, getting quotient g4 with remainder r. Our next
result gives an analogous result for polynomials. Thus the next result is often
called the division algorithm for polynomials, although as stated here it is not
really an algorithm, just a useful result.

The division algoritbm for po'lynomi— Think of the division algorithm for poly-
als could be proved without using any ,,.iqis as giving a remainder polyno-

linear algebra. However, as is appropri-  yial r when the polynomial p is divided
ate for a linear algebra textbook, the proof  py the polynomial s.

given here uses linear algebra techniques
and makes nice use of a basis of 7, (F), which is the (n + 1)-dimensional vector
space of polynomials with coefficients in F and of degree at most 7.
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/

4.9 division algorithm for polynomials

N

Suppose that p,s € P (F), with s # 0. Then there exist unique polynomials
g,r € P(F) such that
p=sq+r

and degr < degs.
N J
Proof Letn = degp and letm = degs. If n < m, thentakeg =0andr = p to
get the desired equation p = sq + r with degr < degs. Thus we now assume that
n > m.
The list

4.10 1,2, ....,2" 1 s 25, ..., 2" Mg

is linearly independent in ,, (F) because each polynomial in this list has a different
degree. Also, the list 4.10 has length n + 1, which equals dim 7, (F). Hence 4.10
is a basis of 7, (F) [by 2.38].

Because p € 7,(F) and 4.10 is a basis of 7, (F), there exist unique constants
ay, Ay, .., 4,1 € Fand by, by, ...,b,_,, € F such that

4.11 p=ay+agz+-+a, 12" 1 +bys+byzs+ - +b,_,,z"""s

=ay+az+ - +a, 12" +sby+bz+-+b,_,z2"M).
v q

With r and g as defined above, we see that p can be written as p = sq + r with
degr < degs, as desired.

The uniqueness of g, € P (F) satisfying these conditions follows from the
uniqueness of the constants ay, a4, ...,4,,_, € F and by, b4, ...,b,, _,, € F satisfy-
ing 4.11.

Factorization of Polynomials over C

We have been handling polynomials with 7, andamental theorem of algebra is
complex coefficients and polynomials  , oxistence theorem. Its proof does
with real coefficients simultaneously, let- ;101 jead 1o a method for finding zeros.
ting F denote R or C. Now we Will  The quadratic formula gives the zeros
see differences between these two cases.  explicitly for polynomials of degree 2.
First we treat polynomials with complex  Similar but more complicated formulas
coefficients. Then we will use those re-  exist for polynomials of degree 3 and 4.
sults to prove corresponding results for  No such formulas exist for polynomials
polynomials with real coefficients. of degree 5 and above.
Our proof of the fundamental theorem

of algebra implicitly uses the result that a continuous real-valued function on a
closed disk in R? attains a minimum value. A web search can lead you to several

Linear Algebra Done Right, fourth edition, by Sheldon Axler



Chapter 4  Polynomials 125

other proofs of the fundamental theorem of algebra. The proof using Liouville’s
theorem is particularly nice if you are comfortable with analytic functions. All
proofs of the fundamental theorem of algebra need to use some analysis, because
the result is not true if C is replaced, for example, with the set of numbers of the
form ¢ + di where c, d are rational numbers.

(4.12 fundamental theorem of algebra, first version \

@Very nonconstant polynomial with complex coefficients has a zero in C. J

Proof De Moivre’s theorem, which you can prove using induction on k and the
addition formulas for cosine and sine, states that if k is a positive integer and
6 € R, then

(cos 0 + isin 8)K = cos k@ + i sin k6.

Suppose w € C and k is a positive integer. Using polar coordinates, we know
that there exist » > 0 and 6 € R such that

r(cos @ +isinf) = w.

De Moivre’s theorem implies that

1/k 0 ... 0 k _
(r (cos ¢ Tisin E)) = w.
Thus every complex number has a k™ root, a fact that we will soon use.

Suppose p is a nonconstant polynomial with complex coefficients and highest-
order nonzero term ¢,,,z"™. Then |p(z)| — co as |z| — oo (because |p(2)]/|z"| = Ic,,
as |z| —» oo). Thus the continuous function z — |p(z)| has a global minimum at
some point € C. To show that p({) = 0, suppose that p({) # 0.

Define a new polynomial g by

pz+1Q)
p@)

The function z — |q(z)| has a global minimum value of 1 at z = 0. Write

q(z) =

k

qz) =1+a 2"+ - +a,z",

where k is the smallest positive integer such that the coefficient of z* is nonzero;
in other words, a; # 0.
Let B € C be such that g = _alk' There is a constant ¢ > 1 such that if
t € (0,1), then
lg(tB)l < |1 + apt*Br| + tF+1c
=1-t1 —to).
Thus taking ¢ to be 1/(2c) in the inequality above, we have |g(8)| < 1, which

contradicts the assumption that the global minimum of z — |g(z)| is 1. This
contradiction implies that p({) = 0, showing that p has a zero, as desired.
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Computers can use clever numerical methods to find good approximations to
the zeros of any polynomial, even when exact zeros cannot be found. For example,
no one will ever give an exact formula for a zero of the polynomial p defined by

p(x) = x° —5x* —6x3 + 17x2 + 4x — 7.

However, a computer can find that the zeros of p are approximately the five
numbers —1.87, —0.74, 0.62, 1.47, 5.51.

The first version of the fundamental theorem of algebra leads to the following
factorization result for polynomials with complex coefficients. Note that in this
factorization, the zeros of p are the numbers A4, ..., A,,, which are the only values
of z for which the right side of the equation in the next result equals 0.

/

4.13 fundamental theorem of algebra, second version

N

If p € P(C) is a nonconstant polynomial, then p has a unique factorization
(except for the order of the factors) of the form

p(z) =c(z— Ay (z— Ay,

\where ¢ Ay Ay, € CL )
Proof Letp € P(C) and let m = degp. We will use induction on m. If m =1,
then the desired factorization exists and is unique. So assume that m > 1 and that
the desired factorization exists and is unique for all polynomials of degree m — 1.

First we will show that the desired factorization of p exists. By the first version
of the fundamental theorem of algebra (4.12), p has a zero A € C. By 4.6, there
is a polynomial q of degree m — 1 such that

p(z) = (z—=A)q(z)

forall z € C. Our induction hypothesis implies that g has the desired factorization,
which when plugged into the equation above gives the desired factorization of p.

Now we turn to the question of uniqueness. The number ¢ is uniquely deter-
mined as the coefficient of z in p. So we only need to show that except for the
order, there is only one way to choose A4, ..., A,,. If

(z—A)(z—=A,) =@—11)(2—T,)

for all z € C, then because the left side of the equation above equals 0 when
z = A4, one of the 7’s on the right side equals A;. Relabeling, we can assume
that T; = A;. Now if z # A, we can divide both sides of the equation above by
z — Ay, getting

(z—=Ap)(z—=Ay) = (2 —Tp)(z2—Ty,)

for all z € C except possibly z = A;. Actually the equation above holds for all
z € C, because otherwise by subtracting the right side from the left side we would
get a nonzero polynomial that has infinitely many zeros. The equation above and
our induction hypothesis imply that except for the order, the A’s are the same as
the 7’s, completing the proof of uniqueness.
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Factorization of Polynomials over R

A polynomial with real coefficients may 7, failure of the fundamental theorem
have no real zeros. For example, the poly- of algebra for R accounts for the differ-

. 2 i
nomial 1 + x has no real zeros. ences between linear algebra on real
To obtain a factorization theorem over  and complex vector spaces, as we will

R, we will use our factorization theorem  see in later chapters.
over C. We begin with the next result.

(4.14 polynomials with real coefficients have nonreal zeros in pairs W

Suppose p € P(C) is a polynomial with real coefficients. If A € C is a zero
of p, then so is A.

Proof Let
p(z) =ag+az+ - +a,z"

where ay, ..., a,, are real numbers. Suppose A € C is a zero of p. Then
ag + aA + - +a, A" =0.

Take the complex conjugate of both sides of this equation, obtaining
ag + @A + - +a, A" =0,

where we have used basic properties of the complex conjugate (see 4.4). The
equation above shows that A is a zero of p.

We want a factorization theorem for
polynomials with real coefficients. We
begin with the following result.

Think about the quadratic formula in
connection with the result below.

/4.15 factorization of a quadratic polynomial h
Suppose b, c € R. Then there is a polynomial factorization of the form
X2 +bx+c=(x—A)(x— Ay)
with A;, A, € R if and only if b*> > 4c.
U o A% Y )

Proof Notice that

) b\2 b2
X +bx+c=(x+§) +<C_Z>'

First suppose b* < 4c. Then the right The equation above is the basis of
side of the equation above is positive for technique called completing the

every x € R. Hence the polynomial 44,
x? + bx + ¢ has no real zeros and thus
cannot be factored in the form (x — A;)(x — A,) with A;, A, € R.
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Conversely, now suppose b?> > 4c. Then there is a real number d such that

d? = b4—2 — c. From the displayed equation above, we have

b 2
x2+bx+c=<x+§> —d?

b p b p
_<x+§+ ><x+§— ),
which gives the desired factorization.

The next result gives a factorization of a polynomial over R. The idea of
the proof is to use the second version of the fundamental theorem of algebra
(4.13), which gives a factorization of p as a polynomial with complex coefficients.
Complex but nonreal zeros of p come in pairs; see 4.14. Thus if the factorization
of p as an element of P(C) includes terms of the form (x — A) with A a nonreal
complex number, then (x — A) is also a term in the factorization. Multiplying
together these two terms, we get

22 —2(Re M) x + |AP,

which is a quadratic term of the required form.

The idea sketched in the paragraph above almost provides a proof of the
existence of our desired factorization. However, we need to be careful about
one point. Suppose A is a nonreal complex number and (x — A) is a term in the
factorization of p as an element of P(C). We are guaranteed by 4.14 that (x — X)
also appears as a term in the factorization, but 4.14 does not state that these two
factors appear the same number of times, as needed to make the idea above work.
However, the proof works around this point.

In the next result, either m or M may equal 0. The numbers A4, ..., A, are
precisely the real zeros of p, for these are the only real values of x for which the
right side of the equation in the next result equals 0.

/

4.16 factorization of a polynomial over R

N

Suppose p € P(R) is a nonconstant polynomial. Then p has a unique factor-
ization (except for the order of the factors) of the form

px) = c(x — Ap)(x = A, (x% + byx + ¢ )+ (X% + byx + cpp),

J

Proof  First we will prove that the desired factorization exists, and after that we
will prove the uniqueness.

Think of p as an element of P(C). If all (complex) zeros of p are real, then
we have the desired factorization by 4.13. Thus suppose p has a zero A € C with
A & R. By 4.14, A is a zero of p. Thus we can write

\where Co Ay ey Ay by eees bygs €4, o0 € R, with bk2 < 4c, for each k.
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p(x) = (x = A)(x — A)q(x)
= (2 —2(Re M)x + [AP) g(x)

for some polynomial g € P(C) of degree two less than the degree of p. If we
can prove that g has real coeflicients, then using induction on the degree of p
completes the proof of the existence part of this result.

To prove that g has real coefficients, we solve the equation above for g, getting

p(x)
x2 —2(Re A)x + |A]?

g(x) =

for all x € R. The equation above implies that g(x) € R for all x € R. Writing

g(x) = ag + a3x + -+ +a, _,x" 2

where n = degp and ay, ...,a,,_, € C, we thus have
0 =Img(x) = (Imay) + (Ima;)x + - + (Ima, _,)x" 2

for all x € R. This implies that Ima,, ...,Ima, _, all equal 0 (by 4.8). Thus all
coeflicients of g are real, as desired. Hence the desired factorization exists.

Now we turn to the question of uniqueness of our factorization. A factor of p
of the form x? +byx + ¢ with b < 4c, can be uniquely written as (x — A;) (x— A
with A, € C. A moment’s thought shows that two different factorizations of p as
an element of P(R) would lead to two different factorizations of p as an element
of P(C), contradicting 4.13.

Exercises 4

1 Suppose w,z € C. Verify the following equalities and inequalities.
(a) z+z=2Rez
(b) z—z=2(Imz)i
(¢) zz =1z
d wrz=w+zandwz=wz
() z=z
() IRez| < |z] and |Imz| < [z]
(@ [ =1z
(h) |wz| = wl |z|

The results above are the parts of 4.4 that were left to the reader.

2 Prove that if w,z € C, then | lw| — |z|| <|w-z.

The inequality above is called the reverse triangle inequality.
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Suppose V is a complex vector space and ¢ € V' Define c: V — R by
o (v) = Re ¢(v) for each v € V. Show that

@) = o (v) —io(iv)
forallv € V.
Suppose m is a positive integer. Is the set
{0y U {p € P(F) : degp = m}
a subspace of P (F)?

Is the set
{0}y U {p € P(F) : degp is even}

a subspace of P (F)?

Suppose that m and n are positive integers with m < n, and suppose
Ay Ay, € F. Prove that there exists a polynomial p € P (F) with
degp = n such that 0 = p(A,) = -+ = p(A,,) and such that p has no
other zeros.

Suppose that m is a nonnegative integer, z4, ..., z,, . 1 are distinct elements
of F, and wy, ...,w,,,; € F. Prove that there exists a unique polynomial
p € P,,(F) such that

p(zi) = wy
foreachk =1,....m+1.
This result can be proved without using linear algebra. However, try to find

the clearer, shorter proof that uses some linear algebra.

Suppose p € P(C) has degree m. Prove that p has m distinct zeros if and
only if p and its derivative p’ have no zeros in common.

Prove that every polynomial of odd degree with real coefficients has a real
Zero.

Forp € P(R), define Tp: R — R by

(Tp)(x) =1 x—3
p'(3) ifx=3

for each x € R. Show that Tp € P(R) for every polynomial p € P(R) and
also show that T: P(R) — P(R) is a linear map.

Suppose p € P(C). Define g: C — C by

q(2) = p(2) p(2).

Prove that g is a polynomial with real coefficients.
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Suppose m is a nonnegative integer and p € 2,,(C) is such that there are
distinct real numbers xg, x1, ..., X,,, with p(x;) € R foreachk = 0,1, ...,m.
Prove that all coefficients of p are real.

Suppose p € P(F) withp # 0. Let U = {pg : g € P(F)}.

(a) Show that dim P(F) /U = degp.
(b) Find a basis of P(F) /U.

Suppose p, g € P(C) are nonconstant polynomials with no zeros in common.
Let m = degp and n = degg. Use linear algebra as outlined below in (a)—(c)
to prove that there exist r € ,_,(C) and s € #,,_,(C) such that

rp+sq=1.
(a) Define T: Tn_1(C) X Tm_1(C) g ?ern_l(C) by
T(r,s) =1p+sq.

Show that the linear map T is injective.

(b) Show that the linear map T in (a) is surjective.

(c) Use (b) to conclude that there existr € P,_,(C) ands € P,,_;(C)
such that rp + sq = 1.
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Chapter 5
Eigenvalues and Eigenvectors

Linear maps from one vector space to another vector space were the objects of
study in Chapter 3. Now we begin our investigation of operators, which are linear
maps from a vector space to itself. Their study constitutes the most important
part of linear algebra.

To learn about an operator, we might try restricting it to a smaller subspace.
Asking for that restriction to be an operator will lead us to the notion of invariant
subspaces. Each one-dimensional invariant subspace arises from a vector that
the operator maps into a scalar multiple of the vector. This path will lead us to
eigenvectors and eigenvalues.

We will then prove one of the most important results in linear algebra: every
operator on a finite-dimensional nonzero complex vector space has an eigenvalue.
This result will allow us to show that for each operator on a finite-dimensional
complex vector space, there is a basis of the vector space with respect to which
the matrix of the operator has at least almost half its entries equal to 0.

( standing assumptions for this chapter W

e F denotes R or C.
e V denotes a vector space over F.

a N

Ag 0D [9150d Jejod-SueH

\_ %

Statue of Leonardo of Pisa (1170—1250, approximate dates), also known as Fibonacci.
Exercise 21 in Section 5D shows how linear algebra can be used to find
the explicit formula for the Fibonacci sequence shown on the front cover.
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5A Invariant Subspaces

Eigenvalues
ﬁj definition: operator w
kA linear map from a vector space to itself is called an operator. )

Suppose T € £(V). If m > 2 and Recall that we defined the notation
v=V,e-aV,, L(V) to mean £(V, V).

where each V} is a nonzero subspace of V, then to understand the behavior of
T we only need to understand the behavior of each Ty, ; here T}, denotes the
restriction of T to the smaller domain V.. Dealing with Ty, should be easier than
dealing with T because V, is a smaller vector space than V.

However, if we intend to apply tools useful in the study of operators (such
as taking powers), then we have a problem: T|,, may not map Vj into itself; in
other words, T|y, may not be an operator on V;.. Thus we are led to consider only
decompositions of V of the form above in which T maps each V; into itself. Hence
we now give a name to subspaces of V that get mapped into themselves by T.

ﬁs.z definition: invariant subspace w

Suppose T € £(V). A subspace U of V is called invariant under T if Tu € U
for every u € U.

Thus U is invariant under T if T'; is an operator on U.

| 5.3 example: subspace invariant under differentiation operator |

Suppose that T € £(P(R)) is defined by Tp = p’. Then ,(R), which is a
subspace of P(R), is invariant under T because if p € P(R) has degree at most 4,
then p’ also has degree at most 4.

5.4 example: four invariant subspaces, not necessarily all different

If T € £(V), then the following subspaces of V are all invariant under T.

{0}  The subspace {0} is invariant under T because if u € {0}, then u = 0
and hence Tu = 0 € {0}.

1% The subspace V is invariant under T because if u € V, then Tu € V.

null T The subspace null T is invariant under T because if u € null T, then
Tu = 0, and hence Tu € null T.

range T The subspace range T is invariant under T because if u € range T,
then Tu € range T.
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Must an operator T € £(V) have any invariant subspaces other than {0}
and V? Later we will see that this question has an affirmative answer if V is
finite-dimensional and dimV > 1 (for F = C) or dimV > 2 (for F = R); see
5.19 and Exercise 29 in Section 5B.

The previous example noted that null T and range T are invariant under T.
However, these subspaces do not necessarily provide easy answers to the question
above about the existence of invariant subspaces other than {0} and V, because
null T may equal {0} and range T may equal V (this happens when T is invertible).

We will return later to a deeper study of invariant subspaces. Now we turn to
an investigation of the simplest possible nontrivial invariant subspaces—invariant
subspaces of dimension one.

Take any v € V with v # 0 and let U equal the set of all scalar multiples of v:

U= {Av: A€ F} =span(v).

Then U is a one-dimensional subspace of V' (and every one-dimensional subspace
of V is of this form for an appropriate choice of v). If U is invariant under an
operator T € £(V), then Tv € U, and hence there is a scalar A € F such that

Tv = Av.

Conversely, if Tv = Av for some A € F, then span(v) is a one-dimensional
subspace of V invariant under T.

The equation Tv = Av, which we have just seen is intimately connected with
one-dimensional invariant subspaces, is important enough that the scalars A and
vectors v satisfying it are given special names.

(5.5 definition: eigenvalue w

LSuppose T € £(V). Anumber A € F is called an eigenvalue of T if therej

exists v € V such that v # 0 and Tv = Av.

In the definition above, we require

that v # 0 because every scalar A € F half-English. The German prefix eigen

satisfies T0O = AO. means “own” in the sense of charac-
The comments above show that V' terizing an intrinsic property.

has a one-dimensional subspace invariant
under T if and only if T has an eigenvalue.

The word eigenvalue is half-German,

5.6 example: eigenvalue
Define an operator T € £(F°) by
T(x,y,z) = (7x + 3z,3x + 6y + 9z, —6Y)

for (x,y,z) € F> Then T(3,1,-1) = (18,6,—6) = 6(3,1,—1). Thus 6 is an
eigenvalue of T.
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The equivalences in the next result, along with many deep results in linear
algebra, are valid only in the context of finite-dimensional vector spaces.

N

/5.7 equivalent conditions to be an eigenvalue

Suppose V is finite-dimensional, T € £(V), and A € F. Then the following
are equivalent.

(a) Ais an eigenvalue of T.

(b) T — Al is not injective. Reminder: 1 € £(V) is the identity

(©) T — ATis not surjective operator. Thus Iv = v for allv € V.

d) T — Alisnot i tible.
\( ) is not invertible )

Proof Conditions (a) and (b) are equivalent because the equation Tv = Av
is equivalent to the equation (T — AI)v = 0. Conditions (b), (c), and (d) are
equivalent by 3.65.

(5.8 definition: eigenvector W

hSuppose T € £(V)and A € F is an eigenvalue of T. A vectorv € V'is calledJ

an eigenvector of T corresponding to A if v # 0 and Tv = Av.

In other words, a nonzero vector v € V is an eigenvector of an operator
T € £(V) if and only if Tw is a scalar multiple of v. Because Tv = Av if and only
if (T — Al)v = 0, avector v € V with v # 0 is an eigenvector of T corresponding
to A if and only if v € null(T — Al).

| 5.9 example: eigenvalues and eigenvectors

Suppose T € £(F?) is defined by T(w,z) = (—z, w).

(a) First consider the case F = R. Then T is a counterclockwise rotation by 90°
about the origin in R%2 An operator has an eigenvalue if and only if there
exists a nonzero vector in its domain that gets sent by the operator to a scalar
multiple of itself. A 90° counterclockwise rotation of a nonzero vector in R?
cannot equal a scalar multiple of itself. Conclusion: if F = R, then T has no
eigenvalues (and thus has no eigenvectors).

(b) Now consider the case F = C. To find eigenvalues of T, we must find the
scalars A such that T (w,z) = A(w, z) has some solution other thanw = z = 0.
The equation T(w,z) = A(w, z) is equivalent to the simultaneous equations

5.10 —z = Aw, w= Az

Substituting the value for w given by the second equation into the first equation
gives
—z = A%z
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Now z cannot equal 0 [otherwise 5.10 implies that w = 0; we are looking for
solutions to 5.10 such that (w, z) is not the 0 vector], so the equation above
leads to the equation

-1=A2
The solutions to this equation are A = iand A = —i.

You can verify that i and —i are eigenvalues of T. Indeed, the eigenvectors
corresponding to the eigenvalue i are the vectors of the form (w, —wi), with
w € Cand w # 0. Furthermore, the eigenvectors corresponding to the
eigenvalue —i are the vectors of the form (w, wi), with w € C and w # 0.

In the next proof, we again use the equivalence

To= M < (T - ADv=0.

<

511 linearly independent eigenvectors

>

Suppose T € £(V). Then every list of eigenvectors of T corresponding to
\distinct eigenvalues of T is linearly independent. )

Proof Suppose the desired result is false. Then there exists a smallest positive
integer m such that there exists a linearly dependent list v, ..., v,, of eigenvectors
of T corresponding to distinct eigenvalues A4, ..., A, of T (note that m > 2 because
an eigenvector is, by definition, nonzero). Thus there exist a, ..., a,, € F, none of
which are 0 (because of the minimality of m), such that

a0y + -+ +a,0,, =0.
Apply T — A,,Ito both sides of the equation above, getting
al(/\-l - )Lm)vl + e+ am_l(Am_l - /\m)vm_l = 0.

Because the eigenvalues A4, ..., A, are distinct, none of the coefficients above
equal 0. Thus v4, ...,v,,_; is a linearly dependent list of m — 1 eigenvectors of T
corresponding to distinct eigenvalues, contradicting the minimality of m. This
contradiction completes the proof.

The result above leads to a short proof of the result below, which puts an upper
bound on the number of distinct eigenvalues that an operator can have.

(5.12 operator cannot have more eigenvalues than dimension of vector spacew

Suppose V is finite-dimensional. Then each operator on V has at most dim V
distinct eigenvalues.

Proof LetT € £(V). Suppose A4, ..., A, are distinct eigenvalues of T. Let
vy, ..., U, be corresponding eigenvectors. Then 5.11 implies that the list v, ..., v,,
is linearly independent. Thus m < dim V (see 2.22), as desired.
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Polynomials Applied to Operators

The main reason that a richer theory exists for operators (which map a vector
space into itself) than for more general linear maps is that operators can be raised
to powers. In this subsection we define that notion and the concept of applying a
polynomial to an operator. This concept will be the key tool that we use in the
next section when we prove that every operator on a nonzero finite-dimensional
complex vector space has an eigenvalue.

If T is an operator, then TT makes sense (see 3.7) and is also an operator on
the same vector space as T. We usually write T2 instead of TT. More generally,
we have the following definition of T™.

/5.13 notation: T™ R

Suppose T € £(V) and m is a positive integer.

o T" € £(V)isdefinedby T" = T---T.

m times

o T is defined to be the identity operator I on V.

e If T is invertible with inverse T~1, then T~ € £(V) is defined by

T-m = (T-1)",
L (1)

You should verify that if T is an operator, then
TMT" — T"+1  gnd (Tm)” = Tmn

where m and n are arbitrary integers if T is invertible and are nonnegative integers
if T is not invertible.

Having defined powers of an operator, we can now define what it means to
apply a polynomial to an operator.

/5.14 notation: p(T') h

Suppose T € £(V) and p € P(F) is a polynomial given by
p(z) = ag + a1z + a,2% + -+ +a,, 2"

for all z € F. Then p(T) is the operator on V defined by

p(T) = apl + a;,T + a,T? + -+ + a,, T™. )

This is a new use of the symbol p because we are applying p to operators, not
just elements of F. The idea here is that to evaluate p(T'), we simply replace z with
T in the expression defining p. Note that the constant term 4, in p(z) becomes the
operator a, (which is a reasonable choice because 4, = ayz° and thus we should
replace a, with a,T", which equals a,]).

-

Linear Algebra Done Right, fourth edition, by Sheldon Axler



138 Chapter 5 Eigenvalues and Eigenvectors

5.15 example: a polynomial applied to the differentiation operator

Suppose D € £(P(R)) is the differentiation operator defined by Dg = ¢’ and
p is the polynomial defined by p(x) = 7 — 3x + 5x% Then p(D) = 7I — 3D + 5D
Thus
(p(D))q =79 -3¢ +5¢"

for every g € P(R).

If we fix an operator T € £(V), then the function from P (F) to £(V) given
by p — p(T) is linear, as you should verify.

(5.16 definition: product of polynomials

If p,q € P(F), then pg € P(F) is the polynomial defined by
(pg) (z) = p(z)q(z)

forall z € F.

The order does not matter in taking products of polynomials of a single
operator, as shown by (b) in the next result.

/5.1 7 multiplicative properties

SRS 7] S P Enslil & S0 Informal proof: When a product of

Then iy . .
polynomials is expanded using the dis-
@ (p)(T) = p(T)q(T); tributive property, it does not matter
(b) p(T)a(T) = g(T)p(T). whether the symbol is z or T.
S pl)q qit)p )
Proof

m n
(a) Suppose p(z) = Z ajzf and q(z) = Z bkzk for all z € F. Then
i=0 k=0

P =Y ) abd*.

j=0k=0

Thus

Ppp(T) =Y Y abT**

j=0k=0

_ m ' ] n k
(J‘Zo 4t )(kzo o )

= p(T)q(T).
(b) Using (a) twice, we have p(T)q(T) = (pq)(T) = (qp)(T) = q(T)p(T).
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We observed earlier that if T € £(V), then the subspaces null T and range T
are invariant under T (see 5.4). Now we show that the null space and the range of
every polynomial of T are also invariant under T.

(5.18 null space and range of p(T) are invariant under T w

Suppose T € £(V) and p € P(F). Then nullp(T) and rangep(T) are
invariant under T.

Proof  Suppose u € null p(T). Then p(T)u = 0. Thus
(p(T))(Tu) = (p(T) T)(w) = (Tp(T)) () = T(p(T)u) = T(0) = 0.

Hence Tu € null p(T). Thus null p(T) is invariant under T, as desired.
Suppose u € range p(T). Then there exists v € V such that u = p(T)v. Thus

Tu = T(p(T)v) = p(T)(Tv).

Hence Tu € range p(T). Thus range p(T) is invariant under T, as desired.

Exercises 5A

1 Suppose T € £(V) and U is a subspace of V.

(a) Prove that if U C null T, then U is invariant under T.
(b) Prove that if range T C U, then U is invariant under T.

2 Suppose that T € £(V) and V,, ..., V,, are subspaces of V invariant under T.
Prove that V; + --- + V,, is invariant under T.

3 Suppose T € £(V). Prove that the intersection of every collection of
subspaces of V invariant under T is invariant under T.

4 Prove or give a counterexample: If V is finite-dimensional and U is a sub-
space of V that is invariant under every operator on V, then U = {0} or
u=V.

5 Suppose T € £(R?) is defined by T'(x,y) = (—3y,x). Find the eigenvalues
of T.

6 Define T € £(F?) by T(w,z) = (z,w). Find all eigenvalues and eigenvec-
tors of T.

7 Define T € £(F?) by T(zy,2,,23) = (22,,0,5z3). Find all eigenvalues and
eigenvectors of T.

8 Suppose P € £(V) is such that P? = P. Prove that if A is an eigenvalue of P,
then A =0or A = 1.
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Define T: P(R) — P(R) by Tp = p". Find all eigenvalues and eigenvectors
of T.

Define T € £(?4(R)) by (Tp)(x) = xp'(x) for all x € R. Find all eigen-
values and eigenvectors of T.

Suppose V is finite-dimensional, T € £(V), and « € F. Prove that there ex-
ists & > 0 such that T— Al is invertible forall A € F suchthat0 < |a — A| < .

Suppose V = U & W, where U and W are nonzero subspaces of V. Define
P e £(V) by P(u+ w) = uforeach u € U and each w € W. Find all
eigenvalues and eigenvectors of P.

Suppose T € £(V). Suppose S € £L(V) is invertible.

(a) Prove that T and S™'TS have the same eigenvalues.
(b) What is the relationship between the eigenvectors of T and the eigenvec-
tors of ST1TS?

Give an example of an operator on R* that has no (real) eigenvalues.

Suppose V is finite-dimensional, T € £(V), and A € F. Show that A is
an eigenvalue of T if and only if A is an eigenvalue of the dual operator
T e L(V').

Suppose vy, ...,v,, is a basis of V.and T € £(V). Prove that if A is an
eigenvalue of T, then

A < nmax{|M(T)]-,k| 1<), k<ny},

where M (T) ik denotes the entry in row j, column k of the matrix of T with
respect to the basis v, ..., v,,.

See Exercise 19 in Section 6A for a different bound on |A|.

Suppose F = R, T € £(V), and A € R. Prove that A is an eigenvalue of T
if and only if A is an eigenvalue of the complexification T.

See Exercise 33 in Section 3B for the definition of Tc.

Suppose F = R, T € £(V), and A € C. Prove that A is an eigenvalue of
the complexification T if and only if A is an eigenvalue of T..

Show that the forward shift operator T € £(F>) defined by
T(zq,25,..) = (0,29,25,...)

has no eigenvalues.

Define the backward shift operator S € £(F*) by
5(21,29,23, ... ) = (23,23, ... ).

(a) Show that every element of F is an eigenvalue of S.

(b) Find all eigenvectors of S.
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Suppose T € £(V) is invertible.

(a) Suppose A € F with A # 0. Prove that A is an eigenvalue of T if and
only if % is an eigenvalue of T~
(b) Prove that T and T~! have the same eigenvectors.

Suppose T € £(V) and there exist nonzero vectors # and w in V such that
Tu=3w and Tw =3u.
Prove that 3 or —3 is an eigenvalue of T.

Suppose V is finite-dimensional and S, T € £(V). Prove that ST and TS
have the same eigenvalues.

Suppose A is an n-by-n matrix with entries in F. Define T € £ (F”) by
Tx = Ax, where elements of F” are thought of as n-by-1 column vectors.

(a) Suppose the sum of the entries in each row of A equals 1. Prove that 1
is an eigenvalue of T.

(b) Suppose the sum of the entries in each column of A equals 1. Prove that
1 is an eigenvalue of T.

Suppose T € £(V) and u, w are eigenvectors of T such that u + w is also
an eigenvector of T. Prove that u and w are eigenvectors of T corresponding
to the same eigenvalue.

Suppose T € £(V) is such that every nonzero vector in V is an eigenvector
of T. Prove that T is a scalar multiple of the identity operator.

Suppose that V is finite-dimensional and k € {1, ...,dim V — 1}. Suppose
T € £(V) is such that every subspace of V of dimension k is invariant
under T. Prove that T is a scalar multiple of the identity operator.

Suppose V is finite-dimensional and T € £(V). Prove that T has at most
1 + dimrange T distinct eigenvalues.

Suppose T € £ (R3) and —4, 5, and \/7 are eigenvalues of T. Prove that
there exists x € R® such that Tx — 9x = (—4,5,V7).

Suppose T € £(V) and (T — 2I)(T — 3I)(T — 4I) = 0. Suppose A is an
eigenvalue of T. Prove that A =2or A =3 or A = 4.

Give an example of T € £(R?) such that T* = —I.
Suppose T € £(V) has no eigenvalues and T* = I. Prove that T? = —I.

Suppose T € £(V) and m is a positive integer.

(a) Prove that T is injective if and only if T™ is injective.
(b) Prove that T is surjective if and only if T™ is surjective.
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Chapter 5 Eigenvalues and Eigenvectors

Suppose V is finite-dimensional and vy, ...,v,, € V. Prove that the list
vy, ..., U, is linearly independent if and only if there exists T € £(V) such
that v, ..., v,, are eigenvectors of T corresponding to distinct eigenvalues.

Suppose that A4, ..., A, is a list of distinct real numbers. Prove that the

list eM1*, ..., e~ is linearly independent in the vector space of real-valued
functions on R.

Hint: Let V = span(eM”, ...,e*~), and define an operator D € £(V) by
Df = f' Find eigenvalues and eigenvectors of D.

Suppose that A4, ..., A, is a list of distinct positive numbers. Prove that
the list cos(Ax), ..., cos(A,x) is linearly independent in the vector space of
real-valued functions on R.

Suppose V is finite-dimensional and T € £(V). Define A € £(£(V)) by
AS) =TS
for each S € £(V). Prove that the set of eigenvalues of T equals the set of

eigenvalues of A.

Suppose V is finite-dimensional, T € £(V), and U is a subspace of V
invariant under T. The quotient operator T/U € £(V/U) is defined by

(T/WHw+U) =To+ U

foreachv e V.

(a) Show that the definition of T/U makes sense (which requires using the
condition that U is invariant under T) and show that T/U is an operator
on V/U.

(b) Show that each eigenvalue of T/U is an eigenvalue of T.

Suppose V is finite-dimensional and T € £(V'). Prove that T has an eigen-
value if and only if there exists a subspace of V of dimension dim V' — 1 that
is invariant under T.

Suppose S, T € £(V) and S is invertible. Suppose p € P (F) is a polynomial.
Prove that
p(STS™) = Sp(T)S~.

Suppose T € £(V) and U is a subspace of V invariant under T. Prove that
U is invariant under p(T) for every polynomial p € P (F).

Define T € £(F") by T(x1,Xy, X3, ..., X,,) = (X1, 2%y, 3%3, ..., 1X,,).

(a) Find all eigenvalues and eigenvectors of T.
(b) Find all subspaces of F” that are invariant under T.

Suppose that V is finite-dimensional, dimV > 1,and T € £(V). Prove that
{p(T):pePE)} + L(V).
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5B The Minimal Polynomial

Existence of Eigenvalues on Complex Vector Spaces

Now we come to one of the central results about operators on finite-dimensional
complex vector spaces.

(5.19 existence of eigenvalues W

Every operator on a finite-dimensional nonzero complex vector space has an
eigenvalue.

Proof Suppose V is a finite-dimensional complex vector space of dimension
n>0and T € £(V). Choose v € V with v # 0. Then

v, Tv, T?v, ..., T"v

is not linearly independent, because V has dimension # and this list has length
n + 1. Hence some linear combination (with not all the coefficients equal to 0)
of the vectors above equals 0. Thus there exists a nonconstant polynomial p of
smallest degree such that

p(Iov=0.

By the first version of the fundamental theorem of algebra (see 4.12), there
exists A € C such that p(A) = 0. Hence there exists a polynomial g € P(C) such
that

pz) = (z—=A)q(2)

for every z € C (see 4.6). This implies (using 5.17) that
0=p(TM)v=(T—-AD(q(T)v).

Because g has smaller degree than p, we know that q(T) v # 0. Thus the equation
above implies that A is an eigenvalue of T with eigenvector q(T)v.

The proof above makes crucial use of the fundamental theorem of algebra.
The comment following Exercise 16 helps explain why the fundamental theorem
of algebra is so tightly connected to the result above.

The hypothesis in the result above that F = C cannot be replaced with the
hypothesis that F = R, as shown by Example 5.9. The next example shows that
the finite-dimensional hypothesis in the result above also cannot be deleted.

5.20 example: an operator on a complex vector space with no eigenvalues

Define T € £(P(C)) by (Tp)(z) = zp(z). If p € P(C) is a nonzero poly-
nomial, then the degree of Tp is one more than the degree of p, and thus Tp cannot
equal a scalar multiple of p. Hence T has no eigenvalues.

Because 7 (C) is infinite-dimensional, this example does not contradict the
result above.
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Eigenvalues and the Minimal Polynomial

In this subsection we introduce an important polynomial associated with each
operator. We begin with the following definition.

(5.21 definition: monic polynomial w

LA monic polynomial is a polynomial whose highest-degree coeflicient equals 1 )

For example, the polynomial 2 + 9z + z” is a monic polynomial of degree 7.

5.22 existence, uniqueness, and degree of minimal polynomial

Suppose V is finite-dimensional and T € £(V'). Then there is a unique monic
polynomial p € P (F) of smallest degree such that p(T) = 0. Furthermore,
degp < dimV.

Proof IfdimV = 0, then I is the zero operator on V and thus we take p to be
the constant polynomial 1.

Now use induction on dim V. Thus assume that dim V' > 0 and that the desired
result is true for all operators on all vector spaces of smaller dimension. Let
u € V be such that u # 0. The list u, Tu, ..., T%"Vy has length 1 + dim V and
thus is linearly dependent. By the linear dependence lemma (2.19), there is a
smallest positive integer m < dim V' such that T""u is a linear combination of
u, Tu, ...,T™~1y. Thus there exist scalars C»C15Ca5 -+es €y —1 € F such that
5.23 coh + ¢ Tu+ -+ ¢y T" 1y + TMu = 0.

Define a monic polynomial g € ,,(F) by
G(z) = co+C1Z+ o+ Cpy_12" L+ 2™
Then 5.23 implies that g(T)u = 0.
If k is a nonnegative integer, then
q(T)(Tru) = T*(q(T)u) = T*(0) = 0.
The linear dependence lemma (2.19) shows that u, Tu, ..., T~ 1y is linearly inde-
pendent. Thus the equation above implies that dimnull g(T) > m. Hence
dimrangeq(T) = dimV — dimnullg(T) < dimV — m.

Because range q(T) is invariant under T (by 5.18), we can apply our induction
hypothesis to the operator Tl 41y On the vector space range q(T). Thus there
is a monic polynomial s € P(F) with

degs <dimV —m and $(Tlangeq(r)) = 0.
Hence for all v € V we have
((sq)(T)) (v) = s(T)(q(Thv) =0

because gq(T)v € range q(T) and s(T) lrangeq(T) = (T lrangeq(T)
monic polynomial such that degsq < dim V and (sq)(T) = 0.

) =0. Thus sgis a
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The paragraph above shows that there is a monic polynomial of degree at
most dim V that when applied to T gives the 0 operator. Thus there is a monic
polynomial of smallest degree with this property, completing the existence part
of this result.

Let p € P(F) be a monic polynomial of smallest degree such that p(T) = 0.
To prove the uniqueness part of the result, suppose r € P (F) is a monic poly-
nomial of the same degree as p and r(T) = 0. Then (p — r)(T) = 0 and also
deg(p — r) < degp. If p — r were not equal to 0, then we could divide p — r by
the coefficient of the highest-order term in p — r to get a monic polynomial (of
smaller degree than p) that when applied to T gives the 0 operator. Thus p —r = 0,
as desired.

The previous result justifies the following definition.

5.24 definition: minimal polynomial

Suppose V is finite-dimensional and T € £(V). Then the minimal polynomial
of T is the unique monic polynomial p € #(F) of smallest degree such that
p(T) =0.

To compute the minimal polynomial of an operator T € £(V), we need to
find the smallest positive integer m such that the equation

Col“r‘ ClT + .+ Cm_le_l = —Tm

has a solution ¢y, ¢y, ...,c,,_; € F. If we pick a basis of V and replace T in the
equation above with the matrix of T, then the equation above can be thought of
as a system of (dim V)? linear equations in the m unknowns €0>C1s s Cpy—1 € F.
Gaussian elimination or another fast method of solving systems of linear equations
can tell us whether a solution exists, testing successive values m = 1,2, ... until
a solution exists. By 5.22, a solution exists for some smallest positive integer
m < dim V. The minimal polynomial of T is then ¢y + ¢,z + -+ + ¢, 12"~ + 2™
Even faster (usually), pick v € V with v # 0 and consider the equation

5.25 co¥ + 1 TU + + + Cgiyy_ 1 THMY ~ 1y = —TdimVy,

Use a basis of V to convert the equation above to a system of dim V' linear equa-
tions in dim V unknowns cg, ¢y, ..., Cgimy —1- If this system of equations has a
unique solution cg, ¢1, ..., Cgimy —1 (as happens most of the time), then the scalars
€p»C15 +++» Cdimv —1- 1 are the coeflicients of the minimal polynomial of T (because
5.22 states that the degree of the minimal polynomial is at most dim V).

Consider operators on R* (thought
of as 4-by-4 matrices with respect to the
standard basis), and take v = (1,0, 0, 0)
in the paragraph above. The faster method described above works on over 99.8%
of the 4-by-4 matrices with integer entries in the interval [—10, 10] and on over
99.999% of the 4-by-4 matrices with integer entries in [—100, 100].

These estimates are based on testing
millions of random matrices.
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The next example illustrates the faster procedure discussed above.

5.26 example: minimal polynomial of an operator on F°

Suppose T € £(F°) and

0000 -3
1000 6
MT)=| 0100 0
0010 0
0001 0

with respect to the standard basis e, e,, €3, €4, €5. Taking v = ¢; for 5.25, we have

Tel = 627 T4€1 = T(Tsel) = T€4 = 65,
Tzel = T(Tel) = TEZ = 63, T5€1 = T(T431> = Te5 = —361 + 632.
T3¢, = T(T?e;) = Tes = ey,

Thus 3¢, — 6Te; = —T e;. The list e;, Teq, T?e;, T2e;, T*e;, which equals the list

1,65, €3, €4, €5, is linearly independent, so no other linear combination of this list
equals —T°e;. Hence the minimal polynomial of T is 3 — 6z + z°.

Recall that by definition, eigenvalues of operators on V and zeros of polyno-
mials in P(F) must be elements of F. In particular, if F = R, then eigenvalues
and zeros must be real numbers.

/

5.27 eigenvalues are the zeros of the minimal polynomial

>

Suppose V is finite-dimensional and T € £(V).
(a) The zeros of the minimal polynomial of T are the eigenvalues of T.
(b) If Vis a complex vector space, then the minimal polynomial of T has the

form
(z—=Ap)(z=Ap),

where A4, ..., A, is a list of all eigenvalues of T, possibly with repetitions.

)

Proof Let p be the minimal polynomial of T.

(a) First suppose A € F is a zero of p. Then p can be written in the form
p(z) = (z—=A)q(2),

where g is a monic polynomial with coefficients in F (see 4.6). Because
p(T) = 0, we have
0=(T—AD(q(T)v)

for all v € V. Because degqg = (degp) — 1 and p is the minimal polynomial
of T, there exists at least one vector v € V such that g(T)v # 0. The equation
above thus implies that A is an eigenvalue of T, as desired.
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To prove that every eigenvalue of T is a zero of p, now suppose A € F is
an eigenvalue of T. Thus there exists v € V with v # 0 such that Tv = Av.
Repeated applications of T to both sides of this equation show that Tv = Ak
for every nonnegative integer k. Thus

p(Dv =p(A)v.

Because p is the minimal polynomial of T, we have p(T)v = 0. Hence the
equation above implies that p(A) = 0. Thus A is a zero of p, as desired.

(b) To get the desired result, use (a) and the second version of the fundamental
theorem of algebra (see 4.13).

A nonzero polynomial has at most as many distinct zeros as its degree (see 4.8).
Thus (a) of the previous result, along with the result that the minimal polynomial
of an operator on V has degree at most dim V, gives an alternative proof of 5.12,
which states that an operator on V has at most dim V distinct eigenvalues.

Every monic polynomial is the minimal polynomial of some operator, as
shown by Exercise 16, which generalizes Example 5.26. Thus 5.27(a) shows that
finding exact expressions for the eigenvalues of an operator is equivalent to the
problem of finding exact expressions for the zeros of a polynomial (and thus is
not possible for some operators).

5.28 example: An operator whose eigenvalues cannot be found exactly

Let T € £(C°) be the operator defined by
T(Zl, Zz, Z3, Z4, Zs) == (_325, Zl + 625, Zz, Z3, Z4) .

The matrix of T with respect to the standard basis of C® is the 5-by-5 matrix in
Example 5.26. As we showed in that example, the minimal polynomial of T is
the polynomial

3 — 6z +2°.

No zero of the polynomial above can be expressed using rational numbers,
roots of rational numbers, and the usual rules of arithmetic (a proof of this would
take us considerably beyond linear algebra). Because the zeros of the polynomial
above are the eigenvalues of T [by 5.27(a)], we cannot find an exact expression
for any eigenvalue of T in any familiar form.

Numeric techniques, which we will not discuss here, show that the zeros of the
polynomial above, and thus the eigenvalues of T, are approximately the following
five complex numbers:

-1.67, 051, 140, -012+1.59, -0.12-1.59.

Note that the two nonreal zeros of this polynomial are complex conjugates of
each other, as we expect for a polynomial with real coefficients (see 4.14).
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The next result completely characterizes the polynomials that when applied to
an operator give the 0 operator.

(5.29 q(T) =0 < qis a polynomial multiple of the minimal polynomial W

Suppose V is finite-dimensional, T € £(V), and g € P (F). Then q(T) =0
if and only if g is a polynomial multiple of the minimal polynomial of T.

Proof Let p denote the minimal polynomial of T.
First suppose q(T) = 0. By the division algorithm for polynomials (4.9), there
exist polynomials s,» € P (F) such that

5.30 q=ps+r
and degr < degp. We have
0=q(T) =p)s(T) +r(T) =r(T).

The equation above implies that r = 0 (otherwise, dividing r by its highest-degree
coefficient would produce a monic polynomial that when applied to T gives 0;
this polynomial would have a smaller degree than the minimal polynomial, which
would be a contradiction). Thus 5.30 becomes the equation 4 = ps. Hence g is a
polynomial multiple of p, as desired.

To prove the other direction, now suppose g is a polynomial multiple of p.
Thus there exists a polynomial s € P (F) such that g = ps. We have

q(T) =p(T)s(T) = 0s(T) =0,

as desired.

The next result is a nice consequence of the result above.

(5.31 minimal polynomial of a restriction operator

Suppose V is finite-dimensional, T € £(V), and U is a subspace of V that is
invariant under T. Then the minimal polynomial of T is a polynomial multiple
of the minimal polynomial of T|;;.

Proof ~ Suppose p is the minimal polynomial of T. Thus p(T)v = 0 forallv € V.
In particular,
p(Tyu=0forallu € U.

Thus p(T|;) = 0. Now 5.29, applied to the operator T|;; in place of T, implies
that p is a polynomial multiple of the minimal polynomial of T|;;.

See Exercise 25 for a result about quotient operators that is analogous to the
result above.

The next result shows that the constant term of the minimal polynomial of an
operator determines whether the operator is invertible.
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(5.32 T not invertible < constant term of minimal polynomial of T is 0 w

Suppose V is finite-dimensional and T € £(V). Then T is not invertible if
and only if the constant term of the minimal polynomial of T is 0.

Proof Suppose T € £(V) and p is the minimal polynomial of T. Then

T is not invertible < 0 is an eigenvalue of T
< (isazeroofp

< the constant term of p is 0,

where the first equivalence holds by 5.7, the second equivalence holds by 5.27(a),
and the last equivalence holds because the constant term of p equals p(0).

Eigenvalues on Odd-Dimensional Real Vector Spaces

The next result will be the key tool that we use to show that every operator on an
odd-dimensional real vector space has an eigenvalue.

(5.33 even-dimensional null space w

Suppose F = R and V is finite-dimensional. Suppose also that T € £(V)
and b, c € R with b* < 4c. Then dim null(T? + bT + cI) is an even number.

Proof  Recall that null(T? + bT + cI) is invariant under T (by 5.18). By replacing

V with null(T? + bT + cI) and replacing T with T restricted to null(T? + bT + cI),

we can assume that T2 + bT + cI = 0; we now need to prove that dim V is even.
Suppose A € R and v € V are such that Tv = Av. Then

2
0:(T2+bT+cI)v:(A2+b}\+c)v:<<)\+g> +c—bzz>v.

The term in large parentheses above is a positive number. Thus the equation above
implies that v = 0. Hence we have shown that T has no eigenvectors.

Let U be a subspace of V that is invariant under T and has the largest dimension
among all subspaces of V that are invariant under T and have even dimension. If
U = V, then we are done; otherwise assume there exists w € V such that w ¢ U.

Let W = span(w,Tw). Then W is invariant under T because T(Tw) =
—bTw — cw. Furthermore, dim W = 2 because otherwise w would be an eigen-
vector of T. Now

dim(U+ W) =dimU + dimW —dim(U N W) =dim U + 2,

where U N W = {0} because otherwise U N W would be a one-dimensional
subspace of V that is invariant under T (impossible because T has no eigenvectors).
Because U + W is invariant under T, the equation above shows that there exists
a subspace of V invariant under T of even dimension larger than dim U. Thus the
assumption that U # V was incorrect. Hence V has even dimension.
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The next result states that on odd-dimensional vector spaces, every operator
has an eigenvalue. We already know this result for finite-dimensional complex
vectors spaces (without the odd hypothesis). Thus in the proof below, we will
assume that F = R.

(‘5.34 operators on odd-dimensional vector spaces have eigenvalues W

LEvery operator on an odd-dimensional vector space has an eigenvalue. j

Proof  Suppose F = R and V is finite-dimensional. Let n = dim V, and suppose
n is an odd number. Let T € £(V). We will use induction on 7 in steps of size
two to show that T has an eigenvalue. To get started, note that the desired result
holds if dim V = 1 because then every nonzero vector in V is an eigenvector of T.

Now suppose that n > 3 and the desired result holds for all operators on all
odd-dimensional vector spaces of dimension less than n. Let p denote the minimal
polynomial of T. If p is a polynomial multiple of x — A for some A € R, then A is
an eigenvalue of T [by 5.27(a)] and we are done. Thus we can assume that there
exist b, c € R such that b? < 4c and p is a polynomial multiple of x? + bx + ¢ (see
4.16).

There exists a monic polynomial g € P (R) such that p(x) = g(x) (x*+bx +c)
for all x € R. Now

0=p(T) = (q(T))(T? + bT + cI),

which means that q(T) equals 0 on range(T? + bT + cI). Because degg < degp
and p is the minimal polynomial of T, this implies that range(T? + bT + cI) # V.
The fundamental theorem of linear maps (3.21) tells us that

dimV = dimnull(T? + bT + cI) + dimrange(T? + bT + cI).

Because dim V is odd (by hypothesis) and dimnull(T? + bT + cI) is even (by
5.33), the equation above shows that dimrange(T? + bT + cI) is odd.

Hence range(T? + bT + cI) is a subspace of V that is invariant under T (by
5.18) and that has odd dimension less than dim V. Our induction hypothesis now
implies that T restricted to range(T2 + bT + cI) has an eigenvalue, which means
that T has an eigenvalue.

See Exercise 23 in Section 8B and Exercise 10 in Section 9C for alternative
proofs of the result above.

Exercises 5B

1 Suppose T € £(V). Prove that 9 is an eigenvalue of T? if and only if 3 or
—3 is an eigenvalue of T.

2 Suppose V is a complex vector space and T € £(V) has no eigenvalues.
Prove that every subspace of V invariant under T is either {0} or infinite-
dimensional.
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Suppose 7 is an integer withn > 1 and T € £(F") is defined by
T(X1yeX,) = (X 4+ -+ X, 000X + 000+ X,,).
(a) Find all eigenvalues and eigenvectors of T.

(b) Find the minimal polynomial of T.

The matrix of T with respect to the standard basis of F" consists of all 1’s.

Suppose F = C, T € £(V), p € P(C) is a nonconstant polynomial, and
« € C. Prove that « is an eigenvalue of p(T) if and only if &« = p(A) for
some eigenvalue A of T.

Give an example of an operator on R? that shows the result in Exercise 4
does not hold if C is replaced with R.

Suppose T € £(F?) is defined by T(w,z) = (—z,w). Find the minimal
polynomial of T.

(a) Give an example of S, T € £(F?) such that the minimal polynomial of
ST does not equal the minimal polynomial of TS.

(b) Suppose V is finite-dimensional and S, T € £ (V). Prove that if at least
one of S, T is invertible, then the minimal polynomial of ST equals the
minimal polynomial of TS.

Hint: Show that if S is invertible and p € P(F), then p(TS) = S‘lp(ST)S.

Suppose T € £(R?) is the operator of counterclockwise rotation by 1°.
Find the minimal polynomial of T.

Because diim R? = 2, the degree of the minimal polynomial of T is at most 2.
Thus the minimal polynomial of T is not the tempting polynomial x'%° + 1,
even though T8 = —.

Suppose T € £(V) is such that with respect to some basis of V, all entries
of the matrix of T are rational numbers. Explain why all coefficients of the
minimal polynomial of T are rational numbers.

Suppose V is finite-dimensional, T € £(V), and v € V. Prove that
span(v, Tv, ..., T"v) = span(v, To, ..., T9mV ~1p)

for all integers m > dim V' — 1.

Suppose V is a two-dimensional vector space, T € £(V), and the matrix of

T with respect to some basis of V' is ( Z cci .

(a) Show that T?> — (a+d)T + (ad — be)I = 0.

(b) Show that the minimal polynomial of T equals

z—a ifb=c=0anda =4,
22— (a+d)z+ (ad — bc) otherwise.
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Define T € £(F") by T(xy, X5, X3, ..., X,,) = (%1, 2%, 3%5, ..., 11x,,). Find the
minimal polynomial of T.

Suppose V is finite-dimensional, T € £(V), and p € P(F). Prove that there
exists a unique r € P(F) such that p(T) = r(T) and degr is less than the
degree of the minimal polynomial of T.

Suppose V is finite-dimensional and T € £ (V) has minimal polynomial
4 + 5z — 622 — 723 + 2z* + z°. Find the minimal polynomial of T~

Suppose V is a finite-dimensional complex vector space with dimV > 0
and T € £(V). Define f: C - R by

f(A) = dimrange(T — AI).
Prove that fis not a continuous function.

Suppose 4y, ...,a,_; € F. Let T be the operator on F* whose matrix (with
respect to the standard basis) is

0 —a,
1 0 —aq
1 —a,

0 —4y_2

1 —y_1

Here all entries of the matrix are 0 except for all 1’s on the line under the
diagonal and the entries in the last column (some of which might also be 0).
Show that the minimal polynomial of T is the polynomial

ag + a1z + - +a, 2" "1+ 2"

The matrix above is called the companion matrix of the polynomial above.
This exercise shows that every monic polynomial is the minimal polynomial
of some operator. Hence a formula or an algorithm that could produce
exact eigenvalues for each operator on each ¥" could then produce exact
zeros for each polynomial [by 5.27(a)]. Thus there is no such formula or
algorithm. However, efficient numeric methods exist for obtaining very good
approximations for the eigenvalues of an operator.

Suppose V is finite-dimensional, T € £(V'), and p is the minimal polynomial
of T. Suppose A € F. Show that the minimal polynomial of T — Al is the
polynomial g defined by g(z) = p(z + A).

Suppose Vis finite-dimensional, T € £(V'), and p is the minimal polynomial
of T. Suppose A € F\{0}. Show that the minimal polynomial of AT is the

polynomial g defined by g(z) = A%e? p(%)
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Suppose V is finite-dimensional and T € £(V). Let & be the subspace of
L (V) defined by
E=1{q(T) : g € P(F)}.

Prove that dim & equals the degree of the minimal polynomial of T.

Suppose T € £ (F4) is such that the eigenvalues of T are 3,5, 8. Prove that
(T —3D)%(T —5)*(T — 8I)%2 = 0.
Suppose V is finite-dimensional and T € £(V). Prove that the minimal
polynomial of T has degree at most 1 + dimrange T.

If dimrange T < dim V' — 1, then this exercise gives a better upper bound

than 5.22 for the degree of the minimal polynomial of T.

Suppose V is finite-dimensional and T € £(V'). Prove that T is invertible if
and only if I € span(T, T2 ..., T9mV).

Suppose V is finite-dimensional and T € £(V). Let n = dim V. Prove that
if v € V, then span(v, Tv, ..., T"~'v) is invariant under T.

Suppose V is a finite-dimensional complex vector space. Suppose T € £(V)
is such that 5 and 6 are eigenvalues of T and that T has no other eigenvalues.
Prove that (T — 50)4mV-1(T — g[)dimV -1 — (.

Suppose V is finite-dimensional, T € £(V'), and U is a subspace of V that
is invariant under T.

(a) Prove that the minimal polynomial of T is a polynomial multiple of the

minimal polynomial of the quotient operator T/U.
(b) Prove that

(minimal polynomial of T|;;) x (minimal polynomial of T/U)
is a polynomial multiple of the minimal polynomial of T.
The quotient operator T/U was defined in Exercise 38 in Section 5A.
Suppose V is finite-dimensional, T € £(V), and U is a subspace of V that

is invariant under T. Prove that the set of eigenvalues of T equals the union
of the set of eigenvalues of T|;; and the set of eigenvalues of T/U.

Suppose F = R, V is finite-dimensional, and T € £(V). Prove that the
minimal polynomial of T equals the minimal polynomial of T.

The complexification T was defined in Exercise 33 of Section 3B.
Suppose V is finite-dimensional and T € £(V). Prove that the minimal
polynomial of T € £ ( V") equals the minimal polynomial of T.

The dual map T' was defined in Section 3F.
Show that every operator on a finite-dimensional vector space of dimension
at least two has an invariant subspace of dimension two.

Exercise 6 in Section 5C will give an improvement of this result when F = C.
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5C Upper-Triangular Matrices

In Chapter 3 we defined the matrix of a linear map from a finite-dimensional vector
space to another finite-dimensional vector space. That matrix depends on a choice
of basis of each of the two vector spaces. Now that we are studying operators,
which map a vector space to itself, the emphasis is on using only one basis.

(5 )

5.35 definition: matrix of an operator, M (T)

Suppose T € £ (V). The matrix of T with respect to a basis vy, ...,v,, of Vis
the n-by-n matrix

Al,l Al,n
M(T) = :
Ay, - A

n,n

whose entries A; ; are defined by
T'Uk = Al’kv1 + .- +An’kvn.

The notation M (T, (G2 vn)) is used if the basis is not clear from the con-

\text. /

Operators have square matrices (meaning that the number of rows equals the
number of columns), rather than the more general rectangular matrices that we
considered earlier for linear maps.

If T is an operator on F” and no ba-
sis is specified, assume that the basis in
question is the standard one (where the
k™ basis vector is 1 in the k™ slot and 0
in all other slots). You can then think of
the k™ column of M (T) as T applied to the k™ basis vector, where we identify
n-by-1 column vectors with elements of F”".

The k™ column of the matrix M (T) is
formed from the coefficients used to
write Tvy as a linear combination of
the basis vq, ..., v,

5.36 example: matrix of an operator with respect to standard basis

Define T € £(F%) by T(x,y,z) = (2x +y,5y + 3z, 8z). Then the matrix of T
with respect to the standard basis of F° is

M(T) =

S OoOPN
oS O =

as you should verify.

A central goal of linear algebra is to show that given an operator T on a finite-
dimensional vector space V, there exists a basis of V with respect to which T has
a reasonably simple matrix. To make this vague formulation a bit more precise,
we might try to choose a basis of V such that M (T) has many 0’s.
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If V is a finite-dimensional complex vector space, then we already know
enough to show that there is a basis of V with respect to which the matrix of T
has 0’s everywhere in the first column, except possibly the first entry. In other
words, there is a basis of V with respect to which the matrix of T looks like

A

0 *

0
here * denotes the entries in all columns other than the first column. To prove
this, let A be an eigenvalue of T (one exists by 5.19) and let v be a corresponding
eigenvector. Extend v to a basis of V. Then the matrix of T with respect to this

basis has the form above. Soon we will see that we can choose a basis of V with
respect to which the matrix of T has even more 0’s.

fS.37 definition: diagonal of a matrix w

The diagonal of a square matrix consists of the entries on the line from the
upper left corner to the bottom right corner.

For example, the diagonal of the matrix
21 0
M(T)=| 0 5 3
0 0 8

from Example 5.36 consists of the entries 2, 5, 8, which are shown in red in the
matrix above.

(’5.38 definition: upper-triangular matrix W

LA square matrix is called upper triangular if all entries below the diagonaj
are 0.

For example, the 3-by-3 matrix above is upper triangular.
Typically we represent an upper-triangular matrix in the form

the 0 in the matrix above indicates that often use * to denote matrix entries
all entries below the diagonal in this .10 do not know or that are irrele-
n-by-n matrix equal 0. Upper-triangular 4,1 1 the questions being discussed.
matrices can be considered reasonably

simple—if n is large, then at least almost half the entries in an n-by-n upper-
triangular matrix are 0.
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The next result provides a useful connection between upper-triangular matrices
and invariant subspaces.

N

/5.39 conditions for upper-triangular matrix

Suppose T € £(V) and vy, ...,v, is a basis of V. Then the following are
equivalent.

(a) The matrix of T with respect to vy, ..., v,, is upper triangular.

(b) span(vy, ..., ;) is invariant under T for each k = 1, ..., n.

J

Proof  First suppose (a) holds. To prove that (b) holds, suppose k € {1, ...,n}. If
j €{1,...,n}, then

\(c) Tv, € span(vy, ...,v;) foreach k =1, ..., n.

Tv]- € span(vy, ...,vj)

because the matrix of T with respect to v, ..., v,, is upper triangular. Because
span(vy, ...,v;) C span(vy, ..., vy) if j < k, we see that

Tv]- € span(vy, ..., Uy)

foreach j € {1, ..., k}. Thus span(vy, ..., v}) is invariant under T, completing the
proof that (a) implies (b).

Now suppose (b) holds, so span(vy,...,v;) is invariant under T for each
k=1,..,n. In particular, Ty, € span(vq,...,v;) for each k = 1,...,n. Thus
(b) implies (c).

Now suppose (c) holds, so Ty, € span(vy,...,v;) for each k = 1, ...,n. This
means that when writing each Tv, as a linear combination of the basis vectors
v4, ..., U,, We need to use only the vectors v, ..., v,. Hence all entries under the
diagonal of M (T) are 0. Thus M (T) is an upper-triangular matrix, completing
the proof that (c) implies (a).

We have shown that (a) = (b) = (c) = (a), which shows that (a), (b),
and (c) are equivalent.

The next result tells us that if T € £(V) and with respect to some basis of V

we have
M *

M(T) = ,

0 A

then T satisfies a simple equation depending on A4, ..., A,,.

n

(5.40 equation satisfied by operator with upper-triangular matrix w

Suppose T € £(V) and V has a basis with respect to which T has an upper-
triangular matrix with diagonal entries A4, ..., A,,. Then

(T = Ay D)-(T = A,I) = 0.
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Proof Letvy,...,v, denote a basis of V with respect to which T has an upper-
triangular matrix with diagonal entries A4, ...,A,. Then Tv; = A vy, which
means that (T — AI)v; = 0, which implies that (T — A{I)---(T — A,,I)v; = 0 for
m = 1,...,n (using the commutativity of each T — /\]»I with each T — A,D).

Note that (T — A,I)v, € span(vy). Thus (T — A (T — A,I)v, = 0 (by
the previous paragraph), which implies that (T — AI)---(T — A,,I)v, = 0 for
m =2, ...,n (using the commutativity of each T — A, with each T — A, D).

Note that (T — A3;I)v; € span(vy,v,). Thus by the previous paragraph,
(T—AI)(T—A,0)(T—Azl) vy = 0, which implies that (T —A{D)---(T—A,, vy =
0 for m = 3, ..., n (using the commutativity of each T — A;I with each T — AI).

Continuing this pattern, we see that (T — A{I)--«(T — A, I)v, = 0 for each
k=1,..,n Thus (T — AyI)---(T — A,I) is the 0 operator because it is O on each
vector in a basis of V.

Unfortunately no method exists for exactly computing the eigenvalues of an
operator from its matrix. However, if we are fortunate enough to find a basis with
respect to which the matrix of the operator is upper triangular, then the problem
of computing the eigenvalues becomes trivial, as the next result shows.

5.41 determination of eigenvalues from upper-triangular matrix

Suppose T' € £(V) has an upper-triangular matrix with respect to some basis
of V. Then the eigenvalues of T are precisely the entries on the diagonal of
that upper-triangular matrix.

Proof  Suppose vy, ..., 7, is a basis of V with respect to which T has an upper-
triangular matrix
M *
M(T) = .

0 A

Because Tv; = A v;, we see that A, is an eigenvalue of T.

Suppose k € {2, ...,n}. Then (T — A D) v, € span(vy, ...,V _1). Thus T — Al
maps span(vy, ..., ;) into span(vy, ..., v, _1). Because

n

dimspan(v,...,v;) =k and dimspan(vy,...,v0_1) =k —1,

this implies that T — A, I restricted to span(v, ..., v;) is not injective (by 3.22).
Thus there exists v € span(vy, ..., v,) such thatv # 0 and (T — A I)v = 0. Thus
Ay is an eigenvalue of T. Hence we have shown that every entry on the diagonal
of M (T) is an eigenvalue of T.

To prove T has no other eigenvalues, let g be the polynomial defined by
q(z) = (z—Ay)--(z—A,). Then q(T) = 0 (by 5.40). Hence g is a polynomial
multiple of the minimal polynomial of T (by 5.29). Thus every zero of the minimal
polynomial of T is a zero of q. Because the zeros of the minimal polynomial of
T are the eigenvalues of T (by 5.27), this implies that every eigenvalue of T is a
zero of q. Hence the eigenvalues of T are all contained in the list A4, ..., A,,.
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5.42 example: eigenvalues via an upper-triangular matrix

Define T € £(F®) by T(x,y,z) = (2x +y, 5y + 3z, 8z). The matrix of T with
respect to the standard basis is

2 1
MT)y=| 0 5
0 0

® W O

Now 5.41 implies that the eigenvalues of T are 2, 5, and 8.

The next example illustrates 5.44: an operator has an upper-triangular matrix
with respect to some basis if and only if the minimal polynomial of the operator
is the product of polynomials of degree 1.

5.43 example: whether T has an upper-triangular matrix can depend on F
Define T € £(F*) by
T(Z1,Zz, Z3, Z4) == (_22, Zl7 221 + 323,23 + 324) .

Thus with respect to the standard basis of F4, the matrix of T is

0 -1 0 O
1 0 00
2 0 30
0 0 1 3

You can ask a computer to verify that the minimal polynomial of T is the polyno-
mial p defined by
p(z) =9 — 6z + 1022 — 62° + z%
First consider the case F = R. Then the polynomial p factors as
pz) = (22 +1)(z—3)(z—3),

with no further factorization of z> + 1 as the product of two polynomials of degree
1 with real coefficients. Thus 5.44 states that there does not exist a basis of R*
with respect to which T has an upper-triangular matrix.

Now consider the case F = C. Then the polynomial p factors as

p(z) = (z—-1)(z+1i)(z—3)(z—-3),

where all factors above have the form z— A;. Thus 5.44 states that there is a basis of
C* with respect to which T has an upper-triangular matrix. Indeed, you can verify
that with respect to the basis (4 —3i, -3 —4i, -3 +1,1), (4 +3i,—3 +4i,—-3—1i,1),
(0,0,0,1), (0,0,1,0) of C*, the operator T has the upper-triangular matrix

i 0 00
0 —i 0 0
0 0 31
0 0 0 3
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f‘i.44 necessary and sufficient condition to have an upper-triangular matrixw

Suppose V is finite-dimensional and T € £(V). Then T has an upper-
triangular matrix with respect to some basis of V if and only if the minimal
polynomial of T equals (z — A;)---(z — A,,,) for some A4, ..., A,, €F.

Proof  First suppose T has an upper-triangular matrix with respect to some basis
of V. Letaq, ..., &, denote the diagonal entries of that matrix. Define a polynomial
q € P(F) by

9(z) = (z = ay)(z—a,).
Then g(T) = 0, by 5.40. Hence g is a polynomial multiple of the minimal polyno-
mial of T, by 5.29. Thus the minimal polynomial of T equals (z — Ay)---(z — A,,)
for some Ay, ..., A, € Fwith {A{,...,A,,} C{ay,...,a,}.

To prove the implication in the other direction, now suppose the minimal
polynomial of T equals (z — A;)--<(z — A,,) for some A4, ..., A,, € F. We will use
induction on m. To get started, if m = 1 then z — A, is the minimal polynomial of
T, which implies that T = A,I, which implies that the matrix of T (with respect
to any basis of V) is upper triangular.

Now suppose m > 1 and the desired result holds for all smaller positive
integers. Let

U =range(T — A,,D).

Then U is invariant under T [this is a special case of 5.18 with p(z) =z — A,,].
Thus T|; is an operator on U.
Ifue U, thenu = (T — A,I)v for some v € V and

(T = AMD)(T = Ay, _Du= (T = A)-(T = A,I)o=0.

Hence (z — Ay)---(z— A,,,_1) is a polynomial multiple of the minimal polynomial
of T|;;, by 5.29. Thus the minimal polynomial of T|;; is the product of at most
m — 1 terms of the form z — A,.

By our induction hypothesis, there is a basis u, ..., 1y, of U with respect to
which T|;; has an upper-triangular matrix. Thus for each k € {1, ..., M}, we have
(using 5.39)

5.45 Tu, = (Tly) (ug) € span(uy, ..., Uy) .
Extend uq, ..., 4y, to a basis uq, ..., Uy, vq, ..., 05 of V. If k € {1, ..., N}, then
T'Uk = (T — /\mI) Uy + /\mvk.

The definition of U shows that (T — A, I)v, € U = span(uy, ..., ;). Thus the
equation above shows that

5.46 T, € span(uq, ..., Upg, Up, ooey Ug) -

From 5.45 and 5.46, we conclude (using 5.39) that T has an upper-triangular
matrix with respect to the basis u, ..., Uy, 01, ..., Uy of V, as desired.
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The set of numbers {A, ..., A,,} from the previous result equals the set of
eigenvalues of T (because the set of zeros of the minimal polynomial of T equals
the set of eigenvalues of T, by 5.27), although the list A, ..., A,,, in the previous
result may contain repetitions.

In Chapter 8 we will improve even the wonderful result below; see 8.37 and
8.46.

(5.47 if F = C, then every operator on 'V has an upper-triangular matrix W

Suppose V is a finite-dimensional complex vector space and T € £(V). Then
T has an upper-triangular matrix with respect to some basis of V.

Proof  The desired result follows immediately from 5.44 and the second version
of the fundamental theorem of algebra (see 4.13).

For an extension of the result above to two operators S and T such that
ST =T8S,

see 5.80. Also, for an extension to more than two operators, see Exercise 9(b) in
Section SE.

Caution: If an operator T € £ (V) has a upper-triangular matrix with respect
to some basis vy, ..., v,, of V, then the eigenvalues of T are exactly the entries on
the diagonal of M (T'), as shown by 5.41, and furthermore v, is an eigenvector of
T. However, v,, ..., v,, need not be eigenvectors of T. Indeed, a basis vector v, is
an eigenvector of T if and only if all entries in the k™ column of the matrix of T
are 0, except possibly the k™ entry.

You may recall from a previous The row echelon form of the matrix
course that every matrix of numbers can of an operator does not give us a list
be changed to a matrix in what is called £ e eigenvalues of the operator. In
row echelon form. If one begins with a  consrast, an upper-triangular matrix
square matrix, the matrix in row echelon  with respect to some basis gives us a
form will be an upper-triangular matrix.  list of all the eigenvalues of the op-
Do not confuse this upper-triangular ma-  erator. However, there is no method
trix with the upper-triangular matrix of  for computing exactly such an upper-
an operator with respect to some basis  friangular matrix, even though 5.47
whose existence is proclaimed by 5.47 (if ~ guarantees its existence if F = C.

F = C)—there is no connection between
these upper-triangular matrices.

Exercises 5C

1 Prove or give a counterexample: If T € £(V) and T? has an upper-triangular
matrix with respect to some basis of V, then T has an upper-triangular matrix
with respect to some basis of V.
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Suppose A and B are upper-triangular matrices of the same size, with
&1, ..., &, on the diagonal of A and f, ..., B,, on the diagonal of B.

(a) Show that A + B is an upper-triangular matrix with a4y + B4, ...,a,, + B,
on the diagonal.

(b) Show that AB is an upper-triangular matrix with a8, ..., «,,8,, on the
diagonal.

The results in this exercise are used in the proof of 5.81.

Suppose T € £(V) is invertible and vy, ..., v, is a basis of V with respect
to which the matrix of T is upper triangular, with A4, ..., A,, on the diagonal.
Show that the matrix of T~ is also upper triangular with respect to the basis
U1, .ees Uy, With

on the diagonal.

Give an example of an operator whose matrix with respect to some basis
contains only 0’s on the diagonal, but the operator is invertible.

This exercise and the exercise below show that 5.41 fails without the hypoth-
esis that an upper-triangular matrix is under consideration.

Give an example of an operator whose matrix with respect to some basis
contains only nonzero numbers on the diagonal, but the operator is not
invertible.

Suppose F = C, V is finite-dimensional, and T € £(V). Prove that if
k € {1,...,dim V}, then V has a k-dimensional subspace invariant under T.

Suppose V is finite-dimensional, T € £(V),and v € V.

(a) Prove that there exists a unique monic polynomial p,, of smallest degree
such that p,(T)v = 0.
(b) Prove that the minimal polynomial of T is a polynomial multiple of p,,.

Suppose V is finite-dimensional, T € £(V), and there exists a nonzero
vector v € V such that T?v + 2Tv = —2v.

(a) Prove that if F = R, then there does not exist a basis of V with respect
to which T has an upper-triangular matrix.

(b) Prove that if F = C and A is an upper-triangular matrix that equals
the matrix of T with respect to some basis of V, then —1 +ior —1 — i
appears on the diagonal of A.

Suppose B is a square matrix with complex entries. Prove that there exists
an invertible square matrix A with complex entries such that A='BA is an
upper-triangular matrix.
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Suppose T € £(V) and vy, ...,v,, is a basis of V. Show that the following
are equivalent.

(a) The matrix of T with respect to vy, ..., v,, is lower triangular.

(b) span(vy,...,v,) is invariant under T for each k = 1, ..., n.

(¢) Tvy € span(vy, ...,v,) foreachk = 1,...,n.

A square matrix is called lower triangular if all entries above the diagonal
are (.

Suppose F = C and V is finite-dimensional. Prove thatif T € £(V), then
there exists a basis of V with respect to which T has a lower-triangular matrix.

Suppose V is finite-dimensional, T € £(V') has an upper-triangular matrix
with respect to some basis of V, and U is a subspace of V that is invariant
under T.

(a) Prove that T'|;; has an upper-triangular matrix with respect to some basis
of U.

(b) Prove that the quotient operator T/U has an upper-triangular matrix with
respect to some basis of V/U.

The quotient operator T/U was defined in Exercise 38 in Section 5A.

Suppose V is finite-dimensional and T € £(V). Suppose there exists
a subspace U of V that is invariant under T such that T|;; has an upper-
triangular matrix with respect to some basis of U and also T/U has an
upper-triangular matrix with respect to some basis of V/U. Prove that T has
an upper-triangular matrix with respect to some basis of V.

Suppose V is finite-dimensional and T € £(V). Prove that T has an upper-
triangular matrix with respect to some basis of V if and only if the dual
operator T' has an upper-triangular matrix with respect to some basis of the
dual space V.
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5D Diagonalizable Operators

Diagonal Matrices

(5.48 definition: diagonal matrix w

A diagonal matrix is a square matrix that is 0 everywhere except possibly on
the diagonal.

| 5.49 example: diagonal matrix |

o O ®
o a1 ©
a1 o O

is a diagonal matrix.

. If an operator has a d%agonal matrix g ery diagonal matrix is upper tri-
with respect to some basis, then the en- 0,14 Diagonal matrices typically

tries on the diagonal are precisely the  jave many more 0’s than most upper-
eigenvalues of the operator; this follows  friangular matrices of the same size.
from 5.41 (or find an easier direct proof

for diagonal matrices).

(5.50 definition: diagonalizable w

An operator on V is called diagonalizable if the operator has a diagonal matrix
with respect to some basis of V.

| 5.51 example: diagonalization may require a different basis |
Define T € £(R?) by
T(x,y) = (41x + 7y, —20x + 74y).

The matrix of T with respect to the standard basis of R? is

41 7

-20 74 )
which is not a diagonal matrix. However, T is diagonalizable. Specifically, the
matrix of T with respect to the basis (1, 4), (7,5) is

69 0
0 46

because T(1,4) = (69,276) = 69(1,4) and T(7,5) = (322,230) = 46(7,5).
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For A € F, we will find it convenient to have a name and a notation for the set
of vectors that an operator T maps to A times the vector.

/5.52 definition: eigenspace, E(A, T)

~

Suppose T € £(V) and A € F. The eigenspace of T corresponding to A is
the subspace E(A, T) of V defined by

EA,T) =mull(T — Al) = {ve V:Tv= Av}.

Hence E(A, T) is the set of all eigenvectors of T corresponding to A, along
\with the 0 vector. )

ForT € £(V) and A € F, the set E(A, T) is a subspace of V because the null
space of each linear map on V is a subspace of V. The definitions imply that A is
an eigenvalue of T if and only if E(A, T) # {0}.

5.53 example: eigenspaces of an operator

Suppose the matrix of an operator T € £ (V') with respect to a basis v1,v,,v;
of V is the matrix in Example 5.49. Then

E(8,T) = span(vy), E(5,T) = span(v,,v3).

If A is an eigenvalue of an operator T € £(V), then T restricted to E(A, T) is
just the operator of multiplication by A.

s

5.54 sum of eigenspaces is a direct sum

N

Suppose T € £(V) and A4, ..., A, are distinct eigenvalues of T. Then
E(A,T) + -+ E(A,,T)

is a direct sum. Furthermore, if V is finite-dimensional, then

dimE(A,T) + --- + dimE(A,,, T) < dim V.
\_ ! J

Proof To show that E(A{,T) + --- + E(A,,,, T) is a direct sum, suppose

v+ +0, =0,

where each v, is in E(A;, T). Because eigenvectors corresponding to distinct
eigenvalues are linearly independent (by 5.11), this implies that each v, equals 0.
Thus E(A4,T) + --- + E(A,,, T) is a direct sum (by 1.45), as desired.

Now suppose V is finite-dimensional. Then

dimE(A, T) + - + dimE(A,,, T) = dim(E(A,,T) & - @ E(A,,, T))
< dimV,

where the first line follows from 3.94 and the second line follows from 2.37.
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Conditions for Diagonalizability

The following characterizations of diagonalizable operators will be useful.

<

5.55 conditions equivalent to diagonalizability

>

Suppose V is finite-dimensional and T € £(V). Let A4, ..., A,, denote the
distinct eigenvalues of T. Then the following are equivalent.

(a) T is diagonalizable.
(b) V has a basis consisting of eigenvectors of T.
(c) V=EA,T)®---®EW,,T).

\(d) dimV = dimE(A{,T) + -+ + dimE(A,,, T).

Proof An operator T € £(V) has a diagonal matrix

Aq 0

0 Ay,
with respect to a basis v, ..., v, of V if and only if Tv, = A, v, for each k. Thus
(a) and (b) are equivalent.

Suppose (b) holds; thus V has a basis consisting of eigenvectors of T. Hence
every vector in V is a linear combination of eigenvectors of T, which implies that

V=EWA,T)+--+E,,T).

Now 5.54 shows that (c) holds, proving that (b) implies (c).
That (c) implies (d) follows immediately from 3.94.
Finally, suppose (d) holds; thus

5.56 dimV =dimE(A,,T) +--- +dimE(A,,, T).

Choose a basis of each E(Ay, T); put all these bases together to form a list v4, ..., v,
of eigenvectors of T, where n = dim V' (by 5.56). To show that this list is linearly
independent, suppose

a0y + -+ +a,v, =0,
where a4, ...,a,, € F. For each k = 1, ..., m, let u;, denote the sum of all the terms

av; such that v; € E(A4, T). Thus each u; is in E(Ay, T), and

Uy + - +u, =0.

Because eigenvectors corresponding to distinct eigenvalues are linearly indepen-
dent (see 5.11), this implies that each 1, equals 0. Because each u; is a sum of
terms a,v;, where the v]-’s were chosen to be a basis of E(A;, T), this implies that
all a;’s equal 0. Thus vy, ..., v, is linearly independent and hence is a basis of V
(by 2.38). Thus (d) implies (b), completing the proof.

For additional conditions equivalent to diagonalizability, see 5.62, Exercises 5
and 15 in this section, Exercise 24 in Section 7B, and Exercise 15 in Section 8A.
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As we know, every operator on a nonzero finite-dimensional complex vector
space has an eigenvalue. However, not every operator on a nonzero finite-
dimensional complex vector space has enough eigenvectors to be diagonalizable,
as shown by the next example.

5.57 example: an operator that is not diagonalizable

Define an operator T € £(F*) by T(a,b,c) = (b,¢,0). The matrix of T with
respect to the standard basis of F° is

o O O
o O -
S = O

which is an upper-triangular matrix but is not a diagonal matrix.
As you should verify, 0 is the only eigenvalue of T and furthermore

E,T) = {(a,0,0) € F* : a € F}.

Hence conditions (b), (c), and (d) of 5.55 fail (of course, because these conditions
are equivalent, it is sufficient to check that only one of them fails). Thus condition
(a) of 5.55 also fails. Hence T is not diagonalizable, regardless of whether F = R
orF =C.

The next result shows that if an operator has as many distinct eigenvalues as
the dimension of its domain, then the operator is diagonalizable.

Fs.SS enough eigenvalues implies diagonalizability W

Suppose V is finite-dimensional and T € £ (V) has dim V distinct eigenvalues.
Then T is diagonalizable.

Proof Suppose T has distinct eigenvalues A, ..., A4, yv. Foreachk, letv, € V
be an eigenvector corresponding to the eigenvalue A,. Because eigenvectors corre-
sponding to distinct eigenvalues are linearly independent (see 5.11), vy, ..., Ugimv
is linearly independent.

A linearly independent list of dim V vectors in V is a basis of V (see 2.38); thus
U1, - Ugimy 15 @ basis of V. With respect to this basis consisting of eigenvectors,
T has a diagonal matrix.

In later chapters we will find additional conditions that imply that certain
operators are diagonalizable. For example, see the real spectral theorem (7.29)
and the complex spectral theorem (7.31).

The result above gives a sufficient condition for an operator to be diagonal-
izable. However, this condition is not necessary. For example, the operator T
on F® defined by T'(x, Y,z) = (6bx, 6y,7z) has only two eigenvalues (6 and 7) and
dimF® = 3, but T is diagonalizable (by the standard basis of F°).
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The next example illustrates the im- For a spectacular application of these
portance of diagonalization, which can techniques, see Exercise 21, which
be used to compute high powers of an  spo5 how to use diagonalization to
operator, taking advantage of the equa-  find an exact formula for the n™ term
tion Tf¥o = A*v if v is an eigenvector of  of the Fibonacci sequence.

T with eigenvalue A.

5.59 example: using diagonalization to compute T*%°

Define T € £(F®) by T(x,y,z) = (2x + y,5y + 3z,8z). With respect to the
standard basis, the matrix of T is

S ON
S Q1 =
o W o

The matrix above is an upper-triangular matrix but it is not a diagonal matrix. By
5.41, the eigenvalues of T are 2, 5, and 8. Because T is an operator on a vector
space of dimension three and T has three distinct eigenvalues, 5.58 assures us that
there exists a basis of F® with respect to which T has a diagonal matrix.

To find this basis, we only have to find an eigenvector for each eigenvalue. In
other words, we have to find a nonzero solution to the equation

T(x,y,2) = A(x,y,2)

for A = 2, then for A = 5, and then for A = 8. Solving these simple equations
shows that for A = 2 we have an eigenvector (1,0,0), for A = 5 we have an
eigenvector (1,3,0), and for A = 8 we have an eigenvector (1,6, 6).

Thus (1,0,0), (1,3,0), (1, 6,6) is a basis of F>consisting of eigenvectors of T,
and with respect to this basis the matrix of T is the diagonal matrix

2 00
0 50
0 0 8

To compute T1°(0, 0, 1), for example, write (0,0, 1) as a linear combination
of our basis of eigenvectors:

(0,0,1) = £(1,0,0) — 3(1,3,0) + £(1,6,6).
Now apply T'% to both sides of the equation above, getting
T1%0(0,0,1) = 2(T1%(1,0,0) ) — 3(T'%°(1,3,0)) + £(T'%°(1,6,6))

= %(2100(1, 0,0) —2-510(1,3,0) + 81901, 6, 6))

= %(2100 _2.5100 4 g100 4. g100 _ . 5100 ¢. 8100).
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We saw earlier that an operator T on a finite-dimensional vector space V has an
upper-triangular matrix with respect to some basis of V if and only if the minimal
polynomial of T equals (z — Ay)---(z — A,,,) for some A4, ..., A, € F (see 5.44).
As we previously noted (see 5.47), this condition is always satisfied if F = C.

Our next result 5.62 states that an operator T € £(V) has a diagonal matrix
with respect to some basis of V if and only if the minimal polynomial of T equals
(z — Aq)---(z — A,,) for some distinct A4, ..., A, € F. Before formally stating this
result, we give two examples of using it.

5.60 example: diagonalizable, but with no known exact eigenvalues
Define T € £(C?) by
T(Zl, Zz, Z3, Z4, Zs) == (_325, Zl + 625, Zz, Z3, Z4) .

The matrix of T is shown in Example 5.26, where we showed that the minimal
polynomial of T is 3 — 6z + z°.

As mentioned in Example 5.28, no exact expression is known for any of the
zeros of this polynomial, but numeric techniques show that the zeros of this
polynomial are approximately —1.67, 0.51, 1.40, —0.12 + 1.59i, —0.12 — 1.59i.

The software that produces these approximations is accurate to more than
three digits. Thus these approximations are good enough to show that the five
numbers above are distinct. The minimal polynomial of T equals the fifth degree
monic polynomial with these zeros. Now 5.62 shows that T is diagonalizable.

5.61 example: showing that an operator is not diagonalizable
Define T € £(F°) by
T(zq,25,23) = (621 + 32y + 423,625 + 223,723).
The matrix of T with respect to the standard basis of F° is

6 3 4
0 6 2
0 0 7

The matrix above is an upper-triangular matrix but is not a diagonal matrix. Might
T have a diagonal matrix with respect to some other basis of F3?

To answer this question, we will find the minimal polynomial of T. First note
that the eigenvalues of T are the diagonal entries of the matrix above (by 5.41).
Thus the zeros of the minimal polynomial of T are 6,7 [by 5.27(a)]. The diagonal
of the matrix above tells us that (T — 61)2(T — 7I) = 0 (by 5.40). The minimal
polynomial of T has degree at most 3 (by 5.22). Putting all this together, we see
that the minimal polynomial of T is either (z — 6)(z — 7) or (z — 6)%(z — 7).

A simple computation shows that (T — 61)(T — 7I) # 0. Thus the minimal
polynomial of T is (z — 6)%(z — 7).

Now 5.62 shows that T is not diagonalizable.
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(5.62 necessary and sufficient condition for diagonalizability

Suppose V is finite-dimensional and T € £(V'). Then T is diagonalizable if
and only if the minimal polynomial of T equals (z — A;)---(z — A,,,) for some
list of distinct numbers A4, ..., A, € F.

Proof  First suppose T is diagonalizable. Thus there is a basis vy, ...,v, of V
consisting of eigenvectors of T. Let A4, ..., A,, be the distinct eigenvalues of T.
Then for each vj, there exists A, with (T — A.I) v = 0. Thus

(T = Ay 1)+(T = A, 1)v; = 0,

which implies that the minimal polynomial of T equals (z — A;)---(z — A,,,).

To prove the implication in the other direction, now suppose the minimal
polynomial of T equals (z — Ay)---(z — A,,,) for some list of distinct numbers
Ay s Ay, € Fo Thus

5.63 (T = A D)-(T = A1) = 0.

We will prove that T is diagonalizable by induction on m. To get started,
suppose m = 1. Then T — A1 = 0, which means that T is a scalar multiple of the
identity operator, which implies that T is diagonalizable.

Now suppose that m > 1 and the desired result holds for all smaller values of
m. The subspace range(T — A,,I) is invariant under T [this is a special case of
5.18 with p(z) = z— A,,,]. Thus T restricted to range(T — A,,I) is an operator on
range(T — A, I).

Ifu € range(T— A, I),thenu = (T —A,,I)v for some v € V, and 5.63 implies

5.64 (T =MD (T = Ay, _Du= (T = A)-+(T —A,I)o=0.

Hence (z — Ay)---(z— A,,,_1) is a polynomial multiple of the minimal polynomial
of T restricted to range(T — A,,I) [by 5.29]. Thus by our induction hypothesis,
there is a basis of range(T — A,,I) consisting of eigenvectors of T.

Suppose that u € range(T — A, I) Nnull(T — A, I). Then Tu = A,,u. Now
5.64 implies that

O = (T - /\11)"'(T - /\mill)u
=W, = ADA,, = A, _Du.

Because A4, ..., A, are distinct, the equation above implies that # = 0. Hence
range(T — A,,I) nnull(T — A, I) = {0}.

Thusrange(T—A,, I)+null(T—A,,I) is adirect sum (by 1.46) whose dimension
is dim V (by 3.94 and 3.21). Hence range(T — A,,,I) @ null(T — A,,I) = V. Every
nonzero vector in null(T — A,,I) is an eigenvector of T with eigenvalue A,,.
Earlier in this proof we saw that there is a basis of range(T — A,,I) consisting of
eigenvectors of T. Adjoining to that basis a basis of null(T — A,,I) gives a basis
of V consisting of eigenvectors of T. The matrix of T with respect to this basis is
a diagonal matrix, as desired.
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No formula exists for the zeros of polynomials of degree 5 or greater. However,
the previous result can be used to determine whether an operator on a complex
vector space is diagonalizable without even finding approximations of the zeros
of the minimal polynomial—see Exercise 15.

The next result will be a key tool when we prove a result about the simultaneous
diagonalization of two operators; see 5.76. Note how the use of a characterization
of diagonalizable operators in terms of the minimal polynomial (see 5.62) leads
to a short proof of the next result.

G.GS restriction of diagonalizable operator to invariant subspace w

Suppose T € £(V) is diagonalizable and U is a subspace of V that is invariant
under T. Then T|;; is a diagonalizable operator on U.

Proof Because the operator T is diagonalizable, the minimal polynomial of T
equals (z — Ay)---(z — A,,,) for some list of distinct numbers A4, ..., A,, € F (by
5.62). The minimal polynomial of T is a polynomial multiple of the minimal
polynomial of T|;; (by 5.31). Hence the minimal polynomial of T|;; has the form
required by 5.62, which shows that T|; is diagonalizable.

Gershgorin Disk Theorem

/5.66 definition: Gershgorin disks )

Suppose T € £(V) and vy, ..., v,, is a basis of V. Let A denote the matrix of
T with respect to this basis. A Gershgorin disk of T with respect to the basis
U1, ..., 0, 1s a set of the form

n
{Z €EF:z _A]',j| < kzl |Aj,k|}9
k#j

\where] e {1,...,n}. )

Because there are n choices for j in the definition above, T has n Gershgorin
disks. If F = C, then for each j € {1, ..., n}, the corresponding Gershgorin disk
is a closed disk in C centered at A; ;, which is the jM entry on the diagonal of A.
The radius of this closed disk is the sum of the absolute values of the entries in
row j of A, excluding the diagonal entry. If F = R, then the Gershgorin disks are
closed intervals in R.

In the special case that the square matrix A above is a diagonal matrix, each
Gershgorin disk consists of a single point that is a diagonal entry of A (and
each eigenvalue of T is one of those points, as required by the next result). One
consequence of our next result is that if the nondiagonal entries of A are small,
then each eigenvalue of T is near a diagonal entry of A.
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(5.67 Gershgorin disk theorem W

Suppose T € £(V) and vy, ..., v,, is a basis of V. Then each eigenvalue of T
is contained in some Gershgorin disk of T with respect to the basis vy, ..., v,,.

Proof Suppose A € F is an eigenvalue of T. Let w € V be a corresponding
eigenvector. There exist ¢4, ..., ¢, € F such that

5.68 w=Clv1 + - +C,0

n-n-

Let A denote the matrix of T with respect to the basis v, ...,v,,. Applying T
to both sides of the equation above gives

n

5.69 Aw = Z ¢ Toy

5.70 =) ( Y Aj,kck>vj.
Letj € {1,...,n} be such that
lc;| = max{lcyl, ..., c,[}.

Using 5.68, we see that the coefficient of v; on the left side of 5.69 equals /\c]-,
which must equal the coefficient of v; on the right side of 5.70. In other words,

n
AC]- = Z Aj,k Ck.
k=1

Subtract A; ; ¢; from each side of the equation above and then divide both sides
by ¢; to get

Ck

A]’kc
k=1 j
k+

n
Z 1Akl
k=1
k%]

IA

Thus A is in the j Gershgorin disk with respect to the basis v;, ..., v,

Exercise 22 gives a nice application The Gershgorin disk theorem is named

of the Gershgorin disk theorem. for Semyon Aronovich Gershgorin,
Exercise 23 states that the radius of ;6 published this result in 1931.

each Gershgorin disk could be changed
to the sum of the absolute values of corresponding column entries (instead of row
entries), excluding the diagonal entry, and the theorem above would still hold.
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Exercises 5D

10

Suppose V is a finite-dimensional complex vector space and T € £(V).

(a) Prove that if T* = I, then T is diagonalizable.

(b) Prove that if T* = T, then T is diagonalizable.

(c) Give an example of an operator T € £(C?) such that T* = T? and T is
not diagonalizable.

Suppose T € £(V) has a diagonal matrix A with respect to some basis
of V. Prove that if A € F, then A appears on the diagonal of A precisely
dim E(A, T) times.

Suppose V is finite-dimensional and T € £(V). Prove that if the operator T
is diagonalizable, then V = null T @ range T.

Suppose V is finite-dimensional and T € £(V). Prove that the following
are equivalent.

(@ V=nullT & range T.

(b) V =nullT + range T.

(¢) nullT Nrange T = {0}.

Suppose V is a finite-dimensional complex vector space and T € £(V).
Prove that T is diagonalizable if and only if

V = null(T — AI) @ range(T — AI)
for every A € C.

Suppose T € £(F°) and dimE(8,T) = 4. Prove that T — 2[ or T — 6] is
invertible.

Suppose T € £(V) is invertible. Prove that
E(AT) = E(%,T*l)
for every A € F with A # 0.

Suppose V is finite-dimensional and T € £(V). Let A4, ..., A, denote the
distinct nonzero eigenvalues of T. Prove that

dimE(A{,T) + --- + dimE(A,,, T) < dimrange T.

Suppose R, T € £(F?) each have 2, 6, 7 as eigenvalues. Prove that there
exists an invertible operator S € £(F°) such that R = S7'TS.

Find R, T € £(F*) such that R and T each have 2, 6, 7 as eigenvalues, R and
T have no other eigenvalues, and there does not exist an invertible operator
S € £(F*) such that R = S™!TS.
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Find T € £(C®) such that 6 and 7 are eigenvalues of T and such that T does
not have a diagonal matrix with respect to any basis of C2

Suppose T € £ (C3) is such that 6 and 7 are eigenvalues of T. Furthermore,
suppose T does not have a diagonal matrix with respect to any basis of C°.
Prove that there exists (z,25,23) € C° such that

Suppose A is a diagonal matrix with distinct entries on the diagonal and B
is a matrix of the same size as A. Show that AB = BA if and only if B is a
diagonal matrix.

(a) Give an example of a finite-dimensional complex vector space and an
operator T on that vector space such that T? is diagonalizable but T is
not diagonalizable.

(b) Suppose F = C, k is a positive integer, and T € £(V) is invertible.
Prove that T is diagonalizable if and only if T* is diagonalizable.

Suppose V is a finite-dimensional complex vector space, T € £(V), and p

is the minimal polynomial of T. Prove that the following are equivalent.

(a) T is diagonalizable.

(b) There does not exist A € C such that p is a polynomial multiple of
(z—=M)2

(c) p and its derivative p" have no zeros in common.

(d) The greatest common divisor of p and p’ is the constant polynomial 1.

The greatest common divisor of p and p' is the monic polynomial q of
largest degree such that p and p’ are both polynomial multiples of q. The
Euclidean algorithm for polynomials (look it up) can quickly determine
the greatest common divisor of two polynomials, without requiring any
information about the zeros of the polynomials. Thus the equivalence of (a)
and (d) above shows that we can determine whether T is diagonalizable
without knowing anything about the zeros of p.

Suppose that T € £(V) is diagonalizable. Let A, ..., A,, denote the distinct
eigenvalues of T. Prove that a subspace U of V is invariant under T if and
only if there exist subspaces Uy, ..., U, of V such that U, C E(A,, T) for
eachkandU =U; ® ---® U,,,.

Suppose V is finite-dimensional. Prove that £(V') has a basis consisting of
diagonalizable operators.

Suppose that T € £(V) is diagonalizable and U is a subspace of V that is
invariant under T. Prove that the quotient operator T/U is a diagonalizable
operator on V/U.

The quotient operator T/U was defined in Exercise 38 in Section 5A.
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Prove or give a counterexample: If T € £(V) and there exists a subspace U
of V that is invariant under T such that T|;; and T/U are both diagonalizable,
then T is diagonalizable.

See Exercise 13 in Section 5C for an analogous statement about upper-

triangular matrices.

Suppose V is finite-dimensional and T € £(V'). Prove that T is diagonaliz-
able if and only if the dual operator T' is diagonalizable.

The Fibonacci sequence F, F,,F,, ... is defined by
Fo=0,F, =1, andF, =F,_,+F,_;forn=>2.
Define T € £(R?) by T(x,y) = (y,x + ).

(a) Show that T"(0,1) = (F,,F, 1) for each nonnegative integer .
(b) Find the eigenvalues of T.

(c) Find a basis of R? consisting of eigenvectors of T.

(d) Use the solution to (c) to compute T” (0, 1). Conclude that

45 -(57)]

for each nonnegative integer n.
(e) Use (d) to conclude that if 7 is a nonnegative integer, then the Fibonacci
number F,, is the integer that is closest to

%(1 +2\/§)".

Each F,, is a nonnegative integer, even though the right side of the formula
in (d) does not look like an integer. The number

1+5
2

is called the golden ratio.

Suppose T € £(V) and A is an n-by-n matrix that is the matrix of T with
respect to some basis of V. Prove that if

n
1A; 1 > Y 1Al
k=1
k#j
for each j € {1, ...,n}, then T is invertible.
This exercise states that if the diagonal entries of the matrix of T are large

compared to the nondiagonal entries, then T is invertible.

Suppose the definition of the Gershgorin disks is changed so that the radius of
the k™ disk is the sum of the absolute values of the entries in column (instead
of row) k of A, excluding the diagonal entry. Show that the Gershgorin disk
theorem (5.67) still holds with this changed definition.
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SE Commuting Operators

6.71 definition: commute \

e Two operators S and T on the same vector space commute if ST = TS.

e Two square matrices A and B of the same size commute if AB = BA.

For example, if I is the identity operator on V and A € F, then AI commutes
with every operator on V.

As another example, if T is an operator then T? and T° commute. More
generally, if p,q € P(F), then p(T) and q(T) commute [see 5.17(b)].

5.72 example: partial differentiation operators commute

Suppose m is a nonnegative integer. Let .’Pm(Rz) denote the real vector space of
polynomials (with real coefficients) in two real variables and of degree at most 1,
with the usual operations of addition and scalar multiplication of real-valued
functions. Thus the elements of 7,,(R?) are functions p on R? of the form

- N
5.73 p= ) axyh
j+k<m
where the indices j and k take on all nonnegative integer values such thatj+k < m,

eacha;; is in R, and x/y* denotes the function on R? defined by (x,y) — x/y¥
Define operators D,, D, € £(,,(R?)) by

d ‘ d
D.p= a—z :j+kz<mjaj’kx]‘1yk and D,p = B—Z = j+;< ka; Iy,
where p is as in 5.73. The operators D, and D, are called partial differentiation
operators because each of these operators differentiates with respect to one of the
variables while pretending that the other variable is a constant.
The operators D, and D, commute because if p is as in 5.73, then

(D,D,)p = Z jka;, WX Tyt = = (D,D,)p.

j+k<m

The equation D,D,, = D, D, on ,,(R?) illustrates a more general result that
the order of partial differentiation does not matter for nice functions.

Commuting matrices are unusual.
For example, there are 214,358,881 or-
dered pairs of 2-by-2 matrices all of
whose entries are integers in the inter- computer to discover that only 674,609

val [-5,5]. Only about 0.3% of these of these ordered pairs of matrices
ordered pairs of matrices commute. commute.

All 214,358,881 (which equals 11%)
ordered pairs of the 2-by-2 matrices
under consideration were checked by a
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The next result shows that two operators commute if and only if their matrices
(with respect to the same basis) commute.

(5.74 commuting operators correspond to commuting matrices W

Suppose S, T € £(V) and v, ...,v,, is a basis of V. Then S and T commute if
and only if M (S, (vy, ...,v,)) and M (T, (vq, ...,v,)) commute.

Proof We have

Sand T commute < ST =TS
= M(ST) = M(TS)
= MS)M(T) = M(T)M(S)
= M(S) and M (T) commute,

as desired.

The next result shows that if two operators commute, then every eigenspace
for one operator is invariant under the other operator. This result, which we will
use several times, is one of the main reasons why a pair of commuting operators
behaves better than a pair of operators that does not commute.

(5.75 eigenspace is invariant under commuting operator w

buppose S, T € £(V) commute and A € F. Then E(A, S) is invariant under Ij

Proof Suppose v € E(A,S). Then
S(Tv) = (STYv = (TS)v = T(Sv) = T(Av) = ATo.

The equation above shows that Tv € E(A, S). Thus E(A, S) is invariant under T.

Suppose we have two operators, each of which is diagonalizable. If we want
to do computations involving both operators (for example, involving their sum),
then we want the two operators to be diagonalizable by the same basis, which
according to the next result is possible when the two operators commute.

(5.76 simultaneous diagonalizability < commutativity W

Two diagonalizable operators on the same vector space have diagonal matrices
with respect to the same basis if and only if the two operators commute.

Proof First suppose S, T € £(V) have diagonal matrices with respect to the
same basis. The product of two diagonal matrices of the same size is the diagonal
matrix obtained by multiplying the corresponding elements of the two diagonals.
Thus any two diagonal matrices of the same size commute. Thus S and T commute,
by 5.74.
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To prove the implication in the other direction, now suppose that S, T € £(V)
are diagonalizable operators that commute. Let A4, ..., A,, denote the distinct
eigenvalues of S. Because S is diagonalizable, 5.55(c) shows that

5.77 V =E(A,S) ® - ® E(A,,,S).

For each k = 1,...,m, the subspace E(A., S) is invariant under T (by 5.75).
Because T is diagonalizable, 5.65 implies that T|g, s, is diagonalizable for
each k. Hence for each k = 1,...,m, there is a basis of E(A;, S) consisting of
eigenvectors of T. Putting these bases together gives a basis of V (because of
5.77), with each vector in this basis being an eigenvector of both S and T. Thus S
and T both have diagonal matrices with respect to this basis, as desired.

See Exercise 2 for an extension of the result above to more than two operators.
Suppose V is a finite-dimensional nonzero complex vector space. Then every
operator on V has an eigenvector (see 5.19). The next result shows that if two
operators on V commute, then there is a vector in V that is an eigenvector for both
operators (but the two commuting operators might not have a common eigenvalue).
For an extension of the next result to more than two operators, see Exercise 9(a).

(5.78 common eigenvector for commuting operators W

Every pair of commuting operators on a finite-dimensional nonzero complex
vector space has a common eigenvector.

Proof Suppose V is a finite-dimensional nonzero complex vector space and
S, T € £(V) commute. Let A be an eigenvalue of S (5.19 tells us that S does
indeed have an eigenvalue). Thus E(A,S) # {0}. Also, E(A,S) is invariant
under T (by 5.75).

Thus T|g, s has an eigenvector (again using 5.19), which is an eigenvector
for both S and T, completing the proof.

5.79 example: common eigenvector for partial differentiation operators |

Let 7,,(R?) be as in Example 5.72 and let D,,D, € £(?’m(R2)) be the
commuting partial differentiation operators in that example. As you can verify, 0
is the only eigenvalue of each of these operators. Also

m
E,D,) = { Y ay* tag,...a, € R},
k=0

m
E@©,D,) = {Z cjxf L Coses Cpy € R}.
=0

The intersection of these two eigenspaces is the set of common eigenvectors of
the two operators. Because E(0, D,.) N E(0, Dy) is the set of constant functions,
we see that D, and D, indeed have a common eigenvector, as promised by 5.78.
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The next result extends 5.47 (the existence of a basis that gives an upper-
triangular matrix) to two commuting operators.

5.80 commuting operators are simultaneously upper triangularizable

Suppose V is a finite-dimensional complex vector space and S,T are
commuting operators on V. Then there is a basis of V with respect to which
both S and T have upper-triangular matrices.

Proof Letn = dim V. We will use induction on n. The desired result holds if
n = 1 because all 1-by-1 matrices are upper triangular. Now suppose n > 1 and
the desired result holds for all complex vector spaces whose dimension is n — 1.
Let v; be any common eigenvector of S and T (using 5.78). Hence Sv; €
span(v;) and Tv; € span(v;). Let W be a subspace of V such that
V = span(v;) @ W;
see 2.33 for the existence of W. Define a linear map P: V — W by
P(avy +w) =w
for each a € C and each w € W. Define § Te L(W) by
Sw = P(Sw) and Tw = P(Tw)

for each w € W. To apply our induction hypothesis to Sand T, we must first show
that these two operators on W commute. To do this, suppose w € W. Then there
exists a € C such that

(éi")w = é(P(Tw)) = S(Tw — av,) = P(S(Tw — avy)) = P((ST)w),

where the last equality holds because v, is an eigenvector of S and Pv; = 0.
Similarly,

(TS)w = P((TS)w).
Because the operators S and T commute, the last two displayed equations show
that (é%)w = (i@) w. Hence S and T commute.

Thus we can use our induction hypothesis to state that there exists a basis
Uy, ..., U, of W such that S and T both have upper-triangular matrices with respect
to this basis. The list v4, ..., v, is a basis of V.

If k € {2, ...,n}, then there exist a;, b, € C such that

Sv, = aqv; + Sv,  and Ty, = b, + Ty,

Because S and T have upper-triangular matrices with respect to v,, ...,v,,, we
know that Sv, € span(v,, ..., v;) and Ty, € span(v,, ..., v;). Hence the equations
above imply that

Sv, € span(vyq,...,v,) and To, € span(vy, ..., vy).

Thus S and T have upper-triangular matrices with respect to vy, ..., v,,, as desired.

Exercise 9(b) extends the result above to more than two operators.
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In general, it is not possible to determine the eigenvalues of the sum or product
of two operators from the eigenvalues of the two operators. However, the next
result shows that something nice happens when the two operators commute.

/

5.81 eigenvalues of sum and product of commuting operators

N

Suppose V is a finite-dimensional complex vector space and S, T are commut-
ing operators on V. Then

e every eigenvalue of S + T is an eigenvalue of S plus an eigenvalue of T,

\o every eigenvalue of ST is an eigenvalue of S times an eigenvalue of T.

J

Proof There is a basis of V with respect to which both S and T have upper-
triangular matrices (by 5.80). With respect to that basis,

MES+T)=MS)+M(T) and M(ST) = MS)M),

as stated in 3.35 and 3.43.

The definition of matrix addition shows that each entry on the diagonal of
M (S + T) equals the sum of the corresponding entries on the diagonals of M (S)
and M (T). Similarly, because M (S) and M (T) are upper-triangular matrices,
the definition of matrix multiplication shows that each entry on the diagonal of
M (ST) equals the product of the corresponding entries on the diagonals of M (S)
and M (T). Furthermore, M (S + T) and M (ST) are upper-triangular matrices
(see Exercise 2 in Section 5C).

Every entry on the diagonal of M (S) is an eigenvalue of S, and every entry
on the diagonal of M (T) is an eigenvalue of T (by 5.41). Every eigenvalue
of S + T is on the diagonal of M (S + T), and every eigenvalue of ST is on
the diagonal of M (ST) (these assertions follow from 5.41). Putting all this
together, we conclude that every eigenvalue of S + T is an eigenvalue of S plus
an eigenvalue of T, and every eigenvalue of ST is an eigenvalue of S times an
eigenvalue of T.

Exercises SE

1 Give an example of two commuting operators S, T on F* such that there
is a subspace of F* that is invariant under S but not under T and there is a
subspace of F* that is invariant under T but not under S.

2 Suppose £ is a subset of £(V) and every element of £ is diagonalizable.
Prove that there exists a basis of V with respect to which every element of £
has a diagonal matrix if and only if every pair of elements of £ commutes.

This exercise extends 5.76, which considers the case in which & contains
only two elements. For this exercise, & may contain any number of elements,
and & may even be an infinite set.
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Suppose S, T € £(V) are such that ST = TS. Suppose p € P(F).

(a) Prove that null p(S) is invariant under T.
(b) Prove that range p(S) is invariant under T.

See 5.18 for the special case S = T.

Prove or give a counterexample: If A is a diagonal matrix and B is an
upper-triangular matrix of the same size as A, then A and B commute.

Prove that a pair of operators on a finite-dimensional vector space commute
if and only if their dual operators commute.

See 3.118 for the definition of the dual of an operator.

Suppose that V is a nonzero finite-dimensional complex vector space and
S, T € £(V) commute. Prove that there exist , A € C such that

range(S — al) + range(T — AI) # V.

Suppose V is a complex vector space, S € £(V) is diagonalizable, and
T € £(V) commutes with S. Prove that there is a basis of V such that S has
a diagonal matrix with respect to this basis and T has an upper-triangular
matrix with respect to this basis.

Suppose m = 3 in Example 5.72 and D,, D, are the commuting partial
differentiation operators on 5”3(R2) from that example. Find a basis of
?3(R2) with respect to which D, and D, each have an upper-triangular
matrix.

Suppose V is a finite-dimensional nonzero complex vector space. Suppose
that £ C £(V) is such that S and T commute for all S, T € €£.

(a) Prove that there is a vector in V that is an eigenvector for every element
of &.

(b) Prove that there is a basis of V with respect to which every element of
& has an upper-triangular matrix.

This exercise extends 5.78 and 5.80, which consider the case in which &£
contains only two elements. For this exercise, & may contain any number of
elements, and € may even be an infinite set.

Give an example of two commuting operators S, T on a finite-dimensional
real vector space such that S + T has an eigenvalue that does not equal an
eigenvalue of S plus an eigenvalue of T and ST has an eigenvalue that does
not equal an eigenvalue of S times an eigenvalue of T.

This exercise shows that 5.81 does not hold on real vector spaces.
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Chapter 6
Inner Product Spaces

In making the definition of a vector space, we generalized the linear structure
(addition and scalar multiplication) of R? and R> We ignored geometric features
such as the notions of length and angle. These ideas are embedded in the concept
of inner products, which we will investigate in this chapter.

Every inner product induces a norm, which you can think of as a length.
This norm satisfies key properties such as the Pythagorean theorem, the triangle
inequality, the parallelogram equality, and the Cauchy—Schwarz inequality.

The notion of perpendicular vectors in Euclidean geometry gets renamed to
orthogonal vectors in the context of an inner product space. We will see that
orthonormal bases are tremendously useful in inner product spaces. The Gram—
Schmidt procedure constructs such bases. This chapter will conclude by putting
together these tools to solve minimization problems.

( standing assumptions for this chapter w

e F denotes R or C.
e VV and W denote vector spaces over F.

a N

VS-Ag 00 Holied maynep

\_ %

The George Peabody Library, now part of Johns Hopkins University, opened while
James Sylvester (1814—1897) was the university’s first mathematics professor. Sylvester’s
publications include the first use of the word matrix in mathematics.
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6A Inner Products and Norms

Inner Products

To motivate the concept of inner product,
think of vectors in R? and R® as arrows (a,b)
with initial point at the origin. The length
of a vector v in R? or R3 is called the
norm of v and is denoted by |lv||. Thus
for v = (a,b) € R% we have !

loll = Va2 + b2.

Similarly, if v = (a,b,c) € R3 then |v]| = Va2 + b2 + c2.
Even though we cannot draw pictures in higher dimensions, the generalization
to R" is easy: we define the norm of x = (x4, ..., x,,) € R" by

— 2 2
Ixll = \/xf + - + x5

The norm is not linear on R"” To inject linearity into the discussion, we
introduce the dot product.

This vector v has norm vV a? + b2.

/6.1 definition: dot product )
For x,y € R”, the dot product of x and y, denoted by x - y, is defined by
XY =Xyt F Xl
where x = (xq,....,x,) andy = (Yq, ..., Y,,)- )

The dot product of two vectors in R”

) ) If we think of a vector as a point instead
is a number, not a vector. Notice that

5 of as an arrow, then |x| should be
— n

x-x = ||x||* for all x € R™. Furthermore,  jnterpreted to mean the distance from
the dot product on R" has the following e origin to the point x.

properties.

e x-x>0forallx € R"

e x-x =0if and only if x = 0.

e For y € R" fixed, the map from R” to R that sends x € R" to x - y is linear.
e x-y=y-xforallx,y € R"

An inner product is a generalization of the dot product. At this point you may
be tempted to guess that an inner product is defined by abstracting the properties
of the dot product discussed in the last paragraph. For real vector spaces, that
guess is correct. However, so that we can make a definition that will be useful
for both real and complex vector spaces, we need to examine the complex case
before making the definition.
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Recall that if A = a + bi, where a,b € R, then
e the absolute value of A, denoted by |A|, is defined by |A| = \/m;
e the complex conjugate of A, denoted by A, is defined by A = a — bi;
o A2 = AN
See Chapter 4 for the definitions and the basic properties of the absolute value

and complex conjugate.
For z = (z4, ...,z,) € C", we define the norm of z by

Izll = /lz1* + - + Iz,

The absolute values are needed because we want ||z|| to be a nonnegative number.
Note that
Iz = 2,27 + - + 2,,Z,,.
We want to think of |z|?> as the inner product of z with itself, as we did
in R" The equation above thus suggests that the inner product of the vector
w = (wq,...,w,) € C" with z should equal

Wiz + -+ W,zZ,.

If the roles of the w and z were interchanged, the expression above would be
replaced with its complex conjugate. Thus we should expect that the inner product
of w with z equals the complex conjugate of the inner product of z with w. With
that motivation, we are now ready to define an inner product on V, which may be
a real or a complex vector space.

One comment about the notation used in the next definition:

e For A € C, the notation A > 0 means A is real and nonnegative.

/

6.2 definition: inner product

~

An inner product on V is a function that takes each ordered pair (u,v) of
elements of V to a number (1, v) € F and has the following properties.
positivity

(v,0v) >0forallv e V.

definiteness
(v,v) = 0if and only if v = 0.

additivity in first slot
(u+o,w) = (u,w) + (v,w) for all u,v,w € V.

homogeneity in first slot
(Au,v) = AMu,v)forall A e Fand allu,v € V.

conjugate symmetry
u,vy = (v,u) forall u,v € V.
_ (u,v) = (v, u) )
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Every real number equals its complex
conjugate. Thus if we are dealing with
a real vector space, then in the last con- 50 o definition that requires homo-
dition above we can dispense with the  geneiry in the second slot instead of
complex conjugate and simply state that  rhe first slor.

(u,v) = (v,u) forall u,v € V.

Most mathematicians define inner
products as above, but many physicists

| 6.3 example: inner products |
(a) The Euclidean inner product on F" is defined by
(W1 eees W)y (215 o0y Zyy) ) = W27 + o+ + W2,

for all (w4, ...,w,), (z,...,2,) € F"

(b) Ifcq,...,c, are positive numbers, then an inner product can be defined on F”
1 n p p
by
(W eees Wy)y (29, ees Z,) ) = QW27 + *+ + €W, Z,,

for all (w, ...,w,,), (21, ...,2,) € F"

(c) An inner product can be defined on the vector space of continuous real-valued
functions on the interval [—1, 1] by

(f.8) = f_ll fg

for all f, ¢ continuous real-valued functions on [—1,1].

(d) An inner product can be defined on P(R) by

1
(p.q) = p0)q(0) + .[_1 P

forall p,g € P(R).
(e) An inner product can be defined on (R) by

p.q) = J:o p(x)g(x)e ™ dx

forall p,g € P(R).

ﬁm definition: inner product space w

LAn inner product space is a vector space V along with an inner product on VJ

The most important example of an inner product space is F” with the Euclidean
inner product given by (a) in the example above. When F” is referred to as an
inner product space, you should assume that the inner product is the Euclidean
inner product unless explicitly told otherwise.
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So that we do not have to keep repeating the hypothesis that V and W are inner
product spaces, we make the following assumption.

ﬂS.S notation: V, W w

For the rest of this chapter and the next chapter, V and W denote inner product
spaces over F.

Note the slight abuse of language here. An inner product space is a vector
space along with an inner product on that vector space. When we say that a vector
space V is an inner product space, we are also thinking that an inner product on
V is lurking nearby or is clear from the context (or is the Euclidean inner product
if the vector space is F").

/6.6 basic properties of an inner product

(a) For each fixed v € V, the function that takes u € V to (u,v) is a linear
map from V to F.

(b) (0,v) =0 foreveryv € V.
(¢c) (v,0) =0 foreveryv € V.

(d) (u,v+w) = (u,v) + (u,w) for all u,v,w € V.

\(e) (u, Avy = Mu,v) forall A € F and all u,v € V. )

Proof
(a) Forv € V, the linearity of u — (u, v) follows from the conditions of additivity
and homogeneity in the first slot in the definition of an inner product.

(b) Every linear map takes 0 to 0. Thus (b) follows from (a).

(c) If v €V, then the conjugate symmetry property in the definition of an inner
product and (b) show that (v,0) = (0,v) = 0 = 0.

(d) Suppose u,v,w € V. Then
(U, v+ w) = (v + w, uy
= (v, u) + (w, u)
= (0, u) + (w, u)

=(u,v) + (U, w).

(e) Suppose A € F and u,v € V. Then

{(u, Avy = (Av, u)

Ao, u)

A
A

(v, u)

(u,v).
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Norms

Our motivation for defining inner products came initially from the norms of
vectors on R? and R Now we see that each inner product determines a norm.

(6.7 definition: norm, ||o||

For v € V, the norm of v, denoted by ||v||, is defined by

loll = v(v,0).

| 6.8 example: norms

(@) If (zq,...,z,) € F" (with the Euclidean inner product), then

”(Z]s ""Zn)” = \/ |Zl|2 + ot |Zn|2'

(b) For fin the vector space of continuous real-valued functions on [—1,1] and
with inner product given as in 6.3(c), we have

IfIl = \/E

(6.9 basic properties of the norm

Suppose v € V.
(@) |lvll = 0if and only if v = 0.
(b) A9l = |A]llv]| for all A € F.

Proof

(a) The desired result holds because (v, v) = 0 if and only if v = 0.
(b) Suppose A € F. Then

IN0l? = (Ao, Av)
= Mo, Av)
= A\(v,0)
= AP llol>
Taking square roots now gives the desired equality.

The proof of (b) in the result above illustrates a general principle: working
with norms squared is usually easier than working directly with norms.
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Now we come to a crucial definition.

(6.1 0 definition: orthogonal W

tl’wo vectors u,v € V are called orthogonal if (u,v) = 0. )

In the definition above, the order of The word orthogonal comes from the
the two vectors does not matter, because  ,e0k word orthogonios, which means
(u,v) = 0if and only if (v,u) = 0. In- Jy0pr angled.
stead of saying u and v are orthogonal,
sometimes we say u is orthogonal to v.

Exercise 15 asks you to prove that if u, v are nonzero vectors in R then

(u,v) = |lullllvll cos 0,

where 6 is the angle between 1 and v (thinking of u and v as arrows with initial
point at the origin). Thus two nonzero vectors in R? are orthogonal (with respect
to the Euclidean inner product) if and only if the cosine of the angle between
them is 0, which happens if and only if the vectors are perpendicular in the usual
sense of plane geometry. Thus you can think of the word orthogonal as a fancy
word meaning perpendicular.

We begin our study of orthogonality with an easy result.

ﬁi.ﬁ orthogonality and 0 W

(a) 0is orthogonal to every vector in V.

(b) 0is the only vector in V that is orthogonal to itself.

Proof
(a) Recall that 6.6(b) states that (0,v) = 0 for every v € V.

(b) If v € V and (v,v) = 0, then v = 0 (by definition of inner product).

For the special case V = R? the next theorem was known over 3,500 years ago
in Babylonia and then rediscovered and proved over 2,500 years ago in Greece.
Of course, the proof below is not the original proof.

(6.1 2 Pythagorean theorem w

Suppose u,v € V. If u and v are orthogonal, then

lu + ol = [ull® + |[v]

Proof Suppose (u,v) = 0. Then
lu+ o2 = (U +o,u+0)
= (u,u) +{u,v) + (v, u) + (v, V)

2 2
= [[ull® + [[vll*
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Suppose u,v € V, with v # 0. We would like to write u as a scalar multiple
of v plus a vector w orthogonal to v, as suggested in the picture here.

An orthogonal decomposition:
u expressed as a scalar multiple of v plus a vector orthogonal to v.

To discover how to write u as a scalar multiple of v plus a vector orthogonal
to v, let ¢ € F denote a scalar. Then

u=co+ (u—co).
Thus we need to choose ¢ so that v is orthogonal to (1 — cv). Hence we want
0 = (u — cv,v) = (u,v) — cllol*

The equation above shows that we should choose ¢ to be (u, v) /|[v]|% Making this
choice of ¢, we can write

uz(u,v) (u_<u,v> )

v —v
o) ol

As you should verify, the equation displayed above explicitly writes u as a scalar
multiple of v plus a vector orthogonal to v. Thus we have proved the following
key result.

(6.13 an orthogonal decomposition

(u,v) (u,v)
o andw =u — —— Then
[l [l

Suppose u,v € V, with v # 0. Set c =

u=co+w and (w,v)=0.

The orthogonal decomposition 6.13 will be used in the proof of the Cauchy—
Schwarz inequality, which is our next result and is one of the most important
inequalities in mathematics.
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/6.1 4 Cauchy—Schwarz inequality w

Suppose u,v € V. Then
Ku, v)| < llull o]l

This inequality is an equality if and only if one of u, v is a scalar multiple of

\the other.

Proof If v = 0, then both sides of the desired inequality equal 0. Thus we can
assume that v # 0. Consider the orthogonal decomposition

(u,v)
= —2'0 + w
[l

given by 6.13, where w is orthogonal to v. By the Pythagorean theorem,

(u,v)
112

2 2
v” Tl
llv

2
ul? = ||

o)
EE

2
+ [l

[, o)

6.15 >
l[o]?

Multiplying both sides of this inequality by ||v|/> and then taking square roots
gives the desired inequality.

The proof in the paragraph above Augustin-Louis Cauchy (1789-1857)
shows that the Cauchy—Schwarz inequal- proved 6.16(a) in 1821. In 1859,
ity is an equality if and only if 6.15 1S Cauchy’s student Viktor Bunyakovsky
an equality. This happens if and only  (7804-1889) proved integral inequal-
ifw = 0. Butw = 0if and only if u  jsies like the one in 6.16(b). A few
is a multiple of v (see 6.13). Thus the  decades later, similar discoveries by
Cauchy—Schwarz inequality is an equal- ~ Hermann Schwarz (1843-1921) at-
ity if and only if u is a scalar multiple of v tracted more attention and led to the
or v is a scalar multiple of u (or both; the  name of this inequality.
phrasing has been chosen to cover cases
in which either u or v equals 0).

| 6.16 example: Cauchy—Schwarz inequality
(@ Ifxq,....x,, Y1, ...y, € R, then
@y + 41,07 < (0 o x2) (yf + o+ ),

as follows from applying the Cauchy—Schwarz inequality to the vectors
(X1, oo, %), (Y15 o> Y,,) € R” using the usual Euclidean inner product.
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(b) If f,g are continuous real-valued functions on [—1, 1], then

sl = ([ )] )

as follows from applying the Cauchy—Schwarz inequality to Example 6.3(c).

The next result, called the triangle inequality, v
has the geometric interpretation that the length
of each side of a triangle is less than the sum of
the lengths of the other two sides.

Note that the triangle inequality implies that
the shortest polygonal path between two pointsis <7 . triangle, the length of
a single line segment (a polygonal path consists U+ is less than the length

of line segments). of u plus the length of v.

u+o

N

/6.1 7 triangle inequality

Suppose u,v € V. Then

llu + ol < {lull + vl

This inequality is an equality if and only if one of u, v is a nonnegative real
\multiple of the other. )

Proof We have
lu+ 0% = (U +v,u+0)

=(u,uy +{v,0) +{u,v) + (v, u)
=(u,uy +{v,0) +{u,v) + (u,v)

= |[ul® + |[0l* + 2 Re(u, v)

6.18 < ull? + ol + 2|(u, v)
6.19 <l + ol + 2lul ol
2
= (llull + lIoll)7,

where 6.19 follows from the Cauchy—Schwarz inequality (6.14). Taking square
roots of both sides of the inequality above gives the desired inequality.

The proof above shows that the triangle inequality is an equality if and only if
we have equality in 6.18 and 6.19. Thus we have equality in the triangle inequality
if and only if

6.20 (u,v) = |lull vl

If one of u, v is a nonnegative real multiple of the other, then 6.20 holds. Con-
versely, suppose 6.20 holds. Then the condition for equality in the Cauchy—
Schwarz inequality (6.14) implies that one of u, v is a scalar multiple of the other.
This scalar must be a nonnegative real number, by 6.20, completing the proof.

For the reverse triangle inequality, see Exercise 20.
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The next result is called the parallel-

191

ogram equality because of its geometric
interpretation: in every parallelogram, the
sum of the squares of the lengths of the
diagonals equals the sum of the squares of

the lengths of the four sides. Note that the

proof here is more straightforward than  The diagonals of this parallelogram

the usual proof in Euclidean geometry. are u+vand u —v.

ﬁi.21 parallelogram equality

)

Suppose 1, v € V. Then

2 2 2 2
lu +ol1° + llu — oll* = 2(full” + o]1°).

Proof We have
lu+ 012+ lu—=20l°> = W+v,u+0)+{U—0,u—0)

= lulP® + ol + (u,v) + (v, u)

+ [l + [0l = (u,0) — (v, u)
=2(Jull? + lIol?),

as desired.

Exercises 6A

1 Prove or give a counterexample: If v, ...,v,, € V, then

m m
Y. 2 (000 20,
j=1k=1
2 Suppose S € £(V). Define (-, -); by

(u,v); = (Su, Sv)

for all u,v € V. Show that (-, -); is an inner product on V if and only if S is

injective.

3 (a) Show that the function taking an ordered pair ((xl,xz), W1, yz)) of

elements of R? to |x;1/1] + |x,1,| is not an inner product on R

(b) Show that the function taking an ordered pair ((xy,X,%3), (Y1, Y2, Y3))

of elements of R to x,, + x3y5 is not an inner product on R>

4 Suppose T € £(V) is such that |Tv|| < |v| for every v € V. Prove that

T — V21 is injective.
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Suppose V is a real inner product space.

(a) Show that (u + v,u — v) = |lu||®> — ||[v||*> for every u,v € V.

(b) Show that if u,v € V have the same norm, then u + v is orthogonal to
u—o.

(c) Use (b) to show that the diagonals of a rhombus are perpendicular to
each other.

Suppose u,v € V. Prove that (u,v) =0 < |ull <|lu +av| foralla € F.

Suppose u,v € V. Prove that |lau + bu|| = ||bu + av|| for all a,b € R if and
only if [lull = [lv]l.

Suppose a,b,¢,x,y € R and a® + b> + ¢ + x> + y*> < 1. Prove that
a+b+c+4x+9y <10.

Suppose u,v € V and |lu|| = |lv|l = 1 and (u,v) = 1. Prove that u = v.

Suppose u,v € V and |lu|| < 1 and ||v|| < 1. Prove that

V1= ul2/1 = o2 < 1= |(u, o).

Find vectors u,v € R? such that u is a scalar multiple of (1,3), v is orthog-
onal to (1,3), and (1,2) = u + v.

Suppose a, b, c, d are positive numbers.
1

1 1 1
(a) Provethat(a+b+c+d)<—+—+—+—) > 16.
a b ¢ d

(b) For which positive numbers a, b, ¢, d is the inequality above an equality?

Show that the square of an average is less than or equal to the average of the

squares. More precisely, show that if a4, ...,a,, € R, then the square of the

average of aj, ..., a, is less than or equal to the average of a?, ...,a,%

Suppose v € V and v # 0. Prove that v/||v|| is the unique closest element on
the unit sphere of V to v. More precisely, prove that if u € V and |ju|| = 1,
then

v

o= o] < o -,
lloll

with equality only if u = v/||v||.

Suppose u, v are nonzero vectors in R% Prove that

(u,v) = |lullllvll cos 6,

where 0 is the angle between u and v (thinking of u and v as arrows with
initial point at the origin).

Hint: Use the law of cosines on the triangle formed by u, v, and u — v.
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The angle between two vectors (thought of as arrows with initial point at
the origin) in R? or R3 can be defined geometrically. However, geometry is
not as clear in R” for n > 3. Thus the angle between two nonzero vectors
x,y € R" is defined to be
X,
q xy) ,
llxIl iy
where the motivation for this definition comes from Exercise 15. Explain

why the Cauchy—Schwarz inequality is needed to show that this definition
makes sense.

arcco

Prove that
n

2 n n bkz
(550 = (£00)(8, )
k=1 k=1 k
for all real numbers a4, ...,a,, and by, ..., b,,.

(a) Suppose f: [1,00) — [0, o) is continuous. Show that

([0 [t o

(b) For which continuous functions f: [1, c0) — [0, o) is the inequality in
(a) an equality with both sides finite?

Suppose vy, ...,v,, is a basis of V.and T € £(V). Prove that if A is an
eigenvalue of T, then

AP <Y Y IMT);

j=1k=1

where M (T) ik denotes the entry in row j, column k of the matrix of T with
respect to the basis v, ..., v,,.

Prove that if 1,0 € V, then | llull = [l ‘ < |lu — oll.

The inequality above is called the reverse triangle inequality. For the
reverse triangle inequality when V = C, see Exercise 2 in Chapter 4.

Suppose u,v € V are such that
lull =3, lu+vl=4 Ilu-ovl=6.
What number does [|v|| equal?
Show that if u,v € V, then
e + 0l e = oIl < Jull® + o>

Suppose vy, ...,v,, € V are such that |||l < 1 for each k = 1, ...,m. Show
that there exist a,, ...,a,, € {1, —1} such that

la;0q + - + a,,0,,ll < Vm.
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Chapter 6 Inner Product Spaces
Prove or give a counterexample: If ||-|| is the norm associated with an inner
product on R? then there exists (x,y) € R%such that ||(x, y)|l # max{|x|, [y]}.

Suppose p > 0. Prove that there is an inner product on R? such that the
associated norm is given by

Iyl = (kP + 1) "
for all (x,y) € R? if and only if p = 2.
Suppose V is a real inner product space. Prove that

2 2
vy = llu +oll* = llu — ol
’ 4

forallu,v e V.
Suppose V is a complex inner product space. Prove that

lu + ol> — lu — ol + llu + iol?i — lu — iv|%i
(u,v) = 1

forallu,v e V.
A norm on a vector space U is a function
- U — [0, o0)

such that |lu|| = 0 if and only if u = 0, |lau|| = |«||lu|| for all « € F and all
u € U, and ||u + v|| < |lull + ||v|| for all u,v € U. Prove that a norm satisfying
the parallelogram equality comes from an inner product (in other words,
show that if | - || is a norm on U satisfying the parallelogram equality, then
there is an inner product (-, -) on U such that ||u| = (u, u)'/? for all u € U)

Suppose Vi, ..., V,, are inner product spaces. Show that the equation
((Ugy ceesUyyy)s (V15 ey Upyy) ) = (Ug, 01) + oo+ Uy, D)

defines an inner producton V; x --- x V..

In the expression above on the right, for eachk = 1, ..., m, the inner product
(uy, vy) denotes the inner product on Vy. Each of the spaces V, ..., V,, may
have a different inner product, even though the same notation is used here.

Suppose V is a real inner product space. For u, v, w, x € V, define
(U + v, w + ix)e = (U, W) + (v, x) + (v, W) — (U, x))1i.

(a) Show that (-, -)c makes V- into a complex inner product space.
(b) Show that if u,v € V, then

. 2 2 2
(u,v)c =<u,v)y and |lu+iolc = llul® + [lvl°.

See Exercise 8 in Section 1B for the definition of the complexification V.
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Suppose u, v, w € V. Prove that
lw = ul® + lw = ol lu = ol
2 4
Suppose that E is a subset of V with the property that u,v € E implies

%(u +v) € E. Let w € V. Show that there is at most one point in E that is
closest to w. In other words, show that there is at most one ¥ € E such that

o~ 3+ o) =

lw — ull < flw — x||
for all x € E.

Suppose f, g are differentiable functions from R to R”".
(a) Show that

(f(,g®) = (fh),g(D) + (f(),g'D).
(b) Suppose c is a positive number and || (#)|| = ¢ for every t € R. Show
that (f'(t), f(+)) = 0 for every t € R.
(c) Interpret the result in (b) geometrically in terms of the tangent vector to
a curve lying on a sphere in R” centered at the origin.

A function f: R — R" is called differentiable if there exist differentiable
functions fy, ..., f,, from R to R such that f(t) = (fi(1), ..., f,,(t)) for each
t € R. Furthermore, for each t € R, the derivative f'(t) € R" is defined by

i = (A1), £,/ D).

Use inner products to prove Apollonius’s identity: In a triangle with sides of
length a, b, and c, let d be the length of the line segment from the midpoint
of the side of length c to the opposite vertex. Then

a? +b? = %cz + 242
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35 Fix a positive integer n. The Laplacian Ap of a twice differentiable real-
valued function p on R" is the function on R" defined by
Pp P?p

Ap=—+-+ .
P ox{ ox,?

The function p is called harmonic if Ap = 0.

A polynomial on R" is a linear combination (with coefficients in R) of
functions of the form x;"1---x,™, where m., ..., m,, are nonnegative integers.

Suppose g is a polynomial on R”". Prove that there exists a harmonic
polynomial p on R” such that p(x) = q(x) for every x € R" with |x|| = 1.

The only fact about harmonic functions that you need for this exercise is
that if p is a harmonic function on R" and p(x) = 0 for all x € R" with

lIxll =1, thenp = 0.

Hint: A reasonable guess is that the desired harmonic polynomial p is of the
form q+ (1—|x|1*) r for some polynomial r. Prove that there is a polynomial
ron R" such that g + (1 — |[x||*) r is harmonic by defining an operator T on

a suitable vector space by

Tr = A((1 — |IxI*)r)

and then showing that T is injective and hence surjective.

In realms of numbers, where the secrets lie,

A noble truth emerges from the deep,

Cauchy and Schwarz, their wisdom they apply,
An inequality for all to keep.

Two vectors, by this bond, are intertwined,
As inner products weave a gilded thread,
Their magnitude, by providence, confined,
A bound to which their destiny is wed.

Though shadows fall, and twilight dims the day,
This inequality will stand the test,

To guide us in our quest, to light the way,

And in its truth, our understanding rest.

So sing, ye muses, of this noble feat,
Cauchy—Schwarz, the bound that none can beat.

—written by ChatGPT with input Shakespearean sonnet on Cauchy—Schwarz inequality
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6B Orthonormal Bases

Orthonormal Lists and the Gram—Schmidt Procedure

e D

6.22 definition: orthonormal

o A list of vectors is called orthonormal if each vector in the list has norm 1
and is orthogonal to all the other vectors in the list.

e In other words, a listey, ..., e, of vectors in V is orthonormal if

ooy |1 Ei=k
e,e.) =
PEET o ifj#k

forall j,k € {1,...,m}.
N ]

J
| 6.23 example: orthonormal lists |
(a) The standard basis of F” is an orthonormal list.

11 1)y /_1 1 i ist in F3
(b) (\/§’ \/5,\/3),( 75 \@,0) is an orthonormal list in F°.

11 13/ 1 1 41 23y it in T3
(c) <\/§’ ﬁ@)( 75 \6,0),(%, 7 \@)1sanorthonormalhst1nF.

(d) Suppose n is a positive integer. Then, as Exercise 4 asks you to verify,
1 cosx cos2x cosnx sinx sin2x sin nx
’\/ﬁ’ \/7—1— 2 \/7[ 9000 \/7_—[ 2 \/7_—[ 2 \/7_‘[ 9 \/ﬁ

is an orthonormal list of vectors in C[—7r, 7t], the vector space of continuous
real-valued functions on [—7t, 7r] with inner product

(£.8) = f_ﬂnfg.

The orthonormal list above is often used for modeling periodic phenomena,
such as tides.

(e) Suppose we make P, (R) into an inner product space using the inner product
given by

v =] pa

for all p,q € P, (R). The standard basis 1, x, x2 of P, (R) is not an orthonor-
mal list because the vectors in that list do not have norm 1. Dividing each

vector by its norm gives the list 1 N2, \/ﬁx, \/5—/2x2, in which each vector
has norm 1, and the second vector is orthogonal to the first and third vectors.
However, the first and third vectors are not orthogonal. Thus this is not an
orthonormal list. Soon we will see how to construct an orthonormal list from
the standard basis 1, x, x2 (see Example 6.34).
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Orthonormal lists are particularly easy to work with, as illustrated by the next
result.

/

6.24 norm of an orthonormal linear combination

Suppose e, ..., ¢, is an orthonormal list of vectors in V. Then

laje; + - + ae,l? = lag?> + - + la,,?

forallaq,...,a, € F.

/

Proof Because each ¢, has norm 1, this follows from repeated applications of
the Pythagorean theorem (6.12).

The result above has the following important corollary.

ﬁS.ZS orthonormal lists are linearly independent w

LEvery orthonormal list of vectors is linearly independent.

Proof  Suppose ey, ..., €, is an orthonormal list of vectors in V and a4, ...,a,, € F
are such that
a,e; + - +a,e, =0.

Then |a;[> + -+ + |a,,|> = 0 (by 6.24), which means that all the a,’s are 0. Thus
eq, ..., e, is linearly independent.

Now we come to an important inequality.

(6.26 Bessel’s inequality w

Suppose e, ..., e, is an orthonormal list of vectors in V. If v € V then

o, en)” + - + [(v. e, < Il

Proof Suppose v € V. Then

U =(0,ep)e; + - +(v,e,,)e,, +0—(v,e;)e; — - —(0,e,,)¢,,

u w

Let u and w be defined as in the equation above. If k € {1,...,m}, then
(w, ey = (v,e) — (v, e){er.e) = 0. This implies that (w,u) = 0. The
Pythagorean theorem now implies that

[0 = [[ull® + [lwl|
> Jlul?

= |<U,61>|2 + ot |<Usem> 23

where the last line comes from 6.24.
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The next definition introduces one of the most useful concepts in the study of
inner product spaces.

(6.27 definition: orthonormal basis w

An orthonormal basis of V is an orthonormal list of vectors in V that is also a
basis of V.

For example, the standard basis is an orthonormal basis of F”".

(6.28 orthonormal lists of the right length are orthonormal bases N

Suppose V is finite-dimensional. Then every orthonormal list of vectors in V
of length dim V is an orthonormal basis of V.

Proof By 6.25, every orthonormal list of vectors in V is linearly independent.
Thus every such list of the right length is a basis—see 2.38.

| 6.29 example: an orthonormal basis of F* |

As mentioned above, the standard basis is an orthonormal basis of F* We now
show that

is also an orthonormal basis of F%

We have
1111 1, 1,1 1
1(3.3.3.3) = \/?+§+2_2+§ =1
Similarly, the other three vectors in the list above also have norm 1.
Note that

111111 1 1\\_1 1,1 1,1 ( 1\, 1 ( 1)_
<(z’§»z’§)»(zvz’—z’—z)> =272tz z2t7 (—z) ta- (‘5) =
Similarly, the inner product of any two distinct vectors in the list above also
equals 0.
Thus the list above is orthonormal. Because we have an orthonormal list of

length four in the four-dimensional vector space F* this list is an orthonormal
basis of F* (by 6.28).

In general, given a basis ey, ..., e, of V and a vector v € V, we know that there
is some choice of scalars a4, ...,a,, € F such that

U= a1€1 + e+ anen.

Computing the numbers a4, ..., a,, that satisfy the equation above can be a long
computation for an arbitrary basis of V. The next result shows, however, that this
is easy for an orthonormal basis—just take a, = (v, ¢;.).
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Notice how the next result makes
each inner product space of dimension
n behave like F”, with the role of the
coordinates of a vector in F" played by
(v,e1), ..., (v, e,).

The formula below for |[v|| is called
Parseval’s identity. It was published in
1799 in the context of Fourier series.

6.30 writing a vector as a linear combination of an orthonormal basis N
Suppose e, ..., e, is an orthonormal basis of V and u,v € V. Then
(@) v={(v,e1)e; + - +(v,e,)e,;
(®) ol = [, ep)|* + - + [0, e,)]
\(c) (u,0) = (u,e1)(v,e1) + -+ + (u,e,) (v, e,). )

Proof Because ¢4, ..., ¢, is a basis of V, there exist scalars a4, ..., 4,, such that

v=a161+---+a€

n-n:

Because ey, ..., ¢, is orthonormal, taking the inner product of both sides of this
equation with e, gives (v, e,) = a;. Thus (a) holds.

Now (b) follows immediately from (a) and 6.24.

Take the inner product of u with each side of (a) and then get (c) by using
conjugate linearity [6.6(d) and 6.6(e)] in the second slot of the inner product.

| 6.31 example: finding coefficients for a linear combination |

Suppose we want to write the vector (1,2,4,7) € F* as a linear combination
of the orthonormal basis

1111y 11 1 1y 1 1 113 7 1.1 11
222222 )0\ "2 T2 )\2 T2 T2 2 P\ T2 2T 202

of F* from Example 6.29. Instead of solving a system of four linear equations
in four unknowns, as typically would be required if we were working with a
nonorthonormal basis, we simply evaluate four inner products and use 6.30(a),
getting that (1,2,4,7) equals

111 11 1 1 1 1 11 11 11
7(3333) ~4(33-3-3) + (3.-3.-3.3) +2(-2.3.-3.3)-

Now that we understand the usefulness of orthonormal bases, how do we go
about finding them? For example, does 7,,(R) with inner product as in 6.3(c)
have an orthonormal basis? The next result will lead to answers to these questions.

The algorithm used in the next proof Jorgen Gram (1850~1916) and Erhard
is called the Gram—Schmidt procedure.  gepmidr (1876-1959) popularized this

It gives a method for turning a linearly  y1o0rithm that constructs orthonormal
independent list into an orthonormal list ' j;gs.

with the same span as the original list.

N =
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/6.32 Gram—Schmidt procedure

N

Suppose v, ..., v, is a linearly independent list of vectors in V. Let f; = v;.
Fork = 2,...,m, define f, inductively by

(v, f1) (Ops fr—1)
=V, — — — = —————f; ..
U T o a? Je1
Foreachk =1,...,m, lete, = |j: | Then ey, ..., e, is an orthonormal list of
k

vectors in V such that

span(vyq, ..., 0;) = span(ey, ..., €;)

\for eachk=1,...,m. )

Proof We will show by induction on k that the desired conclusion holds. To
get started with k = 1, note that because e; = f,/I/f;ll, we have |le;|| = 1; also,
span(v;) = span(e;) because e; is a nonzero multiple of v;.

Suppose 1 < k < m and the listey, ..., e, _; generated by 6.32 is an orthonormal
list such that

6.33 span(vyq, ..., U _1) = span(ey,...,e_1).
Because vy, ..., v,, is linearly independent, we have v, & span(vy, ..., v _1). Thus
U, & span(ey, ...,e_1) = span(fy,..., fr_1), which implies that f, # 0. Hence
we are not dividing by 0 in the definition of e; given in 6.32. Dividing a vector by
its norm produces a new vector with norm 1; thus |le,|| = 1.

Letje {1,...k - 1} Then
e = nﬂwmﬁ&ﬁ
— 1 _ <’0k7 fl) . <'Z)k, fk 1>
BT T A A TR e L
1 (Ve £ = (O 7))
= —— Uk, [i) — Uy [;
Al e

=0.

Thus e, ..., ¢, is an orthonormal list.
From the definition of ¢, given in 6.32, we see that v, € span(ey,...,¢e;).
Combining this information with 6.33 shows that

span(vq, ..., 0;) C span(ey,...,€;).

Both lists above are linearly independent (the v’s by hypothesis, and the e’s by
orthonormality and 6.25). Thus both subspaces above have dimension k, and
hence they are equal, completing the induction step and thus completing the
proof.
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6.34 example: an orthonormal basis of P,(R)

Suppose we make 7, (R) into an inner product space using the inner product
given by

pa =] p

for all p,g € P,(R). We know that 1, x, x? is a basis of ,(R), but it is not an

orthonormal basis. We will find an orthonormal basis of 7, (R) by applying the

Gram-Schmidt procedure with v; = 1, v, = x, and v; = x2

To get started, take f; = v; = 1. Thus || f1||2 = f_ll 1 = 2. Hence the formula

in 6.32 tells us that
_ <029f1> <x’1> _

- —— =x
I f 112 Il 1112 '

where the last equality holds because (x,1) = f_11 tdt = 0.

The formula above for £, implies that || f,|> = f_11 P2dt = % Now the formula
in 6.32 tells us that

. (vs, f1) (03, fo)
=0 = Tpp 1AE

The formula above for f; implies that
1 2 1
1 2 1 8
1P = (B=3) =] (H-3R+§)ar=4.
Now dividing each of f;, f,, f5 by its norm gives us the orthonormal list

Va3 8 (2 -3).

The orthonormal list above has length three, which is the dimension of 7, (R).
Hence this orthonormal list is an orthonormal basis of 7, (R) [by 6.28].

fr=0, fi=x

fo=x2— (A1) — 3 x)x =% — 1.

fi-

Now we can answer the question about the existence of orthonormal bases.

(6.35 existence of orthonormal basis W

@Very finite-dimensional inner product space has an orthonormal basis. J

Proof Suppose V is finite-dimensional. Choose a basis of V. Apply the Gram—
Schmidt procedure (6.32) to it, producing an orthonormal list of length dim V.
By 6.28, this orthonormal list is an orthonormal basis of V.

Sometimes we need to know not only that an orthonormal basis exists, but also
that every orthonormal list can be extended to an orthonormal basis. In the next
corollary, the Gram—Schmidt procedure shows that such an extension is always
possible.
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(6.36 every orthonormal list extends to an orthonormal basis w

Suppose V is finite-dimensional. Then every orthonormal list of vectors in V'
can be extended to an orthonormal basis of V.

Proof Suppose ey, ...,e,, is an orthonormal list of vectors in V. Theney, ..., e,
is linearly independent (by 6.25). Hence this list can be extended to a basis
€15 ves €y V15 05 U, Of V (see 2.32). Now apply the Gram—Schmidt procedure
(6.32)to ey, ..., €,,, U1, ..., Uy, producing an orthonormal list

el, ey em, f], ey fn;

here the formula given by the Gram—Schmidt procedure leaves the first m vectors
unchanged because they are already orthonormal. The list above is an orthonormal
basis of V by 6.28.

Recall that a matrix is called upper triangular if it looks like this:

* *

0 *
where the 0 in the matrix above indicates that all entries below the diagonal
equal 0, and asterisks are used to denote entries on and above the diagonal.

In the last chapter, we gave a necessary and sufficient condition for an operator
to have an upper-triangular matrix with respect to some basis (see 5.44). Now that
we are dealing with inner product spaces, we would like to know whether there
exists an orthonormal basis with respect to which we have an upper-triangular
matrix. The next result shows that the condition for an operator to have an upper-

triangular matrix with respect to some orthonormal basis is the same as the
condition to have an upper-triangular matrix with respect to an arbitrary basis.

ﬁs.37 upper-triangular matrix with respect to some orthonormal basis

Suppose V is finite-dimensional and T € £(V). Then T has an upper-
triangular matrix with respect to some orthonormal basis of V if and only if the
minimal polynomial of T equals (z — A;)---(z — A,,) for some A, ..., A, €F.

Proof Suppose T has an upper-triangular matrix with respect to some basis
vq,...,0, of V. Thus span(vy, ...,v;) is invariant under T for each k = 1,...,n
(see 5.39).

Apply the Gram—Schmidt procedure to vy, ..., v,, producing an orthonormal
basis ey, ..., e, of V. Because

span(ey, ..., ¢,) = span(vy, ..., vy)

for each k (see 6.32), we conclude that span(e,, ..., ;) is invariant under T for
each k = 1,...,n. Thus, by 5.39, T has an upper-triangular matrix with respect to
the orthonormal basis ey, ..., e,. Now use 5.44 to complete the proof.
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For' complex vector sp:':.lcesi, the next yecoi Schur (1875—1941) published a
result is an important application of the proof of the next result in 1909.

result above. See Exercise 20 for a ver-
sion of Schur’s theorem that applies simultaneously to more than one operator.

ﬁi.38 Schur’s theorem w

Every operator on a finite-dimensional complex inner product space has an
upper-triangular matrix with respect to some orthonormal basis.

Proof The desired result follows from the second version of the fundamental
theorem of algebra (4.13) and 6.37.

Linear Functionals on Inner Product Spaces

Because linear maps into the scalar field F play a special role, we defined a special
name for them and their vector space in Section 3F. Those definitions are repeated
below in case you skipped Section 3F.

6.39 definition: linear functional, dual space, V'

o A linear functional on V is a linear map from V to F.

e The dual space of V, denoted by V', is the vector space of all linear
functionals on V. In other words, V' = £(V, F).

6.40 example: linear functional on F®

The function ¢: F® — F defined by
@(21,25,23) =221 — 525 + 23
is a linear functional on F°. We could write this linear functional in the form
¢(z) = (z,w)

for every z € F3 where w = (2, —5,1).

6.41 example: linear functional on P5(R)

The function ¢ : P5(R) — R defined by

1
p(p) = j_lp(t)(cos(nt)) dt

is a linear functional on #5(R).
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If v € V, then the map that sends u 7y, o result is named in honor
to (u, v) is a linear functional on V. The of Frigyes Riesz (1880-1956), who
next result states that every linear func-  ,,oved several theorems early in the
tional on V'is of this form. For example,  nyentieth century that look very much
we can take v = (2,—5,1) in Example  [ike the result below.

6.40.

Suppose we make the vector space P5(R) into an inner product space by
defining (p,q) = fjl pq. Let ¢ be as in Example 6.41. It is not obvious that there
exists g € P5(R) such that

1
L p(t)(cos(rtt)) dt = (p.q)

for every p € P5(R) [we cannot take g(t) = cos(7tt) because that choice of g is
not an element of P5(R)]. The next result tells us the somewhat surprising result
that there indeed exists a polynomial g € P5(R) such that the equation above
holds for all p € P5(R).

s

6.42 Riesz representation theorem

N

Suppose V is finite-dimensional and ¢ is a linear functional on V. Then there
is a unique vector v € V such that

@(u) = (u,v)

for every u € V.
U y

J

Proof  First we show that there exists a vector v € V such that (1) = (u,v) for
every u € V. Lete, ..., e, be an orthonormal basis of V. Then

pu) = p((u,ep)ey + - + (u,e,)e,)

= (u,e;)@e) + - +u,e,)pe,)

= <u,go(el)e1 + e+ go(en)en>
for every u € V, where the first equality comes from 6.30(a). Thus setting
6.43 v =@(e))e; + -+ @(e,e,,

we have ¢(u) = (u,v) for every u € V, as desired.
Now we prove that only one vector v € V has the desired behavior. Suppose
v,,0, € V are such that

p(u) = (u,v1) = (U, 0,)
for every u € V. Then
0= (u,vy) — (U, 0y) = (U, v, — Vy)
for every u € V. Taking u = v; — v, shows that v; — v, = 0. Thus v; = v,,

completing the proof of the uniqueness part of the result.
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6.44 example: computation illustrating Riesz representation theorem

Suppose we want to find a polynomial g € ,(R) such that

1 1
6.45 Ll p)(cos(mtt)) dt = j_l rq

for every polynomial p € 7, (R). To do this, we make 7, (R) into an inner product
space by defining (p, g) to be the right side of the equation above for p,q € 7, (R).
Note that the left side of the equation above does not equal the inner product
in 7, (R) of p and the function t — cos(7tt) because this last function is not a
polynomial.

Define a linear functional ¢ on %, (R) by letting

1
P(p) = Lp(t)(cos(m)) dt

for each p € #,(R). Now use the orthonormal basis from Example 6.34 and
apply formula 6.43 from the proof of the Riesz representation theorem to see that
if p € 7, (R), then ¢(p) = (p, q), where

q(x) = (ﬂ \/gcos(m) dt) ﬁ + (j_ll \/gtcos(nt) dt) @x
(I [ £ — §)cos(rt) dt)[(x -31).

A bit of calculus applied to the equatlon above shows that

q(x) = 55 (1 - 322).

The same procedure shows that if we want to find g € P5(R) such that 6.45
holds for all p € P5(R), then we should take

9(0) = 25 ( (27 - 27%) + (24 = 270) % + (315 - 307‘[2)x4).

Suppose V is finite-dimensional and ¢ a linear functional on V. Then 6.43
gives a formula for the vector v that satisfies

¢(u) = (u,v)
for all u € V. Specifically, we have

v =g@e)e + -+ @(e,)e,.

The right side of the equation above seems to depend on the orthonormal basis
eq,...,e, as well as on ¢. However, 6.42 tells us that v is uniquely determined
by ¢. Thus the right side of the equation above is the same regardless of which
orthonormal basis e, ..., e, of V is chosen.

For two additional different proofs of the Riesz representation theorem, see
6.58 and also Exercise 13 in Section 6C.
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Exercises 6B

1 Suppose ey, ..., e, is a list of vectors in V such that
2 2 2
llajeq + - +a,e,l” =lal= + - + |a,,l

forallaq,...,a,, € F. Show thate, ..., e, is an orthonormal list.

This exercise provides a converse to 6.24.
2 (a) Suppose 6§ € R. Show that both
(cos 0,sinf), (—sinf,cos ) and (cos6,sin @), (sin b, — cos 0)

are orthonormal bases of R2
(b) Show that each orthonormal basis of R? is of the form given by one of
the two possibilities in (a).

3 Suppose ey, ..., ¢, is an orthonormal list in V and v € V. Prove that
2 2 2
[0l = [(v,e)|” + -+ + [(v,e,)|” = v € span(ey, ....e,,).

4 Suppose n is a positive integer. Prove that

1 cosx cos2x cosnx sinx sin2x sin nx
’ s LR} ’ ’ ERAAE]
V2nr vYmoooVTm v oo Vrno Vr VT

is an orthonormal list of vectors in C[—7z, 7], the vector space of continuous
real-valued functions on [—7t, 7r] with inner product

(f£.8) = f_nn f8

Hint: The following formulas should help.

sin(x — y) + sin(x + y)

(Sinx)(cosy) = >
(Sinx)(Siny) = COS(X — y) ; COS(X + y)
(cosx)(cosy) = cos(x — ) ; cos(x +y)

5 Suppose f: [-m, 7] — R is continuous. For each nonnegative integer k,
define

a, = %ﬁ I_nf(x) cos(kx) dx and b, = \/L% j_nf(x) sin(kx) dx.
Prove that 5
) T
Ces@eys[ p
k=1 -

The inequality above is actually an equality for all continuous functions
f: [—m, ] — R. However, proving that this inequality is an equality
involves Fourier series techniques beyond the scope of this book.
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Suppose e, ..., €, is an orthonormal basis of V.
(a) Prove thatif v4,...,v, are vectors in V such that

1
e — Ul < —
llex — vl NG
for each k, then vy, ..., v,, is a basis of V.
(b) Show that there exist vy, ..., v,, € V such that

lley — ol < —
vn

for each k, but v4, ..., v,, is not linearly independent.

This exercise states in (a) that an appropriately small perturbation of an
orthonormal basis is a basis. Then (b) shows that the number 1/v/n on the
right side of the inequality in (a) cannot be higher.

Suppose T € £ (R3 ) has an upper-triangular matrix with respect to the basis
(1,0,0), (1, 1, 1), (1,1,2). Find an orthonormal basis of R® with respect to
which T has an upper-triangular matrix.

Make 7, (R) into an inner product space by defining (p,q) = f01 pq for all

p.q € P>(R).

(a) Apply the Gram—Schmidt procedure to the basis 1, x, x* to produce an
orthonormal basis of 7, (R).

(b) The differentiation operator (the operator that takes p to p’) on P, (R)
has an upper-triangular matrix with respect to the basis 1, x, x?, which is
not an orthonormal basis. Find the matrix of the differentiation operator
on P, (R) with respect to the orthonormal basis produced in (a) and
verify that this matrix is upper triangular, as expected from the proof of
6.37.

Suppose ey, ..., €, is the result of applying the Gram—Schmidt procedure to
a linearly independent list v, ..., v,, in V. Prove that (v,,e,) > 0 for each
k=1,..m.

Suppose v, ...,v,, is a linearly independent list in V. Explain why the
orthonormal list produced by the formulas of the Gram—Schmidt procedure
(6.32) is the only orthonormal list e, ..., e,, in V such that (v;,e;,) > 0 and
span(vq, ..., v;) = span(eq, ...,e;) foreachk = 1,...,m.

The result in this exercise is used in the proof of 7.58.
Find a polynomial g € %, (R) such that p(%) = f01 pq for every p € P, (R).
Find a polynomial g € %, (R) such that

[ pxy cos(rrx) de = [
, PO cos(rma) dx = | pg

for every p € P, (R).
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Show that a list v, ..., v, of vectors in V is linearly dependent if and only if
the Gram—Schmidt formula in 6.32 produces f, = 0 for some k € {1, ..., m}.
This exercise gives an alternative to Gaussian elimination techniques for
determining whether a list of vectors in an inner product space is linearly

dependent.

Suppose V is a real inner product space and vy, ..., v,, is a linearly indepen-
dent list of vectors in V. Prove that there exist exactly 2" orthonormal lists
€1, ..., €, of vectors in V such that

span(vq, ..., ;) = span(eq, ..., €;)
forallk € {1,...,m}.

Suppose (-,-); and (-, -), are inner products on V such that (u,v); = 0 if
and only if (u,v), = 0. Prove that there is a positive number ¢ such that
(u,v); = c{u,v), for every u,v € V.

This exercise shows that if two inner products have the same pairs of

orthogonal vectors, then each of the inner products is a scalar multiple

of the other inner product.

Suppose V is finite-dimensional. Suppose (-, -)q, -, -), are inner products on
V with corresponding norms || -|l; and |- [l,. Prove that there exists a positive
number ¢ such that |jv|l; < c|lvll, for every v € V.

Suppose F = C and V is finite-dimensional. Prove that if T is an operator
on V such that 1 is the only eigenvalue of T and || To| < ||v| forall v € V,
then T is the identity operator.

Suppose u, ..., u,, is a linearly independent list in V. Show that there exists
v € V such that (u;,v) = 1forallk € {1,...,m}.

Suppose vy, ..., v,, is a basis of V. Prove that there exists a basis uy, ..., u,, of
V such that
0 ifj#k
V., Up) =
wp e {1 ifj = k.
Suppose F = C, V is finite-dimensional, and £ C £(V) is such that
ST=TS

for all S, T € &. Prove that there is an orthonormal basis of V with respect
to which every element of £ has an upper-triangular matrix.
This exercise strengthens Exercise 9(b) in Section SE (in the context of inner
product spaces) by asserting that the basis in that exercise can be chosen to
be orthonormal.

Suppose F = C, V is finite-dimensional, T € £(V), and all eigenvalues
of T have absolute value less than 1. Let ¢ > 0. Prove that there exists a
positive integer m such that |[T"'v|| < €llv]| for every v € V.
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Law professor Richard Friedman presenting a case before the U.S. Supreme
Court in 2010:

Mpr. Friedman: 1 think that issue is entirely orthogonal to the issue here

Chief Justice Roberts: I'm sorry. Entirely what?

Mpr. Friedman: Orthogonal. Right angle. Unrelated. Irrelevant.

Chief Justice Roberts: Oh.

Justice Scalia: What was that adjective? I liked that.

Mr. Friedman: Orthogonal.

Chief Justice Roberts: Orthogonal.

Mr. Friedman: Right, right.

Justice Scalia: Orthogonal, ooh. (Laughter.)

Justice Kennedy: 1 knew this case presented us a problem. (Laughter.)

Chapter 6 Inner Product Spaces

Suppose C[—1, 1] is the vector space of continuous real-valued functions
on the interval [—1, 1] with inner product given by

(f.8)= f_ll f8

for all f,g € C[—1,1]. Let ¢ be the linear functional on C[—1, 1] defined
by ¢(f) = f(0). Show that there does not exist ¢ € C[—1, 1] such that

o(f) =<8
for every f € C[—1,1].

This exercise shows that the Riesz representation theorem (6.42) does not
hold on infinite-dimensional vector spaces without additional hypotheses
on'V and ¢.

For all u,v € V, define d(u,v) = |lu — v|.

(a) Show that d is a metric on V.

(b) Show that if V is finite-dimensional, then d is a complete metric on V
(meaning that every Cauchy sequence converges).

(c) Show that every finite-dimensional subspace of V is a closed subset
of V (with respect to the metric d ).

This exercise requires familiarity with metric spaces.

orthogonality at the Supreme Court

because the Commonwealth is acknowledging—
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6C Orthogonal Complements and Minimization Problems

Orthogonal Complements

6.46 definition: orthogonal complement, U*

If U is a subset of V, then the orthogonal complement of U, denoted by U, is
the set of all vectors in V that are orthogonal to every vector in U:

Ut ={veV:(uo =0forevery u € U}.

The orthogonal complement U+ depends on V as well as on U. However, the

inner product space V should always be clear from the context and thus it can be
omitted from the notation.

6.47 example: orthogonal complements

; N

If V = R® and U is the subset of V consisting of the single point (2, 3,5), then
U* is the plane {(x,y,z) € R® : 2x + 3y + 5z = 0}.

If V = R3 and U is the plane {(x,y,z) € R® : 2x + 3y + 5z = 0}, then U* is
the line {(2t,3t,5t) : t € R}.

More generally, if U is a plane in R® containing the origin, then U* is the line
containing the origin that is perpendicular to U.

If U is a line in R3 containing the origin, then U+ is the plane containing the
origin that is perpendicular to U.

If V =Fand U = {(a,5,0,0,0) € F° : a,b € F}, then
Ut ={(0,0,x,y,2) e F° : x,y,z € F}.

Ifeq,...,e,. f1. s f,, is an orthonormal basis of V, then

(span(e;, ...,em))L = span(fy, ..., f,,)-

We begin with some straightforward consequences of the definition.

6.48 properties of orthogonal complement

&

(a) If U is a subset of V, then U is a subspace of V.

(b) (0} =V.

(c) V*+={0}.

(d) If Uis a subset of V, then U N U+ C {0}.

(e) If G and H are subsets of V and G C H, then H* C G*.
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Proof
(a) Suppose U is a subset of V. Then (u,0) = 0 for every u € U; thus 0 € U~
Suppose v, w € U*. If u € U, then

u,v+w) =u,v)+{u,wy=0+0=0.

Thus v + w € U+, which shows that U+ is closed under addition.

Similarly, suppose A € Fand v € UL. If u € U, then
(u, Av) = Mu,v) = A-0 = 0.

Thus Av € U+, which shows that U* is closed under scalar multiplication.
Thus U* is a subspace of V.

(b) Suppose that v € V. Then (0,v) = 0, which implies that v € {0}*. Thus
{0}t =V.

(c) Suppose that v € V. Then (v,v) = 0, which implies that v = 0. Thus
Vi ={0}.

(d) Suppose U is a subset of V and u € U N U*. Then (u, u) = 0, which implies
that u = 0. Thus U N U+ C {0}.

(e) Suppose G and H are subsets of V and G C H. Suppose v € H*. Then
(u,v) = 0 for every u € H, which implies that (u,v) = 0 for every u € G.
Hence v € G*. Thus H! C G-

Recall that if U and W are subspaces of V, then V is the direct sum of U and
W (written V = U @ W) if each element of V can be written in exactly one way
as a vector in U plus a vector in W (see 1.41). Furthermore, this happens if and
onlyif V.=U+ Wand UNW = {0} (see 1.46).

The next result shows that every finite-dimensional subspace of V leads to a
natural direct sum decomposition of V. See Exercise 16 for an example showing
that the result below can fail without the hypothesis that the subspace U is finite-
dimensional.

6.49 direct sum of a subspace and its orthogonal complement

Suppose U is a finite-dimensional subspace of V. Then

V=UeU

Proof First we will show that
V=U+U

To do this, suppose that v € V. Let ey, ..., e, be an orthonormal basis of U. We
want to write v as the sum of a vector in U and a vector orthogonal to U.
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We have

6.50 U =(0,ep)e; + - +(v,e,,)e,, +0—(v,e;)e; — - —(0,e,,)¢,,

u w
Let u and w be defined as in the equation above (as was done in the proof of 6.26).
Because each e, € U, we see that u € U. Because ¢4, ..., ¢, is an orthonormal
list, for each k = 1, ..., m we have

(w, ep) = (v, e) — (v, e)
=0.
Thus w is orthogonal to every vector in span(ey, ...,¢e,,), which shows that w € u-t.
Hence we have written v = u + w, where u € U and w € U*, completing the
proof that V = U + U™

From 6.48(d), we know that U N U+ = {0}. Now equation V = U + U*
implies that V = U @ U* (see 1.46).

Now we can see how to compute dim U from dim U.

(6.51 dimension of orthogonal complement

dim U+ = dim V — dim U.

Suppose V is finite-dimensional and U is a subspace of V. Then J

Proof  The formula for dim U* follows immediately from 6.49 and 3.94

The next result is an important consequence of 6.49.

(6.52 orthogonal complement of the orthogonal complement w

Suppose U is a finite-dimensional subspace of V. Then

u=(u).

Proof  First we will show that

6.53 uc (ut).

To do this, suppose u € U. Then (u,w) = 0 for every w € U* (by the definition
of Ul). Because u is orthogonal to every vector in U+, we have u € (UL)L,
completing the proof of 6.53.

To prove the inclusion in the other direction, suppose v € (Ul)l. By 6.49,
we can write v = u + w, where u € Uand w € U*. Wehave v —u = w € U~
Because v € (LIL)l andu € (UL)L (from 6.53), we have v —u € (UL)l. Thus
v—uelin (Ul)l, which implies that v — u = 0 [by 6.48(d)], which implies
that v = u, which implies that v € U. Thus ( UL)L C U, which along with 6.53
completes the proof.
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Suppose U is a subspace of V and Exercise 16(a) shows that the result
we want to show that U = V. Insome 010y is not true without the hypothesis

situations, the easiest way to do this is o ypa7 U] is finite-dimensional.

show that the only vector orthogonal to

U is 0, and then use the result below. For example, the result below is useful for
Exercise 4.

(6.54 Ut = {0} = U =V (for U a finite-dimensional subspace of V)

Suppose U is a finite-dimensional subspace of V. Then

Ut={0) = U=V

Proof First suppose U+ = {0}. Then by 6.52, U = (Ul)l = {0} =V, as
desired.
Conversely, if U = V, then U+ = V* = {0} by 6.48(c).

We now define an operator P;; for each finite-dimensional subspace U of V.

6.55 definition: orthogonal projection, Py;

Suppose U is a finite-dimensional subspace of V. The orthogonal projection
of V onto U is the operator P;; € £(V) defined as follows: For eachv € V,
write v = u + w, where u € U and w € U*. Then let P;v = u.

The direct sum decomposition V = U & U+ given by 6.49 shows that each
v € V can be uniquely written in the form v = u + w withu € Uand w € U*.
Thus P;v is well defined. See the figure that accompanies the proof of 6.61 for
the picture describing P;;v that you should keep in mind.

6.56 example: orthogonal projection onto one-dimensional subspace

Suppose u € V with u # 0 and U is the one-dimensional subspace of V
defined by U = span(u).
If v € V, then
(v, u) N ( (v, u) )
V= —— - —ul,
flul? llul?
where the first term on the right is in span(u) (and thus is in U) and the second
term on the right is orthogonal to u (and thus is in U*). Thus Pv equals the first
term on the right. In other words, we have the formula
(v, u)
V= ——>u
T e

foreveryv € V.
The formula above becomes P;u = u if v = u and becomes P;v = 0 if
v € {u}t. These equations are special cases of (b) and (c) in the next result.
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/6.57 properties of orthogonal projection Py, R
Suppose U is a finite-dimensional subspace of V. Then
(@) Pye L(V);
(b) Pyu =uforeveryu € U;
(c) Pyw = 0 forevery w € U*t;
(d) range P;; = U;
(e) null P, = U*;
(f) v—Pyv e Ut foreveryov €V,
® P =Py
(h) IIPgoll < [loll for every v € V;
(i) ifey,...,e,, is an orthonormal basis of U and v € V, then
L Pyo = (v,ep)e; + -+ +(v,e,,)e,,. )
Proof
(a) To show that P;; is a linear map on V, suppose v, v, € V. Write
with uy,u, € U and wy,w, € U*. Thus P,v; = u; and Pyo, = u,. Now
01 + 0y = (U + Uy) + (Wy + Wy),
where u; + u, € Uand w; + w, € U*. Thus
Similarly, suppose A € Fandv € V. Write v = u + w, where u € U
and w € U*. Then Av = Au + Aw with Au € U and Aw € U*. Thus
P (Av) = Au = AP,o.
Hence P is a linear map from V to V.
(b) Suppose u € U. We can write u = u + 0, where u € U and 0 € U*. Thus
Pyu = u.
(c) Suppose w € UL. We can write w = 0 + w, where 0 € U and w € U*. Thus
(d) The definition of P;; implies that range P,; C U. Furthermore, (b) implies
that U C range P;;. Thus range P; = U.
(e) The inclusion U+ C null P; follows from (c). To prove the inclusion in the

other direction, note that if v € null P;; then the decomposition given by 6.49
must be v = 0 + v, where 0 € U and v € U*. Thus null P; C u-t.
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() fv e Vandv = u+wwithu € Uand w € U+, then
v—-Pp=v—u=we Ut
(g) Ifv e Vand v = u +w withu € U and w € U+, then
(Pf)v = Py(Pyov) = Pyu = u = Pyo.
(h) Ifv e Vandv = u + w withu € U and w € U*, then
Pyl = [l < Jul? + llwl® = oI,
where the last equality comes from the Pythagorean theorem.

(i) The formula for P;v follows from equation 6.50 in the proof of 6.49.

In the previous section we proved the Riesz representation theorem (6.42),
whose key part states that every linear functional on a finite-dimensional inner
product space is given by taking the inner product with some fixed vector. Seeing
a different proof often provides new insight. Thus we now give a new proof of
the key part of the Riesz representation theorem using orthogonal complements
instead of orthonormal bases as in our previous proof.

The restatement below of the Riesz representation theorem provides an iden-
tification of V with V'. We will prove only the “onto” part of the result below
because the more routine “one-to-one” part of the result can be proved as in 6.42.

Intuition behind this new proof: If ¢ € V', v € V, and ¢(u) = (u,v) for all
u € V, then v € (null )*. However, (null ¢)* is a one-dimensional subspace
of V (except for the trivial case in which ¢ = 0), as follows from 6.51 and 3.21.
Thus we can obtain v by choosing any nonzero element of (null ¢)* and then
multiplying by an appropriate scalar, as is done in the proof below.

/6.58 Riesz representation theorem, revisited )
Suppose V is finite-dimensional. For each v € V, define ¢, € V' by
Po(u) = (u,v)
for each u € V. Then v — ¢, is a one-to-one function from V onto V". )

Proof  Toshow thatv — ¢, issurjective, vy mon. The function v — @, is a
* o

suppose ¢ € V' If ¢ = 0,then ¢ = ¢o. 00y mapping from Vto V' if F = R.
Thus assume ¢ # 0. Hence null¢ # V. gowever, this function is not linear if
which implies that (null )~ # {0} (by  F = C because Pro=Ag,if A €C.
6.49 with U = null ¢).

Letw € (null ¢)* be such that w # 0. Let

_ p(w)
77

Then v € (null ). Also, v # 0 (because w ¢ null @).

6.59

w.
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Taking the norm of both sides of 6.59 gives

lp(w)]

6.60 ol =
l[zll

Applying ¢ to both sides of 6.59 and then using 6.60, we have
_ lp(w)?

2
= |lolI*.
l[ew]>

¢(v)

Now suppose u € V. Using the equation above, we have

_ (. ) pu)
u=(u (p(v)v) TR

The first term in parentheses above is in null ¢ and hence is orthogonal to v. Thus
taking the inner product of both sides of the equation above with v shows that

pu)
(u,v) = (v,0) = p(u).
o2 Y
Thus ¢ = ¢, showing that v — ¢, is surjective, as desired.

See Exercise 13 for yet another proof of the Riesz representation theorem.

Minimization Problems

T}.le following problem often aris'es: The remarkable simplicity of the solu-
Given a subspace. U of Vand a point i 16 this minimization problem has
v € V, find a point u € U such that  jeq4, many important applications of

llo — ull is as small as possible. The next  jnner product spaces outside of pure
result shows that u = P;v is the unique  mathematics.

solution of this minimization problem.

/6.61 minimizing distance to a subspace

Suppose U is a finite-dimensional subspace of V, v € V, and u € U. Then

lv — Pyoll < llo — ull.

Furthermore, the inequality above is an equality if and only if u = Pv.

J

Proof We have
6.62 lo — Pyoll* < llo — Pyol? + IPyo — ull?
2
= ||(v = Pyov) + (Pyo — )|

2
= llo —ull,
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where the first line above holds because 0 < [|P,v — ul/%,
the second line above comes from the Pythagorean the-
orem [which applies because v — P ;v € U* by 6.57(f),
and P;v — u € U], and the third line above holds by
simple algebra. Taking square roots gives the desired
inequality.

The inequality proved above is an equality if and
only if 6.62 is an equality, which happens if and only if
IP;v — ull = 0, which happens if and only if u = P;;v. 0

Pv is the closest
point in U to v.

The last result is often combined with the formula
6.57(i) to compute explicit solutions to minimization
problems, as in the following example.

| 6.63 example: using linear algebra to approximate the sine function

Suppose we want to find a polynomial u with real coefficients and of degree
at most 5 that approximates the sine function as well as possible on the interval
[, 7r], in the sense that

Jdr |sinx — u(x)|* dx

is as small as possible.
Let C[—7, 7r] denote the real inner product space of continuous real-valued
functions on [—7r, 7r] with inner product

6.64 (f.8) = f_ﬂ fs

Let v € C[—m, r] be the function defined by v(x) = sinx. Let U denote the
subspace of C[—rt, 77] consisting of the polynomials with real coefficients and of
degree at most 5. Our problem can now be reformulated as follows:

Find u € U such that ||[v — u|| is as small as possible.

To compute the solution to our ap-
proximation problem, first apply the
Gram—Schmidt procedure (using the in-
ner product given by 6.64) to the basis 1, x, x x3, x* x° of U, producing an ortho-
normal basis eq, 5, €3, €4, €5, ¢, of U. Then, again using the inner product given
by 6.64, compute P;v using 6.57(i) (with m = 6). Doing this computation shows
that P;v is the function u defined by

A computer that can integrate is useful
here.

6.65 u(x) = 0.987862x — 0.155271x> + 0.00564312x°,

where the 77’s that appear in the exact answer have been replaced with a good
decimal approximation. By 6.61, the polynomial u above is the best approximation
to the sine function on [, 7r] using polynomials of degree at most 5 (here “best
approximation” means in the sense of minimizing [”_|sinx — u(x)[*dx).
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To see how good this approximation is, the next figure shows the graphs of
both the sine function and our approximation u given by 6.65 over the interval
[—7, T].

1t

Graphs on [—7t, 7] of the sine function (red) and its best
[ifth degree polynomial approximation u (blue) from 6.65.

Our approximation 6.65 is so accurate that the two graphs are almost identical—
our eyes may see only one graph! Here the red graph is placed almost exactly
over the blue graph. If you are viewing this on an electronic device, enlarge the
picture above by 400% near 7 or —7t to see a small gap between the two graphs.

Another well-known approximation to the sine function by a polynomial of
degree 5 is given by the Taylor polynomial p defined by

¥ X
6.66 p(x) =x—§+§

To see how good this approximation is, the next picture shows the graphs of both
the sine function and the Taylor polynomial p over the interval [—7t, 77].

1tk

1}

Graphs on [—1, 7] of the sine function (red)
and the Taylor polynomial (blue) from 6.66.

The Taylor polynomial of degree 5 is an excellent approximation to sin x for
x near 0. But the picture above shows that for [x| > 2, the Taylor polynomial is
not so accurate, especially compared to 6.65. For example, taking x = 3, our
approximation 6.65 estimates sin 3 with an error of approximately 0.001, but the
Taylor polynomial 6.66 estimates sin 3 with an error of approximately 0.4. Thus
at x = 3, the error in the Taylor polynomial is hundreds of times larger than the
error given by 6.65. Linear algebra has helped us discover an approximation to
the sine function that improves upon what we learned in calculus!
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Pseudoinverse

Suppose T € £(V, W) and w € W. Consider the problem of finding v € V such
that
To=w.

For example, if V = F* and W = F™, then the equation above could represent a
system of m linear equations in n unknowns vy, ..., v,,, where v = (v4, ..., 0,)).

If T is invertible, then the unique solution to the equation above is v = T~ w.
However, if T is not invertible, then for some w € W there may not exist any
solutions of the equation above, and for some w € W there may exist infinitely
many solutions of the equation above.

If T is not invertible, then we can still try to do as well as possible with the
equation above. For example, if the equation above has no solutions, then instead
of solving the equation Tv — w = 0, we can try to find v € V such that | Tv — w||
is as small as possible. As another example, if the equation above has infinitely
many solutions v € V, then among all those solutions we can try to find one such
that ||v|| is as small as possible.

The pseudoinverse will provide the tool to solve the equation above as well
as possible, even when T is not invertible. We need the next result to define the
pseudoinverse.

In the next two proofs, we will use without further comment the result that if
V is finite-dimensional and T € £(V, W), then null T, (null T)*, and range T are
all finite-dimensional.

ﬁi.67 restriction of a linear map to obtain a one-to-one and onto map W

Suppose V is finite-dimensional and T € £(V,W). Then T 7). is an
injective map of (null T)* onto range T.

Proof Suppose that v € (nullT)* and T|1y.v = 0. Hence Tv = 0 and
thus v € (null T) N (null T)*, which implies that v = 0 [by 6.48(d)]. Hence
null T| yy7ye = {0}, which implies that T, 7. is injective, as desired.

Clearly range T' 7y € range T. To prove the inclusion in the other direction,
suppose w € range T. Hence there exists v € V such that w = Tv. There exist
u €nullTand x € (null T)* such that v = u + x (by 6.49). Now

T|(nu11T)ix =Tx=To—-Tu=w-0=w,

which shows that w € range T| 7y Hence range T' C range T| 1+, complet-
ing the proof that range T| ;7). = range T.

+ Now we can d‘f‘:ﬁne the pjeudomyerse To produce the pseudoinverse notation
T' (pronounced “T dagger”) of a linear 7t ;, TiX, type T"\dagger.
map T. In the next definition (and from
now on), think of T| ;7 as an invertible linear map from (null T)* onto range T,
as is justified by the result above.
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~

6.68 definition: pseudoinverse, Tt

Suppose that V is finite-dimensional and T € £(V, W). The pseudoinverse
Tt € £(W, V) of T is the linear map from W to V defined by

TTw = (T|<nu11T)¢)_1PrangeT w

\for eachw € W. )

Recall that B,p..rw = 0 if w € (range T)* and Pungerw = wif w € range T.
Thus if w € (range )%, then Tfw = 0, and if w € range T, then TTw is the
unique element of (null T)* such that T(TTw) =w.

The pseudoinverse behaves much like an inverse, as we will see.

/6.69 algebraic properties of the pseudoinverse h
Suppose V is finite-dimensional and T € £(V, W).
(a) If Tis invertible, then TT = T-1.
(b) TTT = range = the orthogonal projection of W onto range T.

\(c) TiT = Piuny: = the orthogonal projection of V onto (null T)=. )

Proof

(a) Suppose T is invertible. Then (nullT)* = V and rangeT = W. Thus
Tlanry: = T and Pypee 7 is the identity operator on W. Hence Th =711

(b) Suppose w € range T. Thus

TTw = T(Tlguiry:) '@ = @ = Pypger .

If w € (range T)*, then TTw = 0. Hence TTTw = 0 = Pynger w. Thus TTT
and P, agree on range T and on (range T)*. Hence these two linear maps
are equal (by 6.49).

(¢) Suppose v € (null T)*. Because Tv € range T, the definition of TT shows
that

TH(Tv) = (Tlgaury) " (T0) = 0 = Py 0.

Ifv € null T, then TTTo = 0 = Pounryrv- Thus TTT and Prunty: agree on
(null T)* and on null T. Hence these two linear maps are equal (by 6.49).

Suppose that T € L(V,W). If T is
surjective, then TTT is the identity opera-
tor on W, as follows from (b) in the result
above. If T is injective, then TTTis the identity operator on V, as follows from (c)
in the result above. For additional algebraic properties of the pseudoinverse, see
Exercises 19-23.

The pseudoinverse is also called the
Moore—Penrose inverse.
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For T € £(V,W) and w € W, we now return to the problem of finding v € V
that solves the equation
T = w.

As we noted earlier, if T is invertible, then v = T~ 1w is the unique solution, but
if T is not invertible, then T~ is not defined. However, the pseudoinverse Tt is
defined. Taking v = TYw makes Tv as close to w as possible, as shown by (a) of
the next result. Thus the pseudoinverse provides what is called a best fit to the
equation above.

Among all vectors v € V that make Tv as close as possible to w, the vector
TTw has the smallest norm, as shown by combining (b) in the next result with the
condition for equality in (a).

/6.70 pseudoinverse provides best approximate solution or best solution h

Suppose V is finite-dimensional, T € £(V, W), and w € W.

(a) Ifv €V, then
IT(TTw) — w]| < ITv - wl,

with equality if and only if v € TYw + null T.
(b) Ifv € TTw + null T, then

T | < Ivll,

L with equality if and only if v = THw.

Proof

(a) Suppose v € V. Then
To—w= (Tv — TTTw) + (TTTw —w).

The first term in parentheses above is in range T. Because the operator TTt
is the orthogonal projection of W onto range T [by 6.69(b)], the second term
in parentheses above is in (range T)* [see 6.57(f)].

Thus the Pythagorean theorem implies the desired inequality that the norm of
the second term in parentheses above is less than or equal to || Tv — w||, with
equality if and only if the first term in parentheses above equals 0. Hence
we have equality if and only if v — Ttw € null T, which is equivalent to the
statement that v € TTw + null T, completing the proof of (a).

(b) Suppose v € TYw + null T. Hence v — TTw € null T. Now
v=(v— Tlfw) +TTw.

The definition of Tt implies that TTw € (null T)L. Thus the Pythagorean
theorem implies that | Tw|| < |[v], with equality if and only if v = TTw.

A formula for TT will be given in the next chapter (see 7.78).
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6.71 example: pseudoinverse of a linear map from F* to F3
Suppose T € £(F*, F?) is defined by
T(a,b,c,d) =(a+b+c,2c+d0).

This linear map is neither injective nor surjective, but we can compute its pseudo-
inverse. To do this, first note that range T = {(x,y,0) : x,y € F}. Thus

PrangeT(x’ %Z) = (x, Y, 0)
for each (x,y,z) € F> Also,
nullT = {(a,b,c,d) EF*:a+b+c=0and2c +d = 0}.

The list (-1,1,0,0), (—1,0,1, —2) of two vectors in null T spans null T because
if (a,b,c,d) € null T then

(a,b,¢,d) =b(-1,1,0,0) +c(-1,0,1,-2).

Because the list (—1,1,0,0), (—1,0, 1, —2) is linearly independent, this list is a
basis of null T.
Now suppose (x,y,z) € F°. Then

6.72 TT(x,y,2) = (Tl 7y2) ™" Prange 76 ¥:2) = (Tl uuny2) ™" (2,1, 0).

The right side of the equation above is the vector (a,b,c,d) € F* such that
T(a,b,c,d) = (x,y,0) and (a,b,c,d) € (null T)*. In other words, 4, b, ¢, d must
satisfy the following equations:

a+b+c=x

2c+d=y
—a+b=0
—a+c—2d =0,

where the first two equations are equivalent to the equation T'(a, b, c,d) = (x,y,0)
and the last two equations come from the condition for (a, b, c,d) to be orthogo-
nal to each of the basis vectors (—1,1,0,0), (—=1,0,1, —2) in this basis of null T.
Thinking of x and y as constants and a4, b, ¢, d as unknowns, we can solve the
system above of four equations in four unknowns, getting

a= 11—1(5x -2y, b= 11—1(5x —-2y), c= %(x +4y), d = 11—1(—2x +3y).
Hence 6.72 tells us that
TT(x,y,z) = %(Sx —2y,5x — 2y, x + 4y, —2x + 3y).

The formula above for T shows that TTT(x, ¥.z) = (x,y,0) for all (x,y,z) € F
which illustrates the equation TTT = range T {0 6.69(b).
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Exercises 6C

1 Suppose vy, ...,v,, € V. Prove that

1

{01, oy U} = (span(oy, ..., v,,)) "

2 Suppose U is a subspace of V with basis u, ..., u,, and
Uy eees Upyy Uy ees Uy

is a basis of V. Prove that if the Gram—Schmidt procedure is applied to the
basis of V above, producing a list ey, ...,¢e,,, f1, ..., f,;» then ey, ...,e,, is an
orthonormal basis of U and fi, ..., f,, is an orthonormal basis of U™

3 Suppose U is the subspace of R* defined by
U = span((1,2,3,-4), (-5,4,3,2)).
Find an orthonormal basis of U and an orthonormal basis of U*.

4 Suppose ey, ..., ¢, is a list of vectors in V with |le,| = 1 foreachk =1, ...,n
and
5 2 2
[0l = [(v,e)|” + - + [(v,e,)]

for all v € V. Prove that ey, ..., ¢, is an orthonormal basis of V.

This exercise provides a converse to 6.30(b).

5 Suppose that V is finite-dimensional and U is a subspace of V. Show that
Py =1 — Py, where I is the identity operator on V.

6 Suppose V is finite-dimensional and T € £(V, W). Show that
T = TP(nullT)i = PrangeTT'

7 Suppose that X and Y are finite-dimensional subspaces of V. Prove that
PyPy = 0if and only if (x,y) = Oforallx € Xandally € Y.

8 Suppose U is a finite-dimensional subspace of V and v € V. Define a linear
functional ¢: U — F by
¢(u) = (u,v)

for all u € U. By the Riesz representation theorem (6.42) as applied to the
inner product space U, there exists a unique vector w &€ U such that

¢u) = (u,w)
for all u € U. Show that w = P;v.

9 Suppose V is finite-dimensional. Suppose P € £(V) is such that P> = P
and every vector in null P is orthogonal to every vector in range P. Prove
that there exists a subspace U of V such that P = P;;.
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10  Suppose V is finite-dimensional and P € £(V) is such that P> = P and
IPoll < [l
for every v € V. Prove that there exists a subspace U of V such that P = P;;.
11  Suppose T € £(V) and U is a finite-dimensional subspace of V. Prove that
U is invariant under T < P,;TP; = TP;.

12 Suppose V is finite-dimensional, T € £(V), and U is a subspace of V. Prove
that
U and U* are both invariant under T < P,T = TP,.

13 Suppose F = R and V is finite-dimensional. For each v € V, let ¢, denote
the linear functional on V defined by

@, (1) = (u,v)

forallu e V.

(a) Show that v — ¢, is an injective linear map from V to V".
(b) Use (a) and a dimension-counting argument to show that v — ¢, is an
isomorphism from V onto V".

The purpose of this exercise is to give an alternative proof of the Riesz
representation theorem (6.42 and 6.58) when F = R. Thus you should not
use the Riesz representation theorem as a tool in your solution.

14 Suppose that e, ..., e, is an orthonormal basis of V. Explain why the dual
basis (see 3.112) of ey, ..., ¢, is €4, ..., €, under the identification of V' with
V provided by the Riesz representation theorem (6.58).

15 InR*% let
U = span((1,1,0,0), (1,1,1,2)).

Find u € U such that |u — (1,2,3,4) || is as small as possible.

16 Suppose C[—1,1] is the vector space of continuous real-valued functions
on the interval [—1, 1] with inner product given by

_ f
=] 18
for all f,g € C[—1,1]. Let U be the subspace of C[—1, 1] defined by
U ={feC[-1,1] : f(0) = 0}.

(a) Show that U+ = {0}.
(b) Show that 6.49 and 6.52 do not hold without the finite-dimensional
hypothesis.
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1

Find p € P;(R) such that p(0) = 0, p'(0) = 0, and J‘ |2+ 3x — p(x)|2 dx is
0

as small as possible.

7T
Find p € P5(R) that makes J |sinx — p(x)|” dx as small as possible.
—7T

The polynomial 6.65 is an excellent approximation to the answer to this
exercise, but here you are asked to find the exact solution, which involves
powers of 1. A computer that can perform symbolic integration should
help.

Suppose V is finite-dimensional and P € £(V) is an orthogonal projection
of V onto some subspace of V. Prove that P = P,

Suppose V is finite-dimensional and T € £(V, W). Show that
null 7T = (range T)* and range Tt = (null T)*.
Suppose T € £(F?,F?) is defined by
T(a,b,c) = (a+b+c,2b+3c).

(a) For (x,y) € F2 find a formula for T% (x, ).

(b) Verify that the equation TTT = Panger from 6.69(b) holds with the
formula for T obtained in (a).

(c) Verify that the equation TTT = Py from 6.69(c) holds with the
formula for TT obtained in (a).

Suppose V is finite-dimensional and T € £(V, W). Prove that
TT'T =T and T'TTT =T%

Both formulas above clearly hold if T is invertible because in that case we
can replace T with T-1.

Suppose V and W are finite-dimensional and T € £(V, W). Prove that
(=1

The equation above is analogous to the equation (T‘l)_1 = T that holds if
T is invertible.
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Chapter 7
Operators on Inner Product Spaces

The deepest results related to inner product spaces deal with the subject to which
we now turn—linear maps and operators on inner product spaces. As we will see,
good theorems can be proved by exploiting properties of the adjoint.

The hugely important spectral theorem will provide a complete description
of self-adjoint operators on real inner product spaces and of normal operators
on complex inner product spaces. We will then use the spectral theorem to help
understand positive operators and unitary operators, which will lead to unitary
matrices and matrix factorizations. The spectral theorem will also lead to the
popular singular value decomposition, which will lead to the polar decomposition.

The most important results in the rest of this book are valid only in finite
dimensions. Thus from now on we assume that V and W are finite-dimensional.

( standing assumptions for this chapter W

e F denotes R or C.
e VV and W are nonzero finite-dimensional inner product spaces over F.

a N

VS-Ag OO DINSK0]IN Jeled

\_ %

Market square in Lviv, a city that has had several names and has been in several
countries because of changing international borders. From 1772 until 1918, the city was
in Austria and was called Lemberg. Between World War I and World War 11, the city was
in Poland and was called Lwéw. During this time, mathematicians in Lwow, particularly
Stefan Banach (1892—-1945) and his colleagues, developed the basic results of modern
functional analysis, using tools of analysis to study infinite-dimensional vector spaces.

Since the end of World War II, Lviv has been in Ukraine, which was part of the
Soviet Union until Ukraine became an independent country in 1991.

227
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7A  Self-Adjoint and Normal Operators

Adjoints

~

/7.1 definition: adjoint, T*

Suppose T € £(V,W). The adjoint of T is the function T*: W — V such
that
(T, w) = (v, T*w)

\for every v € V and every w € W.

/

To see why the definition above
makes sense, suppose T € £(V, W). Fix
w € W. Consider the linear functional

The word adjoint has another meaning
in linear algebra. In case you en-
counter the second meaning elsewhere,
be warned that the two meanings for
v~ (To,w) adjoint are unrelated to each other.

on V that maps v € V to (Tv,w); this

linear functional depends on T and w. By the Riesz representation theorem (6.42),
there exists a unique vector in V such that this linear functional is given by taking
the inner product with it. We call this unique vector T*w. In other words, T*w is
the unique vector in V such that

(To,wy = (v, T*w)

forevery v € V.

In the equation above, the inner product on the left takes place in W and the
inner product on the right takes place in V. However, we use the same notation
(-, -) for both inner products.

7.2 example: adjoint of a linear map from R3 to R?
Define T: R3 - R? by
T(xq,x,X3) = (X5 + 3%3,2x7).
To compute T*, suppose (x1, X,,x3) € R® and (y;,,) € R2 Then
(T(x1, %9, X3), (Y1, ¥2)) = (2 + 3%3,2x7), (Y1, ¥2))
= Xoy1 +3x3Y1 + 2x1Y>
= (1, %2, %3), (22, Y1, 3y1)) -

The equation above and the definition of the adjoint imply that

T*(Y1,Y2) = (2Y2, Y1, 3y1) -
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7.3 example: adjoint of a linear map with range of dimension at most 1
Fixu € Vandx € W. Define T € £(V, W) by
Tv = (v,u)x
for each v € V. To compute T%, suppose v € V and w € W. Then
(Tv,wy = ((v,uyx, w)
= (v, u){x, w)
= (v, (w, x)u).

Thus
T*w = (w, x)u.

*
In the two examples above, T™ turned 7y, 10 examples above and the proof
out to be not just a function from W to  po10w use a common technique for

V but a linear map from Wto V. This  computing T*: start with a formula

behavior is true in general, as shown by  for (T, w) then manipulate it to get

the next result. just v in the first slot; the entry in the
second slot will then be T*w.

(7.4 adjoint of a linear map is a linear map w

QfT € £(V,W), then T* € L(W, V). J

Proof Suppose T € £(V,W). If v € V and w,,w, € W, then
(To,wy + wy) = (To,wy) + (To,w,)
= (v, T*wy) + (v, T*w,)
= (v, T*w; + T w,).
The equation above shows that
T*(wqy + wy) = T*wy + T w,.
Ifve V,AeF andw e W, then
(Tv, Aw) = MTo,w)
= Mo, T*w)
= (v, AT*w).
The equation above shows that
T*(Aw) = AT*w.

Thus T* is a linear map, as desired.
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/7.5 properties of the adjoint

Suppose T € £(V, W). Then
(@ (S+TH)*=S*+T*forall S € L(V,W);

(b) (AT)* = AT* forall A € F;
© (T =T,

(d) (ST)* = T*S* forall S € £(W, U) (here U is a finite-dimensional inner
product space over F);

(e) I'* = I, where I is the identity operator on V;

\(f) if T is invertible, then T* is invertible and (T*)_1 = (T71)"

Proof Supposev € Vandw € W.
(a) If S € £L(V,W), then

(S + T)v,w) = (Sv,w) + (Tv, w)
= (v, S*w) + (v, T*w)
= (v, S*w + T*w).
Thus (S + T)*w = S*w + T*w, as desired.
(b) If A € F, then
((AT)v,w)y = MTo,w)y = Mo, T*w) = (v,XT*w).
Thus (AT)*w = AT*w, as desired.
(c) We have L
(T*w,v) = (v, T*w) = (To,w) = (w, Tv).
Thus (T*)*U = To, as desired.
(d) Suppose S € £L(W,U) and u € U. Then
((ST)v,u) = (S(Tv),u) = (Tv, S*u) = (v, T*(S*u)).
Thus (ST)*u = T*(S*u), as desired.
(e) Suppose u € V. Then
du, vy = (u,v).
Thus I*v = v, as desired.

(f) Suppose T is invertible. Take adjoints of both sides of the equation T~!T = I,
then use (d) and (e) to show that T*(T‘l)* = [. Similarly, the equation
TT-' = Limplies (T™')"T* = I Thus (T~')" is the inverse of T, as
desired.

If F = R, then the map T — T* is a linear map from £(V, W) to £L(W, V),
as follows from (a) and (b) of the result above. However, if F = C, then this map

is not linear because of the complex conjugate that appears in (b).
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The next result shows the relationship between the null space and the range of
a linear map and its adjoint.

\

/7.6 null space and range of T*

Suppose T € £(V, W). Then
(a) null T* = (range T)*;
(b) range T* = (null T)*;
(¢) nullT = (range T*)l;

d) range T = (null T*)".
| (@ rangeT = ( )

Proof We begin by proving (a). Let w € W. Then
wemnlT" = T*w=0
= (v,T*w)=0forallve V
= (To,w) =0forallv eV
= w € (range T)*.

Thus null T* = (range T)*, proving (a).

If we take the orthogonal complement of both sides of (a), we get (d), where
we have used 6.52. Replacing T with T* in (a) gives (c), where we have used
7.5(c). Finally, replacing T with T* in (d) gives (b).

As we will soon see, the next definition is intimately connected to the matrix
of the adjoint of a linear map.

~

7.7 definition: conjugate transpose, A*

The conjugate transpose of an m-by-n matrix A is the n-by-m matrix A*
obtained by interchanging the rows and columns and then taking the complex
conjugate of each entry. In other words, if j € {1,...,n} and k € {1,...,m},
then

(A*); = Ay

- J

| 7.8 example: conjugate transpose of a 2-by-3 matrix |

The conjugate transpose of the 2-by-3 If @ matrix A has only real entries,

matrix ( 2 3+4i 7' ) is the 3-by-2 then A* = A, where A' denotes the
) 6 5 8i transpose of A (the matrix obtained
matrix ” 6 by interchanging the rows and the
. columns).
3—-4i 5
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The next result shows how to compute 7y, djoint of a linear map does not
the matrix of T* from the matrix of T. depend on a choice of basis. Thus
Caution: With respect to nonorthonor- .o frequently emphasize adjoints of
mal bases, the matrix Of T* dOGS not nec- linear maps instead of transposes or

essarily equal the conjugate transpose of  conjugate transposes of matrices.
the matrix of T.

N

(- . . .
7.9 matrix of T* equals conjugate transpose of matrix of T

Let T € £(V,W). Suppose ey, ...,e, is an orthonormal basis of V and
fis s fyu is an orthonormal basis of W. Then M (T, (fy, ..., ), (€1, --s€,))
is the conjugate transpose of M(T, (€15 -+2€y)5 (f1seees fm)). In other words,

M(T*) = (M)
L (1) = (2r(1) )
Proof In this proof, we will write M (T) and M (T*) instead of the longer
expressions M (T, (eq, ....€,)s (fises frn)) @a0d (T (f1, oy fin)s (€1, oes€)))-
Recall that we obtain the k™ column of M (T) by writing Te, as a linear
combination of the f]»’s; the scalars used in this linear combination then become

the k™ column of M (T). Because fi» .- [ is an orthonormal basis of W, we
know how to write Te, as a linear combination of the f;’s [see 6.30(a)]:

Te, = (Tey, f1) f1 + -+ + (Tey, fin) fiu-
Thus
the entry in row j, column k, of M (T) is (Tey, f]-).

In the statement above, replace T with T* and interchange e, ...,e, and
fi»+++s fin- This shows that the entry in row j, column k, of M (T*) is (T*f¢;),

which equals (f;, Te;), which equals (Te;, fi), which equals the complex conjugate
of the entry in row k, column j, of M (T). Thus M (T*) = (]V[(T))*.

The Riesz representation theorem as stated in 6.58 provides an identification of
V with its dual space V' defined in 3.110. Under this identification, the orthogonal
complement Ut ofasubsetU CV corresponds to the annihilator Ulof U. IfU
is a subspace of V, then the formulas for the dimensions of U+ and U° become
identical under this identification—see 3.125 and 6.51.

Suppose T: V' — Wis alinear map. ., orthogonal complements and
Under the identification of V with V" and adjoints are easier to deal with than
the identification of W with W', the ad-  guninilators and dual maps, there is
joint map T*: W — V corresponds 0 o need to work with annihilators
the dual map T': W' — V' defined in  and dual maps in the context of inner
3.118, as Exercise 32 asks you to verify.  product spaces.

Under this identification, the formulas for

null T* and range T* [7.6(a) and (b)] then become identical to the formulas for
null T’ and range T’ [3.128(a) and 3.130(b)]. Furthermore, the theorem about the
matrix of T* (7.9) is analogous to the theorem about the matrix of T’ (3.132).
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Self-Adjoint Operators

Now we switch our attention to operators on inner product spaces. Instead of
considering linear maps from V to W, we will focus on linear maps from V to V;
recall that such linear maps are called operators.

(7.10 definition: self-adjoint w
LAn operator T € £(V) is called self-adjoint if T = T*. )

IfT € £(V) and ey, ..., e, is an orthonormal basis of V, then T is self-adjoint
if and only if M (T, (ey, ...,e,)) = M (T, (e;, ...,en))*, as follows from 7.9.

| 7.11 example: determining whether T is self-adjoint from its matrix |

Suppose ¢ € F and T is the operator on F> whose matrix (with respect to the

standard basis) is )
c
wn=(2 5
The matrix of T* (with respect to the standard basis) is
2 3
*) _
2(T*) = ( 23 ) .

Thus M (T) = M (T*) if and only if ¢ = 3. Hence the operator T is self-adjoint
if and only if ¢ = 3.

A good analogy to keep in mind is that the adjoint on £ (V') plays a role similar
to that of the complex conjugate on C. A complex number z is real if and only if
z = z; thus a self-adjoint operator (T = T*) is analogous to a real number.

We. will see thé.lt the ane.llogy discussed 4, operator T € (V) is self-adjoint
ab(?ve is reﬂecte.d in some 1mportanF PrOP~ it and only if
erties of self-adjoint operators, beginning
with eigenvalues in the next result.

If F = R, then by definition every  forall v,w € V.
eigenvalue is real, so the next result is
interesting only when F = C.

(To,w) = (v, Tw)

(7.1 2 eigenvalues of self-adjoint operators W

kEvery eigenvalue of a self-adjoint operator is real. J

Proof Suppose T is a self-adjoint operator on V. Let A be an eigenvalue of T,
and let v be a nonzero vector in V such that Tv = Av. Then

Mol = (Av,v) = (To,v) = (v, Tv) = (v, Av) = A|v|%

Thus A = A, which means that A is real, as desired.
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The next result is false for real inner product spaces. As an example, consider
the operator T € £(R?) that is a counterclockwise rotation of 90° around the
origin; thus T'(x,y) = (—y, x). Notice that Tv is orthogonal to v for every v € R2
even though T # 0.

(7.13 Tov is orthogonal to v forallv < T = 0 (assuming F = C)

Suppose V is a complex inner product space and T € £(V). Then

(Tv,v) =0foreveryv eV < T =0.

Proof If u,w € V, then

(T +w),u+w)—(Tu—w),u—w)
- 4

. (T (u + iw), u + iw) — (T (u — iw), u — iw) ;

1 )

as can be verified by computing the right side. Note that each term on the right
side is of the form (T, v) for appropriate v € V.

Now suppose (Tv,v) = 0 for every v € V. Then the equation above implies
that (Tu,w) = 0 for all u,w € V, which then implies that Tu = 0 forevery u € V
(take w = Tu). Hence T = 0, as desired.

(Tu,w)

The next result is false for reall lm_ler The next result provides another good
product spaces, as shown by considering example of how self-adjoint operators
any operator on areal inner product space  pepave like real numbers.
that is not self-adjoint.

(7.14 (Tv,v) is real for all v < T is self-adjoint (assuming F = C)

Suppose V is a complex inner product space and T € £(V). Then

T is self-adjoint < (Tv,v) € R foreveryv € V.

Proof Ifv € V, then
7.15 (T*v,v) = (v, T*0) = (To, v).
Now
T is self-adjoint < T —-T* =0
= ((T-T*)v,v)=0foreveryv eV
= (Tv,v) — (To,v) = 0 foreveryv € V
< (Tov,v) € R foreveryv € V,
where the second equivalence follows from 7.13 as applied to T — T* and the

third equivalence follows from 7.15.
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On a real inner product space V, a nonzero operator T might satisfy (Tv,v) = 0
for all v € V. However, the next result shows that this cannot happen for a self-
adjoint operator.

(7.16 T self-adjoint and (IT'v,v) = 0forallv < T =0

Suppose T is a self-adjoint operator on V. Then

(Tv,v) =0foreveryv eV < T =0.

Proof We have already proved this (without the hypothesis that T is self-adjoint)

when V is a complex inner product space (see 7.13). Thus we can assume that V

is a real inner product space. If u,w € V, then
(Tu+w),u+wy—(Tu—w),u—w)

717 (Tu,w) = n s

as can be proved by computing the right side using the equation

(Tw,u) = (w, Tu) = (Tu, w),

where the first equality holds because T is self-adjoint and the second equality
holds because we are working in a real inner product space.

Now suppose (Tv,v) = 0 for every v € V. Because each term on the right
side of 7.17 is of the form (Tv, v) for appropriate v, this implies that (Tu,w) = 0
for all u,w € V. This implies that Tu = 0 for every u € V (take w = Tu). Hence
T = 0, as desired.

Normal Operators

7.18 definition: normal

e An operator on an inner product space is called normal if it commutes with
its adjoint.

e In other words, T € £(V) is normal if TT* = T*T.

Every self-adjoint operator is normal, because if T is self-adjoint then T* = T
and hence T commutes with T*,

7.19 example: an operator that is normal but not self-adjoint |

Let T be the operator on F> whose matrix (with respect to the standard basis)

(57)

Thus T(w,z) = Qw — 3z, 3w + 2z).

is
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This operator T is not self-adjoint because the entry in row 2, column 1 (which
equals 3) does not equal the complex conjugate of the entry in row 1, column 2
(which equals —3).

The matrix of TT* equals

2 =3 2 3 . 13 0
(3 5 )( _3 2), whlchequals( 0 13 )

Similarly, the matrix of T*T equals

2 3 2 -3 , 13 0
(_3 N )( 3 9 ), whlchequals( 0 13 )

Because TT* and T*T have the same matrix, we see that TT* = T*T. Thus T is
normal.

In the next section we will see why normal operators are worthy of special
attention. The next result provides a useful characterization of normal operators.

7.20 T is normal if and only if Tv and T*v have the same norm

Suppose T € £(V). Then

Tisnormal < |Tv| = ||T*v| for every v € V.

Proof We have
Tisnormal < T*T —TT* =0

= {((T*T — TT*)v,v) =0foreveryv € V
= (T*Tv,v) = (TT*v,v) foreveryv € V
= (Tv,Tvy = (T*v, T*v) foreveryv € V
= |T|? = ||T>“v||2 foreveryv € V
= ||Tv|| = |T*v| for every v € V,

where we used 7.16 to establish the second equivalence (note that the operator

T*T — TT* is self-adjoint).

The next result presents several consequences of the result above. Compare
(e) of the next result to Exercise 3. That exercise states that the eigenvalues of
the adjoint of each operator are equal (as a set) to the complex conjugates of
the eigenvalues of the operator. The exercise says nothing about eigenvectors,
because an operator and its adjoint may have different eigenvectors. However,
(e) of the next result implies that a normal operator and its adjoint have the same
eigenvectors.
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“

7.21  range, null space, and eigenvectors of a normal operator

Suppose T € £(V) is normal. Then
(a) null T = null T*;

(b) range T = range T*;

(¢) V=nullT @ range T;

(d) T — Al is normal for every A € F;

\(e) ifv € Vand A € F, then Tv = Av if and only if T*v = Ao.

Proof

(@)

(b)

(©

(d)

(e

Suppose v € V. Then
vemllT < [Tv|=0 < |T*| =0 < ve&nullT*

where the middle equivalence above follows from 7.20. Thus null T = null T*,

We have
range T = (null T*)l = (null T)* = range T*,

where the first equality comes from 7.6(d), the second equality comes from
(a) in this result, and the third equality comes from 7.6(b).

We have
V=mulT)® (nullT)* = null T @ range T* = null T @ range T,

where the first equality comes from 6.49, the second equality comes from
7.6(b), and the third equality comes from (b) in this result.

Suppose A € F. Then
(T — AD(T — AD)* = (T — A (T* — AI)
= TT* = AT — AT* + |API
= T*T — AT — AT* + |AP]
= (T* — AI)(T — AI)
= (T — AD)*(T — Al).

Thus T — AI commutes with its adjoint. Hence T — Al is normal.

Suppose v € V and A € F. Then (d) and 7.20 imply that
I(T — AD)oll = |(T — AD*o|| = ||(T* = AI) 9.

Thus |(T — AI)v|| = 0 if and only if [(T* = AI)o| = 0. Hence To = Av if
and only if T*v = Av.
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Because every self-adjoint operator is normal, the next result applies in partic-
ular to self-adjoint operators.

(7.22 orthogonal eigenvectors for normal operators W

Suppose T € £(V) is normal. Then eigenvectors of T corresponding to
distinct eigenvalues are orthogonal.

Proof  Suppose a, f are distinct eigenvalues of T, with corresponding eigen-
vectors u,v. Thus Tu = au and Tv = Bv. From 7.21(e) we have T*v = fSo.
Thus

(@ — B)(u,v) = (au,v) — (u, Bv}
= (Tu,v) — (u, T*0v)
=0.

Because &« # f, the equation above implies that (u,v) = 0. Thus u and v are
orthogonal, as desired.

As stated here, the next result makes sense only when F = C. However, see
Exercise 12 for a version that makes sense when F = C and when F = R.

Suppose F = Cand T € £(V). Under the analogy between £(V) and C,
with the adjoint on £ (V') playing a similar role to that of the complex conjugate on
C, the operators A and B as defined by 7.24 correspond to the real and imaginary
parts of T. Thus the informal title of the result below should make sense.

(7.23 T is normal < the real and imaginary parts of T commute w

Suppose F = Cand T € £(V). Then T is normal if and only if there exist
commuting self-adjoint operators A and B such that T = A + iB.

Proof First suppose T is normal. Let

T+T* T-T*
7.24 A= and B = —.
2i
Then A and B are self-adjoint and T = A + iB. A quick computation shows that
T*T —TT*
7.25 AB — BA = —2i .

Because T is normal, the right side of the equation above equals 0. Thus the
operators A and B commute, as desired.

To prove the implication in the other direction, now suppose there exist com-
muting self-adjoint operators A and B such that T = A + iB. Then T* = A — iB.
Adding the last two equations and then dividing by 2 produces the equation for A
in 7.24. Subtracting the last two equations and then dividing by 2i produces the
equation for B in 7.24. Now 7.24 implies 7.25. Because B and A commute, 7.25
implies that T is normal, as desired.
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Exercises 7A

1

10

Suppose 7 is a positive integer. Define T € £(F") by
T(zqy.002y) = (0,29, .00,2, 1)
Find a formula for T*(z4, ..., z,,).
Suppose T € £(V, W). Prove that
T=0 = T"=0 = T"T=0 < TT* =0.

Suppose T € £(V) and A € F. Prove that

Ais an eigenvalue of T < A is an eigenvalue of T*.
Suppose T € £(V) and U is a subspace of V. Prove that

U is invariant under T < U" is invariant under T*

Suppose T € £(V, W). Suppose ey, ..., €, is an orthonormal basis of V and
fi s f, is an orthonormal basis of W. Prove that

ITeyll? + -+ + I Te,l? = [T + - + [T* %

The numbers IITelllz, ey ||Ten||2 in the equation above depend on the ortho-
normal basis eq, ..., e, but the right side of the equation does not depend on
€1, ...,¢,. Thus the equation above shows that the sum on the left side does
not depend on which orthonormal basis e, ..., e, is used.

Suppose T € £(V, W). Prove that
(a) Tisinjective < T™* is surjective;
(b) Tis surjective < T™ is injective.

Prove that if T € £(V, W), then
(a) dimnull T* = dimnull T + dim W — dim V;
(b) dimrange T* = dimrange T.

Suppose A is an m-by-n matrix with entries in F. Use (b) in Exercise 7 to
prove that the row rank of A equals the column rank of A.

This exercise asks for yet another alternative proof of a result that was
previously proved in 3.57 and 3.133.

Prove that the product of two self-adjoint operators on V is self-adjoint if
and only if the two operators commute.

Suppose F = Cand T € £(V). Prove that T is self-adjoint if and only if
(Tv,v) = (T*v,v)

forallv € V.
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11

12

13

14

15

16

17

18
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Define an operator S: F? — F? by S(w,z) = (—z,w).

(a) Find a formula for S*.
(b) Show that S is normal but not self-adjoint.
(c) Find all eigenvalues of S.

If F = R, then S is the operator on R? of counterclockwise rotation by 90°.
An operator B € £(V) is called skew if
B* = —B.

Suppose that T € £(V). Prove that T is normal if and only if there exist
commuting operators A and B such that A is self-adjoint, B is a skew operator,
andT = A +B.

Suppose F = R. Define A € £(£(V)) by AT = T* forall T € £(V).

(a) Find all eigenvalues of A.
(b) Find the minimal polynomial of 4.

Define an inner product on 7, (R) by (p,q) = fol pq. Define an operator
T e 5(5"2(R)) by
T(ax? + bx + ¢) = bx.

(a) Show that with this inner product, the operator T is not self-adjoint.
(b) The matrix of T with respect to the basis 1, x, X2 is

0 0O

010

0 0O
This matrix equals its conjugate transpose, even though T is not self-
adjoint. Explain why this is not a contradiction.

Suppose T € £(V) is invertible. Prove that
(a) Tis self-adjoint < T~!is self-adjoint;
(b) Tisnormal < T~!isnormal.

Suppose F = R.

(a) Show that the set of self-adjoint operators on V is a subspace of £(V).
(b) What is the dimension of the subspace of £(V) in (a) [in terms of
dim V]?

Suppose F = C. Show that the set of self-adjoint operators on V is not a
subspace of £ (V).

Suppose dim V > 2. Show that the set of normal operators on V is not a
subspace of £(V).
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Suppose T € £(V) and |T*v| < |Tvll for every v € V. Prove that T is
normal.

This exercise fails on infinite-dimensional inner product spaces, leading to
what are called hyponormal operators, which have a well-developed theory.

Suppose P € £(V) is such that P> = P. Prove that the following are
equivalent.

(a) P is self-adjoint.

(b) P is normal.

(c) There is a subspace U of V such that P = P,;.

Suppose D: Pg(R) — Pg(R) is the differentiation operator defined by
Dp = p’ Prove that there does not exist an inner product on Fg(R) that
makes D a normal operator.

Give an example of an operator T € £ (R3) such that T is normal but not
self-adjoint.

Suppose T is a normal operator on V. Suppose also that v, w € V satisfy the
equations
loll = llwl =2, Tv=23v, Tw=4w.

Show that ||T (v + w) || = 10.
Suppose T € £(V) and
Ay + 112z + Ayz% + - +a,, zZ" 71 + 2™
is the minimal polynomial of T. Prove that the minimal polynomial of T* is

do+01Z+0yz% + -+, 12" L +2m

This exercise shows that the minimal polynomial of T* equals the minimal
polynomial of T if F = R.

Suppose T € £(V). Prove that T is diagonalizable if and only if T* is
diagonalizable.

Fixu,x € V. Define T € £(V) by Tv = (v,u)x forevery v € V.

(a) Prove that if V is a real vector space, then T is self-adjoint if and only if
the list u, x is linearly dependent.
(b) Prove that T is normal if and only if the list u, x is linearly dependent.

Suppose T € £(V) is normal. Prove that
null T = null T and range T = range T
for every positive integer k.

Suppose T € £(V) is normal. Prove that if A &€ F, then the minimal
polynomial of T is not a polynomial multiple of (x — A)2.
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Prove or give a counterexample: If T € £(V) and there is an orthonormal
basis ey, ...,e,, of V such that ||Te,|| = ||T*¢|| for each k = 1, ..., n, then T is
normal.

Suppose that T € £(F°) is normal and T(1,1,1) = (2,2,2). Suppose
(2z1,29,23) € null T. Prove that z; + z, + z3 = 0.

Fix a positive integer n. In the inner product space of continuous real-valued
functions on [—7t, 7r] with inner product (f,¢) = [”_fg, let

V = span(1, cos x, cos 2x, ..., cos nx, sin x, sin 2x, ..., sin nx).

(a) Define D € £(V) by Df = f'. Show that D* = —D. Conclude that D
is normal but not self-adjoint.
(b) Define T € £(V) by Tf = f". Show that T is self-adjoint.

Suppose T: V — W is a linear map. Show that under the standard identifica-
tion of V with V' (see 6.58) and the corresponding identification of W with
W', the adjoint map T*: W — V corresponds to the dual map T’: W' — V',
More precisely, show that

T Pw) = P

for all w € W, where ¢, and @+, are defined as in 6.58.
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7B Spectral Theorem

Recall that a diagonal matrix is a square matrix that is 0 everywhere except
possibly on the diagonal. Recall that an operator on V is called diagonalizable if
the operator has a diagonal matrix with respect to some basis of V. Recall also
that this happens if and only if there is a basis of V consisting of eigenvectors of
the operator (see 5.55).

The nicest operators on V are those for which there is an orthonormal basis
of V with respect to which the operator has a diagonal matrix. These are precisely
the operators T € £(V) such that there is an orthonormal basis of V consisting
of eigenvectors of T. Our goal in this section is to prove the spectral theorem,
which characterizes these operators as the self-adjoint operators when F = R and
as the normal operators when F = C.

The spectral theorem is probably the most useful tool in the study of operators
on inner product spaces. Its extension to certain infinite-dimensional inner product
spaces (see, for example, Section 10D of the author’s book Measure, Integration
& Real Analysis) plays a key role in functional analysis.

Because the conclusion of the spectral theorem depends on F, we will break
the spectral theorem into two pieces, called the real spectral theorem and the
complex spectral theorem.

Real Spectral Theorem

To prove the real spectral theorem, we will need two preliminary results. These
preliminary results hold on both real and complex inner product spaces, but they
are not needed for the proof of the complex spectral theorem.

You could guess that the nextresultis 7. . ompleting-the-square technique
true and even discover its proof by think- ... pe wsed to derive the quadratic
ing about quadratic polynomials with  £pylq.
real coefficients. Specifically, suppose
b,c € R and b? < 4c. Let x be a real number. Then

) b\2 b2
x +bx+c=(x+§> +<C_Z)>O'

In particular, x> + bx + c is an invertible real number (a convoluted way of saying
that it is not 0). Replacing the real number x with a self-adjoint operator (recall the
analogy between real numbers and self-adjoint operators) leads to the next result.

; )

7.26 invertible quadratic expressions

Suppose T € £(V) is self-adjoint and b, c € R are such that b*> < 4c. Then

T2 + bT + cI

is an invertible operator.
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Proof Let v be a nonzero vector in V. Then
((T? + bT + cl)v,v) = (T?v,v) + b(Tv,v) + c(0,0)
= (Tv, Tv) + b(Tv,v) + c||v|?
> || Tol® — bl 1Tl o]l + cllol?
= (iron - W)z #(e- bzz) ol
>0,

where the third line above holds by the Cauchy—Schwarz inequality (6.14). The
last inequality implies that (T? + bT + cI)v # 0. Thus T? + bT + cI is injective,
which implies that it is invertible (see 3.65).

The next result will be a key tool in our proof of the real spectral theorem.

(7.27 minimal polynomial of self-adjoint operator W

Suppose T € £(V) is self-adjoint. Then the minimal polynomial of T equals
(z—Ay)--(z = A,,) for some Aq,..., A, €R.

Proof First suppose F = C. The zeros of the minimal polynomial of T are the
eigenvalues of T [by 5.27(a)]. All eigenvalues of T are real (by 7.12). Thus the
second version of the fundamental theorem of algebra (see 4.13) tells us that the
minimal polynomial of T has the desired form.

Now suppose F = R. By the factorization of a polynomial over R (see 4.16)
there exist A,, ..., A,, € R and by, ..., by, ¢, ..., cy € R with b? < 4c, for each k
such that the minimal polynomial of T equals

7.28 (z= A (z=A,) (2% + bz + 1) (2% + byz + oy );

here either m or N might equal 0, meaning that there are no terms of the corre-
sponding form. Now

(T = ALy (T = Ay 1) (T2 + by T + ;1) (T2 + by T + cyyl) = 0.

If N > 0, then we could multiply both sides of the equation above on the right by
the inverse of T2 + by T + ¢yl (which is an invertible operator by 7.26) to obtain a
polynomial expression of T that equals 0. The corresponding polynomial would
have degree two less than the degree of 7.28, violating the minimality of the
degree of the polynomial with this property. Thus we must have N = 0, which
means that the minimal polynomial in 7.28 has the form (z — A;)---(z — A,,), as
desired.

The result above along with 5.27(a) implies that every self-adjoint operator
has an eigenvalue. In fact, as we will see in the next result, self-adjoint operators
have enough eigenvectors to form a basis.
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The next result, which gives a complete description of the self-adjoint operators
on a real inner product space, is one of the major theorems in linear algebra.

/7.29 real spectral theorem h
Suppose F = R and T € £(V). Then the following are equivalent.
(a) T is self-adjoint.
(b) T has a diagonal matrix with respect to some orthonormal basis of V.
\(c) V has an orthonormal basis consisting of eigenvectors of T. )

Proof  First suppose (a) holds, so T is self-adjoint. Our results on minimal poly-
nomials, specifically 6.37 and 7.27, imply that T has an upper-triangular matrix
with respect to some orthonormal basis of V. With respect to this orthonormal
basis, the matrix of T* is the transpose of the matrix of T. However, T* = T.
Thus the transpose of the matrix of T equals the matrix of T. Because the matrix
of T is upper-triangular, this means that all entries of the matrix above and below
the diagonal are 0. Hence the matrix of T is a diagonal matrix with respect to the
orthonormal basis. Thus (a) implies (b).

Conversely, now suppose (b) holds, so T has a diagonal matrix with respect to
some orthonormal basis of V. That diagonal matrix equals its transpose. Thus
with respect to that basis, the matrix of T* equals the matrix of T. Hence T* = T,
proving that (b) implies (a).

The equivalence of (b) and (c) follows from the definitions [or see the proof
that (a) and (b) are equivalent in 5.55].

| 7.30 example: an orthonormal basis of eigenvectors for an operator

Consider the operator T on R® whose matrix (with respect to the standard
basis) is

14 -13 8
-13 14 8
8 8 -7

This matrix with real entries equals its transpose; thus T is self-adjoint. As you
can verify,
1,-1,0 @,1,1) 1,1,-2)
V2. VBT Ve
is an orthonormal basis of R® consisting of eigenvectors of T. With respect to
this basis, the matrix of T is the diagonal matrix

27 0 0
0 9 0
0 0 -15

See Exercise 17 for a version of the real spectral theorem that applies simulta-
neously to more than one operator.
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Complex Spectral Theorem

The next result gives a complete description of the normal operators on a complex
inner product space.

/7.31 complex spectral theorem )

Suppose F = Cand T € £(V). Then the following are equivalent.
(a) T is normal.

(b) T has a diagonal matrix with respect to some orthonormal basis of V.

\(c) V has an orthonormal basis consisting of eigenvectors of T. )
Proof  First suppose (a) holds, so T is normal. By Schur’s theorem (6.38), there is
an orthonormal basis ey, ..., e, of V with respect to which T has an upper-triangular
matrix. Thus we can write

Ar o Mp
7.32 M(T, (eq,....e,)) = DR
0 ay 4y
We will show that this matrix is actually a diagonal matrix.

We see from the matrix above that
||T6’1||2 = |a1,1|2,
2
[T eq||” = lay 11* + lag o + - + lay_,[%

Because T is normal, || Te, || = | T*¢, || (see 7.20). Thus the two equations above
imply that all entries in the first row of the matrix in 7.32, except possibly the first
entry a, 1, equal 0.

Now 7.32 implies

I Teyll* = lay ol

(because a; , = 0, as we showed in the paragraph above) and
2
[T e||” = laz o + la 51 + - + lap %

Because T is normal, | Te,|| = | T*e,||. Thus the two equations above imply that
all entries in the second row of the matrix in 7.32, except possibly the diagonal
entry a, ,, equal 0.

Continuing in this fashion, we see that all nondiagonal entries in the matrix
7.32 equal 0. Thus (b) holds, completing the proof that (a) implies (b).

Now suppose (b) holds, so T has a diagonal matrix with respect to some
orthonormal basis of V. The matrix of T* (with respect to the same basis) is
obtained by taking the conjugate transpose of the matrix of T; hence T* also has a
diagonal matrix. Any two diagonal matrices commute; thus T commutes with T,
which means that T is normal. In other words, (a) holds, completing the proof
that (b) implies (a).

The equivalence of (b) and (c) follows from the definitions (also see 5.55).
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See Exercises 13 and 20 for alternative proofs that (a) implies (b) in the
previous result.

Exercises 14 and 15 interpret the real spectral theorem and the complex
spectral theorem by expressing the domain space as an orthogonal direct sum of
eigenspaces.

See Exercise 16 for a version of the complex spectral theorem that applies
simultaneously to more than one operator.

The main conclusion of the complex spectral theorem is that every normal
operator on a complex finite-dimensional inner product space is diagonalizable
by an orthonormal basis, as illustrated by the next example.

7.33 example: an orthonormal basis of eigenvectors for an operator

Consider the operator T € £(C?) defined by T (w,z) = 2w — 3z, 3w + 2z).
The matrix of T (with respect to the standard basis) is

(372)

As we saw in Example 7.19, T is a normal operator.
As you can verify,

1 . 1 .
72(1’ 1)9 \/_E(_l’ 1)

is an orthonormal basis of C? consisting of eigenvectors of T, and with respect to
this basis the matrix of T is the diagonal matrix

2+3i 0
0 2-3i )7

Exercises 7B

1 Prove that a normal operator on a complex inner product space is self-adjoint
if and only if all its eigenvalues are real.

This exercise strengthens the analogy (for normal operators) between self-
adjoint operators and real numbers.

2 Suppose F = C. Suppose T € £(V) is normal and has only one eigenvalue.
Prove that T is a scalar multiple of the identity operator.

3 Suppose F = Cand T € £(V) is normal. Prove that the set of eigenvalues
of T is contained in {0, 1} if and only if there is a subspace U of V such that
T = Pu.

4 Prove that a normal operator on a complex inner product space is skew
(meaning it equals the negative of its adjoint) if and only if all its eigenvalues
are purely imaginary (meaning that they have real part equal to 0).
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Prove or give a counterexample: If T € £(C?) is a diagonalizable operator,
then T is normal (with respect to the usual inner product).

Suppose V is a complex inner product space and T € £(V) is a normal
operator such that T° = T8, Prove that T is self-adjoint and T? = T.

Give an example of an operator T on a complex vector space such that
T =T8but T? # T.

Suppose F = Cand T € £(V). Prove that T is normal if and only if every
eigenvector of T is also an eigenvector of T*,

Suppose F = C and T € £(V). Prove that T is normal if and only if there
exists a polynomial p € P(C) such that T* = p(T).

Suppose V is a complex inner product space. Prove that every normal
operator on V has a square root.

An operator S € L(V) is called a square root of T € £L(V) if S> = T. We
will discuss more about square roots of operators in Sections 7C and 8C.

Prove that every self-adjoint operator on V has a cube root.
An operator S € £(V) is called a cube root of T € L(V) if S =T.

Suppose V' is a complex vector space and T € £(V) is normal. Prove that
if S is an operator on V that commutes with T, then S commutes with T%,

The result in this exercise is called Fuglede’s theorem.

Without using the complex spectral theorem, use the version of Schur’s
theorem that applies to two commuting operators (take & = {T,T*} in
Exercise 20 in Section 6B) to give a different proof that if F = C and
T € £(V) is normal, then T has a diagonal matrix with respect to some
orthonormal basis of V.

Suppose F = R and T € £(V). Prove that T is self-adjoint if and only
if all pairs of eigenvectors corresponding to distinct eigenvalues of T are
orthogonal and V = E(A4,T) & ---® E(A,,,, T), where A4, ..., A,, denote the
distinct eigenvalues of T.

Suppose F = Cand T € £(V). Prove that T is normal if and only if all pairs
of eigenvectors corresponding to distinct eigenvalues of T are orthogonal
and V = E(A,T) ® --- ® E(A,,,, T), where A4, ..., A, denote the distinct
eigenvalues of T.

Suppose F = C and & C £(V). Prove that there is an orthonormal basis
of V with respect to which every element of & has a diagonal matrix if and
only if S and T are commuting normal operators for all S, T € &.

This exercise extends the complex spectral theorem to the context of a
collection of commuting normal operators.
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Suppose F = R and & C £(V). Prove that there is an orthonormal basis
of V with respect to which every element of £ has a diagonal matrix if and
only if S and T are commuting self-adjoint operators for all S, T € &.

This exercise extends the real spectral theorem to the context of a collection
of commuting self-adjoint operators.

Give an example of a real inner product space V, an operator T € £(V),
and real numbers b, ¢ with b? < 4c such that

T? + bT + cI

is not invertible.

This exercise shows that the hypothesis that T is self-adjoint cannot be
deleted in 7.26, even for real vector spaces.

Suppose T € £(V) is self-adjoint and U is a subspace of V that is invariant
under T.

(a) Prove that U+ is invariant under T.

(b) Prove that T|;; € £(U) is self-adjoint.

(c) Prove that T|;. € £(U*) is self-adjoint.

Suppose T € £(V) is normal and U is a subspace of V that is invariant
under T.

(a) Prove that U+ is invariant under T.

(b) Prove that U is invariant under T*,

(c) Prove that (T|,)* = (T*) -

(d) Prove that T|;; € £(U) and T|;. € £(U™) are normal operators.

This exercise can be used to give yet another proof of the complex spectral
theorem (use induction on dim'V and the result that T has an eigenvector).

Suppose that T is a self-adjoint operator on a finite-dimensional inner product
space and that 2 and 3 are the only eigenvalues of T. Prove that

T? —5T + 6l = 0.

Give an example of an operator T € £(C?) such that 2 and 3 are the only
eigenvalues of T and T? — 5T + 61 # 0.

Suppose T € £(V) is self-adjoint, A € F, and € > 0. Suppose there exists
v € V such that ||v]| = 1 and

1Ty — Av|| < €.

Prove that T has an eigenvalue A’ such that [A — | < e.

This exercise shows that for a self-adjoint operator, a number that is close
to satisfying an equation that would make it an eigenvalue is close to an
eigenvalue.

Linear Algebra Done Right, fourth edition, by Sheldon Axler



250

24

25

Chapter 7 Operators on Inner Product Spaces

Suppose U is a finite-dimensional vector space and T € £(U).

(a) Suppose F = R. Prove that T is diagonalizable if and only if there is a
basis of U such that the matrix of T with respect to this basis equals its
transpose.

(b) Suppose F = C. Prove that T is diagonalizable if and only if there is a
basis of U such that the matrix of T with respect to this basis commutes
with its conjugate transpose.

This exercise adds another equivalence to the list of conditions equivalent
to diagonalizability in 5.55.

Suppose that T € £(V) and there is an orthonormal basis ey, ...,e,, of V
consisting of eigenvectors of T, with corresponding eigenvalues A4, ..., A,,.
Show that if k € {1, ..., n}, then the pseudoinverse TT satisfies the equation

1 .
—e. if AL #0,
TTek — /\k
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7C Positive Operators

(7.34 definition: positive operator w

An operator T € £(V) is called positive if T is self-adjoint and
(Tv,v) =0

forallv e V.

If V is a complex vector space, then the requirement that T be self-adjoint can
be dropped from the definition above (by 7.14).

| 7.35 example: positive operators |

(a) Let T € £(F?) be the operator whose matrix (using the standard basis) is
( 3 7). Then Tis self-adjointand (T (w, z), (w, z)) = 2lwl*—2Re(wz) +|z*
= |w — z> + [w|> > 0 for all (w,z) € F?. Thus T is a positive operator.

(b) If Uisasubspace of V, then the orthogonal projection P} is a positive operator,
as you should verify.

(c) IfT € £(V)isself-adjointand b, c € R are such that b> < 4c, then T?+bT+cl
is a positive operator, as shown by the proof of 7.26.

(7.36 definition: square root W

LAn operator R is called a square root of an operator T if R> = T. )

| 7.37 example: square root of an operator |

If T € £(F°) is defined by T(zy,2,,23) = (23,0,0), then the operator
R € £(F?) defined by R(zy,2,,23) = (25,23,0) is a square root of T because
R? =T, as you can verify.

The characterizations of the positive Because positive operators correspond
operators in the next result correspond nonnegative numbers, better termi-
to characterizations of the nonnegative nology would use the term nonnegative
numbers among C. Specifically, a num-  operators. However, operator theorists
ber z € C is nonnegative if and only  consistently call these positive opera-
if it has a nonnegative square root, cor-  tors, so we follow that custom. Some
responding to condition (d). Also, z is  mathematicians use the term positive
nonnegative if and only if it has a real  semidefinite operator, which means
square root, corresponding to condition  the same as positive operator.

(e). Finally, z is nonnegative if and only
if there exists w € C such that z = ww, corresponding to condition (f). See
Exercise 20 for another condition that is equivalent to being a positive operator.
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/7.38 characterizations of positive operators R

Let T € £(V). Then the following are equivalent.

(a) T is a positive operator.
(b) T is self-adjoint and all eigenvalues of T are nonnegative.

(c) With respect to some orthonormal basis of V, the matrix of T is a diagonal
matrix with only nonnegative numbers on the diagonal.

(d) T has a positive square root.
(e) T has a self-adjoint square root.

\(f) T = R*R for some R € £(V).

/

Proof We will prove that (a) = (b) = (c) = (d) = (e) = (f) = (a).

First suppose (a) holds, so that T is positive, which implies that T is self-adjoint
(by definition of positive operator). To prove the other condition in (b), suppose
A is an eigenvalue of T. Let v be an eigenvector of T corresponding to A. Then

0 <(Tv,v) = (Av,v) = A(v, V).

Thus A is a nonnegative number. Hence (b) holds, showing that (a) implies (b).

Now suppose (b) holds, so that T is self-adjoint and all eigenvalues of T are
nonnegative. By the spectral theorem (7.29 and 7.31), there is an orthonormal
basis ey, ..., ¢, of V consisting of eigenvectors of T. Let A4, ..., A,, be the eigenval-
ues of T corresponding to ey, ..., ¢,; thus each A, is a nonnegative number. The
matrix of T with respect to e, ..., e, is the diagonal matrix with A4, ..., A,, on the
diagonal, which shows that (b) implies (c).

Now suppose (c) holds. Suppose e, ..., e, is an orthonormal basis of V such
that the matrix of T with respect to this basis is a diagonal matrix with nonnegative
numbers A4, ..., A, on the diagonal. The linear map lemma (3.4) implies that
there exists R € £(V) such that

Re, = \/)\—kek

for each k = 1,...,n. As you should verify, R is a positive operator. Furthermore,
R?e; = Ae, = Te, for each k, which implies that R> = T. Thus R is a positive
square root of T. Hence (d) holds, which shows that (c) implies (d).

Every positive operator is self-adjoint (by definition of positive operator).
Thus (d) implies (e).

Now suppose (e) holds, meaning that there exists a self-adjoint operator R on
V such that T = R% Then T = R*R (because R* = R). Hence (e) implies (f).

Finally, suppose (f) holds. Let R € £(V) be such that T = R*R. Then
T* = (R*R)" = R*(R*)" = R*R = T. Hence T is self-adjoint. To complete the
proof that (a) holds, note that

(Tv,vy = (R*Ru,v) = (Ro,Rv) >0
for every v € V. Thus T is positive, showing that (f) implies (a).
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Every nonnegative number has a unique nonnegative square root. The next
result shows that positive operators enjoy a similar property.

(7.39 each positive operator has only one positive square root \

@Very positive operator on V has a unique positive square root. J

Proof  Suppose T &€ £L(V) is positive. A positive operator can have infinitely

Suppose v € V is an eigenvector of T. many square roots (although only one
Hence there exists a real number A > 0 of them can be positive). For example,

such that Tv = Av. the identity operator on V has infinitely
Let R be a positive square root of T.  many square roots if dimV > 1.

We will prove that Rv = V/Av. This will
imply that the behavior of R on the eigenvectors of T is uniquely determined.
Because there is a basis of V consisting of eigenvectors of T (by the spectral
theorem), this will imply that R is uniquely determined.

To prove that Rv = V/Av, note that the spectral theorem asserts that there is an
orthonormal basis e, ..., e,, of V consisting of eigenvectors of R. Because R is a
positive operator, all its eigenvalues are nonnegative. Thus there exist nonnegative

numbers Aq, ..., A, such that Re, = \/Ae, foreachk =1,...,n.
Because ey, ..., ¢, is a basis of V, we can write

U= ll1€1 + -+ anen

for some numbers 4y, ...,a,, € F. Thus
Rv =a\/Aeg + - +a,/Ae,.

Av = To = R?v = ayAqey + - +a,A,e,.

Hence

The equation above implies that
a,Aeq + - +a,Ae, =ajAe + - +a,A e,
Thus a, (A — A) = 0foreach k =1, ...,n. Hence

U= Z akek.

(ki A=A}

R’Z] = Z ak\/Xek = \/X'U,

{k: A=Ay

Thus

as desired.

The notation defined below makes sense thanks to the result above.

(7.40 notation: \/T

b:or T a positive operator, VT denotes the unique positive square root of T. J
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7.41 example: square root of positive operators |
Define operators S, T on R? (with the usual Euclidean inner product) by
Sx,y) = (x,2y) and T(x,y) = (x+y,x+V).
Then with respect to the standard basis of R? we have

7.42 M(S):((l) (2)) and M(T):(} 1)

Each of these matrices equals its transpose; thus S and T are self-adjoint.
If (x,y) € R?, then

(S(x,y), (X, 1)) = x% +2y> >0
and
(T(x,y), (x,y)) = x? + 2xy +y2 = (x +]/)2 > 0.

Thus S and T are positive operators.
The standard basis of R? is an orthonormal basis consisting of eigenvectors of
S. Note that

11 1 1
is an orthonormal basis of eigenvectors of T, with eigenvalue 2 for the first
eigenvector and eigenvalue 0 for the second eigenvector. Thus v/T has the same

eigenvectors, with eigenvalues /2 and 0.
You can verify that

1o 5V
M(\@):(O ﬁ) and M(VT) = ; ;

with respect to the standard basis by showing that the squares of the matrices
above are the matrices in 7.42 and that each matrix above is the matrix of a positive
operator.

The statement of the next result does not involve a square root, but the clean
proof makes nice use of the square root of a positive operator.

(7.43 T positive and {Tv,v) =0 = To =0 w

Suppose T is a positive operator on V and v € V is such that (Tv,v) = 0.
Then Tv = 0.

Proof We have
0=«(To,v) = <\/T\/Tv,v> = <ﬁv, \/7"0> = Hﬁv”z

Hence /To = 0. Thus To = \/7"( ﬁv) = 0, as desired.
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Exercises 7C

10

11

12

Suppose T € £(V). Prove that if both T and —T are positive operators, then
T =0.

Suppose T € £(F*) is the operator whose matrix (with respect to the
standard basis) is

o 0 -1 2

Show that T is an invertible positive operator.

Suppose 7 is a positive integer and T € £(F") is the operator whose matrix
(with respect to the standard basis) consists of all 1°’s. Show that T is a
positive operator.

Suppose 7 is an integer with n > 1. Show that there exists an n-by-n matrix
A such that all of the entries of A are positive numbers and A = A*, but the
operator on F” whose matrix (with respect to the standard basis) equals A is
not a positive operator.

Suppose T € £(V) is self-adjoint. Prove that T is a positive operator if and
only if for every orthonormal basis e, ..., e, of V, all entries on the diagonal
of M (T, (ey, ...,e,)) are nonnegative numbers.

Prove that the sum of two positive operators on V is a positive operator.

Suppose S € £(V) is an invertible positive operator and T € £(V) is a
positive operator. Prove that S + T is invertible.

Suppose T € £(V). Prove that T is a positive operator if and only if the
pseudoinverse Ttisa positive operator.

Suppose T € £(V) is a positive operator and S € £(W, V). Prove that
S*TS is a positive operator on W.

Suppose T is a positive operator on V. Suppose v, w € V are such that
Tv=w and Tw =o.
Prove that v = w.

Suppose T is a positive operator on V and U is a subspace of V invariant
under T. Prove that T|;; € £(U) is a positive operator on U.

Suppose T € £(V) is a positive operator. Prove that T* is a positive operator
for every positive integer k.
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Chapter 7 Operators on Inner Product Spaces

Suppose T € £(V) is self-adjoint and &« € R.

(a) Prove that T — al is a positive operator if and only if « is less than or
equal to every eigenvalue of T.

(b) Prove that al — T is a positive operator if and only if « is greater than or
equal to every eigenvalue of T.

Suppose T is a positive operator on V and v4, ...,v,, € V. Prove that

m

Z i <Tvk,v]-> > 0.

j=1k=1
Suppose T € £(V) is self-adjoint. Prove that there exist positive operators
A,B e £(V) such that

T=A-B and vT*T=A+B and AB=BA=0.

Suppose T is a positive operator on V. Prove that

null VT = null T and range VT = range T.

Suppose that T € £(V) is a positive operator. Prove that there exists a
polynomial p with real coefficients such that VT = p(T).

Suppose S and T are positive operators on V. Prove that ST is a positive
operator if and only if S and T commute.

Show that the identity operator on F? has infinitely many self-adjoint square
roots.

Suppose T € £(V) and ¢4, ..., ¢, is an orthonormal basis of V. Prove that T
is a positive operator if and only if there exist vy, ...,v,, € V such that

(Tey, ey = (v, v))

foralljk=1,...,n.

The numbers {(Tek,e])}j c—1._ , are the entries in the matrix of T with
respect to the orthonormal basis e, ..., e,,.

Suppose 7 is a positive integer. The n-by-n Hilbert matrix is the n-by-n
matrix whose entry in row j, column k is ]+k+1 Suppose T € £(V) is an
operator whose matrix with respect to some orthonormal basis of V is the
n-by-n Hilbert matrix. Prove that T is a positive invertible operator.

Example: The 4-by-4 Hilbert matrix is

—_

il= Bl= QI= NI
A= Q= = W=
Ni= Q= Q= =

= W= N
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Suppose T € £(V) is a positive operator and u € V is such that [ul| = 1
and ||[Tul| > ||To| for all v € V with ||v]| = 1. Show that u is an eigenvector
of T corresponding to the largest eigenvalue of T.

For T € £(V) and u,v € V, define (u, v) by (u,v)r = (Tu,v).

(a) Suppose T € £(V). Prove that (-, -)r is an inner product on V if and
only if T is an invertible positive operator (with respect to the original
inner product -, -)).

(b) Prove that every inner product on V is of the form (-, -);- for some positive
invertible operator T &€ £(V).

Suppose S and T are positive operators on V. Prove that
null(S+ T) = nullS N null T.

Let T be the second derivative operator in Exercise 31(b) in Section 7A.
Show that —T is a positive operator.
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7D Isometries, Unitary Operators, and Matrix Factorization

Isometries

Linear maps that preserve norms are sufficiently important to deserve a name.

e )

7.44  definition: isometry

A linear map S € £(V, W) is called an isometry if
1Soll = ol

for every v € V. In other words, a linear map is an isometry if it preserves

\norms. )
If S € L(V,W) is an isometry and The Greek word isos means equal; the
v € Vis such that Sv = 0, then Greek word metron means measure.
ol = 1ISv|l = ||I0] = 0, Thus isometry literally means equal
measure.

which implies that v = 0. Thus every
isometry is injective.

7.45 example: orthonormal basis maps to orthonormal list = isometry

Suppose ey, ..., e, is an orthonormal basis of V and g4, ..., g, is an orthonormal
listin W. Let S € £(V,W) be the linear map such that Se, = g, for each
k =1,...,n. To show that S is an isometry, suppose v € V. Then

7.46 v =(v,ep)e; + - +(v,e,)e,
and

5 2 2
7.47 o> = [<v,e)|” + -+ + [(v,e,)[

where we have used 6.30(b). Applying S to both sides of 7.46 gives
Sv = (v,e;)Se; + -+ + (v,e,)Se,, = (V,e1)gy + - +(V,8,) 8,

Thus

7.48 112 = [0, )| + - + (v, e,) 2.

Comparing 7.47 and 7.48 shows that ||v|| = ||Sv||. Thus S is an isometry.

The next result gives conditions equivalent to being an isometry. The equiv-
alence of (a) and (c) shows that a linear map is an isometry if and only if it
preserves inner products. The equivalence of (a) and (d) shows that a linear map
is an isometry if and only if it maps some orthonormal basis to an orthonormal list.
Thus the isometries given by Example 7.45 include all isometries. Furthermore,
a linear map is an isometry if and only if it maps every orthonormal basis to an
orthonormal list [because whether or not (a) holds does not depend on the basis

€15 s €y ]
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The equivalence of (a) and (e) in the next result shows that a linear map is an
isometry if and only if the columns of its matrix (with respect to any orthonormal
bases) form an orthonormal list. Here we are identifying the columns of an m-by-n
matrix with elements of F and then using the Euclidean inner product on F™.

(< )

7.49 characterizations of isometries

Suppose S € £(V,W). Suppose ¢y, ..., e, is an orthonormal basis of V and
fi, .- fiy is an orthonormal basis of W. Then the following are equivalent.

(a) S isan isometry.

(b) S*S =1

(¢) (Su,Sv) = (u,v) forallu,v € V.

(d) Sey,...,Se, is an orthonormal list in W.

(e) The columns of M (S, (ey, -...e,), (fis .., f,,)) form an orthonormal list
in F”* with respect to the Euclidean inner product. )

Proof  First suppose (a) holds, so S is an isometry. If v € V then
(I —S*S)v,v) = (v,0) — (§*Sv,v) = [[v]* — (Sv, Sv) = |[v|I* — |ISv|* = 0.

Hence the self-adjoint operator I — S*S equals 0 (by 7.16). Thus $*S = I, proving
that (a) implies (b).
Now suppose (b) holds, so S*S = I. If u,v € V then

(Su, Svy = (S*Su,v) = (Iu,v) = (u,v),

proving that (b) implies (c).
Now suppose that (c) holds, so (Su, Sv) = (u,v) for all u,v € V. Thus if
j.k € {1,...,n}, then
(Sej, Sex) = (e, ex).
Hence Sey, ..., Se,, is an orthonormal list in W, proving that (c) implies (d).

Now suppose that (d) holds, so Sey, ..., Se,, is an orthonormal list in W. Let
A =DM(S, (e, .cney)s (f1s s fr))- If k7 € {1, ..., 1}, then

o -— A i 1 ifk=r
7.50 A A, = A fi A, . f;) = (Se, Se,) = ’
j; JE <]; i j; . f]> 56k 5¢r) {0 ifk #r.

The left side of 7.50 is the inner product in F* of columns k and r of A. Thus the
columns of A form an orthonormal list in F””, proving that (d) implies (e).

Now suppose (e) holds, so the columns of the matrix A defined in the paragraph
above form an orthonormal list in F. Then 7.50 shows that Se, ..., Se,, is an
orthonormal list in W. Thus Example 7.45, with Seq, ..., Se,, playing the role of
g1, ---» 8> shows that S is an isometry, proving that (e) implies (a).

See Exercises 1 and 11 for additional conditions that are equivalent to being
an isometry.
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Unitary Operators

In this subsection, we confine our attention to linear maps from a vector space to
itself. In other words, we will be working with operators.

(7.51 definition: unitary operator w

LAn operator S € £(V) is called unitary if S is an invertible isometry. )

As previously noted, every isometry Although the words “unitary” and
is injective. Every injective operator on “isometry” mean the same thing for
a finite-dimensional vector space is in-  operators on finite-dimensional inner
vertible (see 3.65). A standing assump-  product spaces, remember that a uni-
tion for this chapter is that V is a finite- tary operator maps a vector space to
dimensional inner product space. Thus itself, while an isometry maps a vector
we could delete the word “invertible”  space to another (possibly different)
from the definition above without chang-  vector space.
ing the meaning. The unnecessary word
“invertible” has been retained in the definition above for consistency with the
definition readers may encounter when learning about inner product spaces that
are not necessarily finite-dimensional.

7.52 example: rotation of R?

Suppose # € R and S is the operator on F> whose matrix with respect to the

standard basis of F? is
cosf —sinf
sinf cosf )’

The two columns of this matrix form an orthonormal list in F?; hence S is an
isometry [by the equivalence of (a) and (e) in 7.49]. Thus S is a unitary operator.

If F = R, then S is the operator of counterclockwise rotation by 6 radians
around the origin of R2. This observation gives us another way to think about why
S is an isometry, because each rotation around the origin of R? preserves norms.

The next result (7.53) lists several conditions that are equivalent to being a
unitary operator. All the conditions equivalent to being an isometry in 7.49 should
be added to this list. The extra conditions in 7.53 arise because of limiting the
context to linear maps from a vector space to itself. For example, 7.49 shows that
alinear map S € £(V, W) is an isometry if and only if $*S = I, while 7.53 shows
that an operator S € £ (V) is a unitary operator if and only if $*S = SS* = [.

Another difference is that 7.49(d) mentions an orthonormal list, while 7.53(d)
mentions an orthonormal basis. Also, 7.49(e) mentions the columns of M (T),
while 7.53(e) mentions the rows of M (T). Furthermore, M (T) in 7.49(e) is with
respect to an orthonormal basis of V and an orthonormal basis of W, while M (T)
in 7.53(e) is with respect to a single basis of V doing double duty.
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/

7.53 characterizations of unitary operators

N

Suppose S € £(V). Suppose ¢y, ..., e, is an orthonormal basis of V. Then the
following are equivalent.

(a) S is a unitary operator.

(b) S*S=S55" =1

(c) S isinvertible and S~' = S*.

(d) Seq,...,Se, is an orthonormal basis of V.

(e) The rows of M (S, (e, ...,en)) form an orthonormal basis of F” with
respect to the Euclidean inner product.

\(f) S* is a unitary operator.

J

Proof  First suppose (a) holds, so S is a unitary operator. Hence
§*S =1

by the equivalence of (a) and (b) in 7.49. Multiply both sides of this equation by
S~! on the right, getting S* = S~1. Thus S§* = SS~! = I, as desired, proving
that (a) implies (b).

The definitions of invertible and inverse show that (b) implies (c).

Now suppose (c) holds, so S is invertible and S~! = S* Thus 5*S = I. Hence
Seq, ..., Se,, is an orthonormal list in V, by the equivalence of (b) and (d) in 7.49.
The length of this list equals dim V. Thus Sey, ..., Se,, is an orthonormal basis of V,
proving that (c) implies (d).

Now suppose (d) holds, so Sey, ..., Se,, is an orthonormal basis of V. The
equivalence of (a) and (d) in 7.49 shows that S is a unitary operator. Thus

(8%)"s* = 85* =1,

where the last equation holds because we already showed that (a) implies (b) in this
result. The equation above and the equivalence of (a) and (b) in 7.49 show that S*
is an isometry. Thus the columns of M (S*, (e1, .., 0, )) form an orthonormal basis
of F" [by the equivalence of (a) and (e) of 7.49]. The rows of M (S, (ey, ....e,))
are the complex conjugates of the columns of M (S*, (E15eees en)). Thus the rows
of M (S, (ey, ..., e,)) form an orthonormal basis of F”, proving that (d) implies (e).

Now suppose (e) holds. Thus the columns of M (S¥ (e, ...,e,)) form an
orthonormal basis of F”. The equivalence of (a) and (e) in 7.49 shows that S* is
an isometry, proving that (e) implies (f).

Now suppose (f) holds, so S* is a unitary operator. The chain of implications
we have already proved in this result shows that (a) implies (f). Applying this
result to S* shows that (S*)* is a unitary operator, proving that (f) implies (a).

We have shown that (a) = (b) = (¢) = (d) = (e) = (f) = (a), completing the
proof.
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Recall our analogy between C and £(V). Under this analogy, a complex
number z corresponds to an operator S € £(V), and Z corresponds to S*. The
real numbers (z = z) correspond to the self-adjoint operators (S = 5*), and the
nonnegative numbers correspond to the (badly named) positive operators.

Another distinguished subset of C is the unit circle, which consists of the
complex numbers z such that |z| = 1. The condition |z| = 1 is equivalent to the
condition zz = 1. Under our analogy, this corresponds to the condition $*S = I,
which is equivalent to S being a unitary operator. Hence the analogy shows that
the unit circle in C corresponds to the set of unitary operators. In the next two
results, this analogy appears in the eigenvalues of unitary operators. Also see
Exercise 15 for another example of this analogy.

(7.54 eigenvalues of unitary operators have absolute value 1 W

LSuppose A is an eigenvalue of a unitary operator. Then |A| = 1. j

Proof Suppose S € £(V) is a unitary operator and A is an eigenvalue of S. Let
v € V be such that v # 0 and Sv = Av. Then

[Allloll = IA9]l = [|Soll = [0l
Thus |A] = 1, as desired.

The next result characterizes unitary operators on finite-dimensional complex
inner product spaces, using the complex spectral theorem as the main tool.

<

7.55 description of unitary operators on complex inner product spaces

o

Suppose F = Cand S € £(V). Then the following are equivalent.
(a) S is a unitary operator.

(b) There is an orthonormal basis of V consisting of eigenvectors of S whose
corresponding eigenvalues all have absolute value 1. )

Proof Suppose (a) holds, so S is a unitary operator. The equivalence of (a) and
(b) in 7.53 shows that S is normal. Thus the complex spectral theorem (7.31)
shows that there is an orthonormal basis ey, ..., e,, of V consisting of eigenvectors
of S. Every eigenvalue of S has absolute value 1 (by 7.54), completing the proof
that (a) implies (b).

Now suppose (b) holds. Let e, ..., e,, be an orthonormal basis of V consisting
of eigenvectors of S whose corresponding eigenvalues A4, ..., A,, all have absolute
value 1. Then Se, ..., Se,, is also an orthonormal basis of V because

_ 0 ifj#k
(Sej. Sex) = (e, Ayer) = AjAiley.er) = {1 if;‘ — k

forall j,k =1,...,n. Thus the equivalence of (a) and (d) in 7.53 shows that S is
unitary, proving that (b) implies (a).
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OR Factorization

In this subsection, we shift our attention from operators to matrices. This switch
should give you good practice in identifying an operator with a square matrix
(after picking a basis of the vector space on which the operator is defined). You
should also become more comfortable with translating concepts and results back
and forth between the context of operators and the context of square matrices.

When starting with n-by-n matrices instead of operators, unless otherwise
specified assume that the associated operators live on F” (with the Euclidean inner
product) and that their matrices are computed with respect to the standard basis
of F"

We begin by making the following definition, transferring the notion of a
unitary operator to a unitary matrix.

(7.56 definition: unitary matrix W

An n-by-n matrix is called unitary if its columns form an orthonormal list
in F".

In the definition above, we could have replaced “orthonormal list in F"” with
“orthonormal basis of F””” because every orthonormal list of length n in an n-
dimensional inner product space is an orthonormal basis. If S € £(V) and
eq,....e, and fi, ..., f,, are orthonormal bases of V, then S is a unitary operator
if and only if M (S, (ey, ....e,), (fi. .., f,)) is a unitary matrix, as shown by the
equivalence of (a) and (e) in 7.49. Also note that we could also have replaced
“columns” in the definition above with “rows” by using the equivalence between
conditions (a) and (e) in 7.53.

The next result, whose proof will be left as an exercise for the reader, gives
some equivalent conditions for a square matrix to be unitary. In (c), Qv denotes
the matrix product of Q and v, identifying elements of F” with n-by-1 matrices
(sometimes called column vectors). The norm in (c) below is the usual Euclidean
norm on F" that comes from the Euclidean inner product. In (d), Q* denotes
the conjugate transpose of the matrix Q, which corresponds to the adjoint of the
associated operator.

/

7.57 characterizations of unitary matrices

N

Suppose Q is an n-by-n matrix. Then the following are equivalent.

(a) Qis a unitary matrix.
(b) The rows of Q form an orthonormal list in F”.
(©) IQull = |lv|| for every v € F".

(d) Q*Q = QQ* = I, the n-by-n matrix with 1’s on the diagonal and 0’s
\_ elsewhere. )
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The QR factorization stated and proved below is the main tool in the widely
used QR algorithm (not discussed here) for finding good approximations to
eigenvalues and eigenvectors of square matrices. In the result below, if the matrix
A is in F™-", then the matrices Q and R are also in F-",

/7.58 OR factorization )

Suppose A is a square matrix with linearly independent columns. Then there
exist unique matrices Q and R such that Q is unitary, R is upper triangular
with only positive numbers on its diagonal, and

A = QR.
N © J
Proof Letwvy,...,v, denote the columns of A, thought of as elements of F". Apply
the Gram—Schmidt procedure (6.32) to the list vy, ..., v,,, getting an orthonormal
basis ey, ..., e, of F" such that

7.59 span(vq, ..., U;) = span(ey, ..., €;)
for each k = 1, ..., n. Let R be the n-by-n matrix defined by

R]'yk = <Uk9 e]'>$

where R; . denotes the entry in row j, column k of R. If j > k, then ¢; is orthogonal
to span(ey, ..., ;) and hence g is orthogonal to v, (by 7.59). In other words, if
j > k then (v, e;) = 0. Thus R is an upper-triangular matrix.

Let Q be the unitary matrix whose columns are e, ...,¢,. If k € {(1,...,n},
then the k™ column of QR equals a linear combination of the columns of Q, with
the coefficients for the linear combination coming from the k" column of R—see
3.51(a). Hence the k™ column of QR equals

(U, e1)eq + - + (U, ep)ey,

which equals v, [by 6.30(a)], the k™ column of A. Thus A = QR, as desired.

The equations defining the Gram—Schmidt procedure (see 6.32) show that
each v, equals a positive multiple of ¢, plus a linear combination of e, ..., e, _1.
Thus each (v, e;) is a positive number. Hence all entries on the diagonal of R are
positive numbers, as desired.

Finally, to show that Q and R are unique, suppose we also have A = @ Z/i where
a is unitary and Ris upper triangular with only positive numbers on its diagonal.
Letgy, ..., q, denote the columns of @ Thinking of matrix multiplication as above,
we see that each v, is a linear combination of g4, ..., g, with the coefficients coming
from the k™ column of R. This implies that span(v,, ..., v,) = span(gy, ..., ;) and
(U4, g > 0. The uniqueness of the orthonormal lists satisfying these conditions
(see Exercise 10 in Section 6B) now shows that g, = ¢, foreachk =1, ...,n. Hence
@ = Q, which then implies that R=R, completing the proof of uniqueness.
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The proof of the QR factorization shows that the columns of the unitary matrix
can be computed by applying the Gram—Schmidt procedure to the columns of the
matrix to be factored. The next example illustrates the computation of the QR
factorization based on the proof that we just completed.

7.60 example: QR factorization of a 3-by-3 matrix |

To find the QR factorization of the matrix

1 2 1
A= 01 -4 |
0 3 2

follow the proof of 7.58. Thus set v, v,, v5 equal to the columns of A:
01 = (19090)’ 02 = (29 193)9 ’03 = (]-9 _492)‘
Apply the Gram-Schmidt procedure to v;, v,, v3, producing the orthonormal list
— = 1 3 = -8 1
61 - (19090)5 62 - (03 \/E’ \/ﬁ)’ 63 - (09 \/ﬁ’ \/ﬁ).

Still following the proof of 7.58, let Q be the unitary matrix whose columns are
eq,6y, 63

1 0 0
0 = -2
Q= VIO VI0
0o == L
Vo Vo

As in the proof of 7.58, let R be the 3-by-3 matrix whose entry in row j, column k
is (vy, ej)s which gives

1 2 1
V10
R=| 0 Vi0o %°
7V10
0 0 =

Note that R is indeed an upper-triangular matrix with only positive numbers on
the diagonal, as required by the QR factorization.

Now matrix multiplication can verify that A = QR is the desired factorization
of A:

1 0 0 1 2 1
1 2 1
1 3
R=| % 7% " || 0 VI B |=lo01 -4 =4
3 03 2
V10

1 7,10
5

Thus A = QR, as expected.

The QR factorization will be the major tool used in the proof of the Cholesky
factorization (7.63) in the next subsection. For another nice application of the QR
factorization, see the proof of Hadamard’s inequality (9.66).
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If a QR factorization is available, then it can be used to solve a corresponding
system of linear equations without using Gaussian elimination. Specifically,
suppose A is an n-by-n square matrix with linearly independent columns. Suppose
that b € F" and we want to solve the equation Ax = b for x = (x4, ...,x,) € F"
(as usual, we are identifying elements of F” with n-by-1 column vectors).

Suppose A = QR, where Q is unitary and R is upper triangular with only
positive numbers on its diagonal (Q and R are computable from A using just the
Gram-Schmidt procedure, as shown in the proof of 7.58). The equation Ax = b is
equivalent to the equation QRx = b. Multiplying both sides of this last equation
by Q* on the left and using 7.57(d) gives the equation

Rx = Q*b.

The matrix Q* is the conjugate transpose of the matrix Q. Thus computing
Q*Db is straightforward. Because R is an upper-triangular matrix with positive
numbers on its diagonal, the system of linear equations represented by the equation

above can quickly be solved by first solving for x,,, then for x,, _;, and so on.

Cholesky Factorization

We begin this subsection with a characterization of positive invertible operators
in terms of inner products.

(7.61 positive invertible operator w

A self-adjoint operator T € £(V) is a positive invertible operator if and only
if (Tv,v) > 0 for every nonzero v € V.

Proof  First suppose T is a positive invertible operator. If v € V and v # 0, then
because T is invertible we have Tv # 0. This implies that (Tv,v) # 0 (by 7.43).
Hence (Tv,v) > 0.

To prove the implication in the other direction, suppose now that (Tv,v) > 0
for every nonzero v € V. Thus Tv # 0 for every nonzero v € V. Hence T is
injective. Thus T is invertible, as desired.

The next definition transfers the result above to the language of matrices. Here
we are using the usual Euclidean inner product on F” and identifying elements of
F" with n-by-1 column vectors.

/7.62 definition: positive definite R
A matrix B € F*" is called positive definite if B* = B and
(Bx,x) >0
for every nonzero x € F".
Y J
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A matrix is upper triangular if and only if its conjugate transpose is lower
triangular (meaning that all entries above the diagonal are 0). The factorization
below, which has important consequences in computational linear algebra, writes
a positive definite matrix as the product of a lower triangular matrix and its
conjugate transpose.

Our next result is solely about matrices, although the proof makes use of the
identification of results about operators with results about square matrices. In the
result below, if the matrix B is in F”, then the matrix R is also in F">".

(7.63 Cholesky factorization

Suppose B is a positive definite matrix. Then there exists a unique upper-
triangular matrix R with only positive numbers on its diagonal such that

B = R*R.

Proof Because B is positive definite, there exists an invertible square matrix A
of the same size as B such that B = A*A [by the equivalence of (a) and (f) in
7.38].

Let A = QR be the QR factorization of A (see 7.58), where Q is unitary and R
is upper triangular with only positive numbers on its diagonal. Then A* = R*Q*.

Thus André-Louis Cholesky (1875-1918)
B = A*A = R*Q*QR = R*R, discovere.d this factorization., which
was published posthumously in 1924.
as desired.

To prove the uniqueness part of this result, suppose S is an upper-triangular
matrix with only positive numbers on its diagonal and B = S*S. The matrix S is
invertible because B is invertible (see Exercise 11 in Section 3D). Multiplying both
sides of the equation B = S*S by S~! on the right gives the equation BS~! = S*.

Let A be the matrix from the first paragraph of this proof. Then

(AS™1)"(AS™1) = (§*) 1 A*AS™!
— (S*)_1 BS—l
— (S*)—l S*
=1
Thus AS™! is unitary.
Hence A = (AS™')S is a factorization of A as the product of a unitary matrix

and an upper-triangular matrix with only positive numbers on its diagonal. The
uniqueness of the QR factorization, as stated in 7.58, now implies that S = R.

In the first paragraph of the proof above, we could have chosen A to be the
unique positive definite matrix that is a square root of B (see 7.39). However,
the proof was presented with the more general choice of A because for specific
positive definite matrices B, it may be easier to find a different choice of A.
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Exercises 7D

10

11

12

Suppose dimV > 2 and S € £(V, W). Prove that S is an isometry if and
only if Se;, Se, is an orthonormal list in W for every orthonormal list e;, e,
of length two in V.

Suppose T € £(V,W) and T # 0. Prove that T is a scalar multiple of an
isometry if and only if T preserves orthogonality.

The phrase “T preserves orthogonality” means that (Tu, Tv) = 0 for all
u,v € V such that (u,v) = 0.

(a) Show that the product of two unitary operators on V is a unitary operator.
(b) Show that the inverse of a unitary operator on V is a unitary operator.

This exercise shows that the set of unitary operators on V' is a group, where
the group operation is the usual product of two operators.

Suppose F = C and A,B € £(V) are self-adjoint. Show that A + iB is
unitary if and only if AB = BA and A> + B> = L.

Suppose S € £(V). Prove that the following are equivalent.

(a) Sis a self-adjoint unitary operator.

(b) S =2P — I for some orthogonal projection P on V.

(c) There exists a subspace U of V such that Su = u for every u € U and
Sw = —w for every w € UL

Suppose T;, T, are both normal operators on F® with 2, 5,7 as eigenvalues.
Prove that there exists a unitary operator S € £(F®) such that T; = S*T,S.

Give an example of two self-adjoint operators T;, T, € £ (F4) such that the
eigenvalues of both operators are 2, 5,7 but there does not exist a unitary
operator S € £(F*) such that T; = S*T,S. Be sure to explain why there is
no unitary operator with the required property.

Prove or give a counterexample: If S € £(V') and there exists an orthonormal
basis e, ..., ¢, of V such that ||Se;|| = 1 for each ¢, then S is a unitary operator.

Suppose F = Cand T € £(V). Suppose every eigenvalue of T has absolute
value 1 and ||Tv| < |lv|| for every v € V. Prove that T is a unitary operator.

Suppose F = Cand T € £(V) is a self-adjoint operator such that | To|| < ||v||
forallv e V.

(a) Show that I — T? is a positive operator.
(b) Show that T + iV I — T? is a unitary operator.

Suppose S € £(V). Prove that S is a unitary operator if and only if
{Sv:veVand|v| <1} ={ve V:|v| <1}.

Prove or give a counterexample: If S € £(V) is invertible and |S~1v|| = ||So]|
for every v € V, then S is unitary.
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13

14

15

16

17
18

19

20

Explain why the columns of a square matrix of complex numbers form
an orthonormal list in C” if and only if the rows of the matrix form an
orthonormal list in C".

Suppose v € V with ||| = 1 and b € F. Also suppose dim V > 2. Prove
that there exists a unitary operator S € £(V') such that (Sv,v) = b if and
only if || < 1.

Suppose T is a unitary operator on V such that T — [ is invertible.
(a) Prove that (T +I)(T —I)~! is a skew operator (meaning that it equals

the negative of its adjoint).
(b) Prove that if F = C, then i(T + I)(T — I)~! is a self-adjoint operator.

The function z — i(z + 1) (z — 1)~ maps the unit circle in C (except for the
point 1) to R. Thus (b) illustrates the analogy between the unitary operators
and the unit circle in C, along with the analogy between the self-adjoint
operators and R.

Suppose F = C and T € £(V) is self-adjoint. Prove that (T + il) (T — i) !
is a unitary operator and 1 is not an eigenvalue of this operator.

Explain why the characterizations of unitary matrices given by 7.57 hold.

A square matrix A is called symmetric if it equals its transpose. Prove that if
A is a symmetric matrix with real entries, then there exists a unitary matrix
Q with real entries such that Q*AQ is a diagonal matrix.

Suppose 7 is a positive integer. For this exercise, we adopt the notation that
a typical element z of C" is denoted by z = (zy, 24, ..., Z,,_1). Define linear
functionals w, wy, ..., w,_, on C" by
1 n=l 2reiimy
Wi(Z0y 275 eeesZy 1) = — z, e <TTymMm

]< 0°~1 n 1> N mZ:‘O m

The discrete Fourier transform is the operator & : C* — C" defined by
Fz=(wy(2),w;(2),...,w,_1(2)).

(a) Show that F is a unitary operator on C".
(b) Show that if (z,...,z,_1) € C" and z,, is defined to equal z,, then

F U2, 200 o2y 1) = F(ZypsZpy_1ser Z1) -
(c) Show that 4 =1.

The discrete Fourier transform has many important applications in data
analysis. The usual Fourier transform involves expressions of the form
I5. f(x)e ™ dx for complex-valued integrable functions f defined on R.

Suppose A is a square matrix with linearly independent columns. Prove that
there exist unique matrices R and Q such that R is lower triangular with only
positive numbers on its diagonal, Q is unitary, and A = RQ.
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7E Singular Value Decomposition

Singular Values

We will need the following result in this section.

G.64 properties of T*T

Suppose T € £(V, W). Then

(a) T*T is a positive operator on V;

(b) null T*T = null T}

(c) range T*T = range T*;

\(d) dimrange T = dimrange T* = dimrange T*T.

Proof

(a)

(b)

(©

(d)

We have

(T*T)" = T*(T*)" = T*T.
Thus T*T is self-adjoint.
If v € V, then

((T*T)v,0) = (T*(T0), ) = (To, To) = |Tolf* 2 0.
Thus T*T is a positive operator.
First suppose v € null T*T. Then
ITo|? = (T, Tv) = (T*Tv,v) = (0,v) = 0.
Thus Tv = 0, proving that null T*T C null T.

The inclusion in the other direction is clear, because if v € V and Tv = 0,
then T*Tov = 0.

Thus null T*T = null T, completing the proof of (b).
We already know from (a) that T*T is self-adjoint. Thus
range T*T = (null T*T)L = (null T)* = range T*,

where the first and last equalities come from 7.6 and the second equality
comes from (b).

To verify the first equation in (d), note that
dimrange T = dim(null T*)l = dim W — dimnull T* = dimrange T*,

where the first equality comes from 7.6(d), the second equality comes from
6.51, and the last equality comes from the fundamental theorem of linear
maps (3.21).

The equality dimrange T* = dimrange T*T follows from (c).
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The eigenvalues of an operator tell us something about the behavior of the
operator. Another collection of numbers, called the singular values, is also useful.
Eigenspaces and the notation E (used in the examples) were defined in 5.52.

7.65 definition: singular values

Suppose T € £(V, W). The singular values of T are the nonnegative square
roots of the eigenvalues of T*T, listed in decreasing order, each included as
many times as the dimension of the corresponding eigenspace of T*T.

7.66 example: singular values of an operator on F*

Define T € £(F*) by T(zq,25,25,24) = (0,321,225, —3z,). A calculation
shows that
T*T(zl,22,Z3,Z4) = (921,4Z2,0, 924),

as you should verify. Thus the standard basis of F* diagonalizes T*T, and we
see that the eigenvalues of T*T are 9, 4, and 0. Also, the dimensions of the
eigenspaces corresponding to the eigenvalues are

dimE(9,T*T) =2 and dimE(4,T*T)=1 and dimE(0,T*T) =1.

Taking nonnegative square roots of these eigenvalues of T*T and using dimension
information from above, we conclude that the singular values of T are 3, 3,2, 0.

The only eigenvalues of T are —3 and 0. Thus in this case, the collection of
eigenvalues did not pick up the number 2 that appears in the definition (and hence
the behavior) of T, but the list of singular values does include 2.

7.67 example: singular values of a linear map from F* to F3 |

Suppose T € £ (F4, F3) has matrix (with respect to the standard bases)

0 00 -5
000 O
110 0
You can verify that the matrix of T*T is
110 0
110 O
000 O
0 0 0 25

and that the eigenvalues of the operator T*T are 25, 2, 0, with dim E (25, T* T) =1,
dimE(2,T*T) = 1, and dim E(0, T*T) = 2. Thus the singular values of T are

5,1/2,0,0.

See Exercise 2 for a characterization of the positive singular values.
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/7.68 role of positive singular values R

Suppose that T € £(V, W). Then

(a) Tis injective < 0 is not a singular value of T;

(b) the number of positive singular values of T equals dim range T;

\(c) T is surjective < number of positive singular values of T equals dim W)
Proof The linear map T is injective if and only if null T = {0}, which happens
if and only if null T*T = {0} [by 7.64(b)], which happens if and only if 0 is not
an eigenvalue of T*T, which happens if and only if 0 is not a singular value of T,
completing the proof of (a).

The spectral theorem applied to T*T shows that dim range T*T equals the num-
ber of positive eigenvalues of T*T (counting repetitions). Thus 7.64(d) implies
that dim range T equals the number of positive singular values of T, proving (b).
Use (b) and 2.39 to show that (c) holds.

The table below compares eigenvalues with singular values.

list of eigenvalues list of singular values

context: vector spaces context: inner product spaces

defined only for linear maps from a vector | defined for linear maps from an inner
space to itself product space to a possibly different inner
product space

can be arbitrary real numbers (if F = R) | are nonnegative numbers
or complex numbers (if F = C)

can be the empty listif F = R length of list equals dimension of domain

includes 0 < operator is not invertible | includes 0 < linear map is not injective

no standard order, especially if F = C always listed in decreasing order

The next result nicely characterizes isometries in terms of singular values.

(7.69 isometries characterized by having all singular values equal 1 w

Suppose that S € £(V, W). Then

S is an isometry < all singular values of S equal 1.

Proof We have
Sis anisometry < S*S =1
< all eigenvalues of S*S equal 1
< all singular values of S equal 1,

where the first equivalence comes from 7.49 and the second equivalence comes
from the spectral theorem (7.29 or 7.31) applied to the self-adjoint operator S*S.
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SVD for Linear Maps and for Matrices

The next result shows that every linear 4, singular value decomposition is
map from V' to W has a remarkably clean useful in computational linear alge-
description in terms of its singular val- 4, pecause good techniques exist for
ues and orthonormal lists in V and W.  gpproximating eigenvalues and eigen-
In the next section we will see several vectors of positive operators such as
important applications of the singular  T*T, whose eigenvalues and eigenvec-
value decomposition (often called the  tors lead to the singular value decom-
SVD). position.

/

7.70  singular value decomposition

~

Suppose T € £(V, W) and the positive singular values of T are s, ...,s,,.
Then there exist orthonormal lists e, ...,e,, in V and fi, ..., f,, in W such that

7.71 Tv = 51(v,e9) f1 + = + 5,,(0,,,.) fon

for every v € V.

J

Proof Letsy,...,s, denote the singular values of T (thus n = dim V). Because
T*T is a positive operator [see 7.64(a)], the spectral theorem implies that there
exists an orthonormal basis ey, ..., e,, of V with

7.72 T*Te;, = sfe;
foreachk =1, ...,n.
Foreachk =1,...,m, let
Te
7.73 fo=—=
Sk
Ifj,k € {1,...,m}, then
0 ifj#k

o) = ——(Te. Tey) = 1< T*Te) = ~eje0 =
fj’fk = Sjsk e]', er) = e]', er) = S, eijk - 1 lf]:k

515k j

Thus fi, ..., f,, is an orthonormal list in W.

Ifk € {1,...,n} and k > m, then s, = 0 and hence T*Te, = 0 (by 7.72), which
implies that Te, = 0 [by 7.64(b)].

Suppose v € V. Then

Tv = T((v,e;)ey + - + (v,e,)e,)
= (v,ey)Te; + - +(v,e,,) Te,

= Sl<?J,€1>f1 + o+ Sm<vvem>fm’

where the last index in the first line switched from n to m in the second line
because Te, = 0 if k > m (as noted in the paragraph above) and the third line
follows from 7.73. The equation above is our desired result.
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Suppose T € £(V, W), the positive singular values of T are s, ...,s,,, and
e,....e, and fi,..., f,, are as in the singular value decomposition 7.70. The
orthonormal list eq, ..., e,, can be extended to an orthonormal basis ey, ..., €4m v

of V and the orthonormal list fi, ..., f,, can be extended to an orthonormal basis
fis o faimw Oof W. The formula 7.71 shows that

sefe i1 <k<m,
Te, = . )
0 ifm<k<dmV.

Thus the matrix of T with respect to the orthonormal bases (e, ..., €4, 1) and
(fi» -+ faimw) has the simple form

s if1<j=k<m,
M(T, ey, s gimv)s (i "'9fdimW))]"k = {Ok otherwise

If dimV = dim W (as happens, for example, if W = V), then the matrix
described in the paragraph above is a diagonal matrix. If we extend the definition
of diagonal matrix as follows to apply to matrices that are not necessarily square,
then we have proved the wonderful result that every linear map from V to W has
a diagonal matrix with respect to appropriate orthonormal bases.

(7.74 definition: diagonal matrix w

An M-by-N matrix A is called a diagonal matrix if all entries of the matrix
are 0 except possibly A, ; for k=1,...,min{M, N}.

The table below compares the spectral theorem (7.29 and 7.31) with the
singular value decomposition (7.70).

spectral theorem

singular value decomposition

describes only self-adjoint operators
(when F = R) or normal operators (when
F=0)

describes arbitrary linear maps from an
inner product space to a possibly different
inner product space

produces a single orthonormal basis

produces two orthonormal lists, one for
domain space and one for range space,
that are not necessarily the same even
when range space equals domain space

different proofs depending on whether
F=RorF=C

same proof works regardless of whether
F=RorF=C

The singular value decomposition gives us a new way to understand the adjoint
and the inverse of a linear map. Specifically, the next result shows that given a
singular value decomposition of a linear map T € £(V, W), we can obtain the
adjoint of T simply by interchanging the roles of the e’s and the f’s (see 7.77).
Similarly, we can obtain the pseudoinverse T (see 6.68) of T by interchanging
the roles of the ¢’s and the f’s and replacing each positive singular value s, of T
with 1/s; (see 7.78).
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Recall that the pseudoinverse TT in 7.78 below equals the inverse T~ if T is
invertible [see 6.69(a)].

/7.75 singular value decomposition of adjoint and pseudoinverse

Suppose T € £(V, W) and the positive singular values of T are s, ...,s,,.
Suppose ey, ..., e, and fi, ..., f,, are orthonormal lists in V and W such that

7.76 Tv = s5.(v,eq) fi + - +5,,(v,e,,) frn

for every v € V. Then

7.77 T*w = si(w, fy)ey + - + 5, (w, f,)e,

and

778 TTZU — <w’f1>e1 R <w’fm>em
51 Sm

for every w € W.
N y

Proof Ifv & Vandw € W then
(To,w) = (5140, e1) f1 + = + 5,0V, €, frs W)
= s5y{v, e ) f1, W) + - +5,,(V, €, ) f,,,, W)
= (0, 51w, fi)eq + = + S, W, fr)en)-
This implies that
T*w = 51w, fi)eq + -+ + S, (W, f) €

proving 7.77.
To prove 7.78, suppose w € W. Let
w7 w’ m
= ( f1>e (w, fo)

1+ -+
51 Sm

[

Apply T to both sides of the equation above, getting
<w’ fl) <w’ fm>

Tey + -+
51 Sm

=(w, f1) f1 + - + W, f) fn

To = Te

m

range T w,

where the second line holds because 7.76 implies that Te, = s f itk = 1,...,m,
and the last line above holds because 7.76 implies that f;, ..., f,,, spans range T and
thus is an orthonormal basis of range T [and hence 6.57(i) applies]. The equation
above, the observation that v € (null T)* [see Exercise 8(b)], and the definition
of TTw (see 6.68) show that v = TTw, proving 7.78.
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7.79 example: finding a singular value decomposition

Define T € £(F*, F°) by T(xy,x5,x3,%4) = (=5x4,0,%; + x,). We want to
find a singular value decomposition of T. The matrix of T (with respect to the
standard bases) is

0 00 =5

0 00 O

110 O

Thus, as discussed in Example 7.67, the matrix of T*T is

110 0

110 0

000 0|

0 0 0 25

and the positive eigenvalues of T*T are 25, 2, with dimE(25,T*T) = 1 and

dim E(2, T*T) = 1. Hence the positive singular values of T are 5, V2.
Thus to find a singular value decomposition of T, we must find an orthonormal
list e;, e, in F* and an orthonormal list f;, f, in F° such that

Tv =5(v,eq) f; + V2(o, ey) fo

for all v € F4.

An orthonormal basis of E (25, T*T) is the vector (0,0, 0, 1); an orthonormal
basis lSf E (2, T T) is the vector ( N 0, 0). Thus, following the proof of 7.70,
we take

1 1
e; = (0,0,0,1) and e, = (—,—,0,0)
V2 V2

and

Te Te
fl = ?1 = (—1,0,0) and f2 = T:zz = (0,0’1)

Then, as expected, we see that e;, e, is an orthonormal list in F* and f;, f, is an
orthonormal list in F* and

for all v € F*. Thus we have found a singular value decomposition of T.

The next result translates the singular value decomposition from the context
of linear maps to the context of matrices. Specifically, the following result gives
a factorization of an arbitrary matrix as the product of three nice matrices. The
proof gives an explicit construction of these three matrices in terms of the singular
value decomposition.

In the next result, the phrase “orthonormal columns” should be interpreted to
mean that the columns are orthonormal with respect to the standard Euclidean
inner product.
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/7.80 matrix version of SVD

N

Suppose A is a p-by-n matrix of rank m > 1. Then there exist a p-by-m matrix
B with orthonormal columns, an m-by-m diagonal matrix D with positive
numbers on the diagonal, and an n-by-m matrix C with orthonormal columns
such that

-

Proof Let T: F* — FF be the linear map whose matrix with respect to the
standard bases equals A. Then dimrange T = m (by 3.78). Let

— *
A = BDC* Y,

7.81 Tv =s5.(v,eq) fi + - +5,,(v,e,) fn
be a singular value decomposition of T. Let

B = the p-by-m matrix whose columns are f, ..., f,,,
D = the m-by-m diagonal matrix whose diagonal entries are s4, ...,s,,,
C = the n-by-m matrix whose columns are e, ..., e,,,.
Let uq, ..., u,, denote the standard basis of F". If k € {1, ..., m} then
(AC — BD) U = Aek — B(Skuk) = Skfk — skfk =0.
Thus AC = BD.
Multiply both sides of this last equation by C* (the conjugate transpose of C)
on the right to get
ACC* = BDC*.

Note that the rows of C* are the complex conjugates of ey, ...,e,,. Thus if
k € {1,...,m}, then the definition of matrix multiplication shows that C*e, = u;
hence CC*¢; = ¢,. Thus ACC*v = Av for all v € span(ey, ...,e,,)-

If v € (span(e;, ...,em))L, then Av = 0 (as follows from 7.81) and C*v = 0
(as follows from the definition of matrix multiplication). Hence ACC*v = Av for

L
allv € (span(eq, ...,e,,)) .

Because ACC* and A agree on span(ey, ..., ¢,,) and on (span(el, em))L, we
conclude that ACC* = A. Thus the displayed equation above becomes

A = BDC*,

as desired.

Note that the matrix A in the result above has pn entries. In comparison, the
matrices B, D, and C above have a total of

m(p +m+n)

entries. Thus if p and n are large numbers and the rank m is considerably less
than p and #n, then the number of entries that must be stored on a computer to
represent A is considerably less than pn.
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Exercises 7E

Suppose T € £(V, W). Show that T = 0 if and only if all singular values of
T are 0.

Suppose T € £(V, W) and s > 0. Prove that s is a singular value of T if and
only if there exist nonzero vectors v € V and w € W such that

To=sw and T*w = sv.

The vectors v, w satisfying both equations above are called a Schmidt pair.
Erhard Schmidt introduced the concept of singular values in 1907.

Give an example of T € £(C?) such that 0 is the only eigenvalue of T and
the singular values of T are 5, 0.

Suppose that T € £(V, W), s, is the largest singular value of T, and s,, is
the smallest singular value of T. Prove that

{IITYll : v € Vand |vll = 1} = [s,,,51]-

Suppose T € £(C?) is defined by T(x,y) = (—4y,x). Find the singular
values of T.

Find the singular values of the differentiation operator D € £ (?Z(R))
defined by Dp = p', where the inner product on 7, (R) is as in Example 6.34.

Suppose that T € £(V) is self-adjoint or that F = Cand T € £(V) is
normal. Let A, ..., A,, be the eigenvalues of T, each included in this list
as many times as the dimension of the corresponding eigenspace. Show
that the singular values of T are |A4], ..., |A,,|, after these numbers have been
sorted into decreasing order.

Suppose T € £(V,W). Suppose s; > s, = -+ =5, >0andey,...,e, is an
orthonormal list in V and fi, ..., f,, is an orthonormal list in W such that

Tv = Sl<U,€1>f1 + ot Sm<0, em>fm

foreveryv € V.

(a) Prove that fi, ..., f,, is an orthonormal basis of range T.

(b) Prove thatey, ..., e, is an orthonormal basis of (null T)*t.

(c) Prove that sy, ..., s, are the positive singular values of T.

(d) Prove thatif k € {1, ...,m}, then ¢, is an eigenvector of T*T with corre-
sponding eigenvalue s?.

(e) Prove that

TT*w = 512<w9f1>f] toet+ Sm2<w’fm>fm

forallw e W.
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Suppose T € £(V, W). Show that T and T* have the same positive singular
values.

Suppose T € £(V, W) has singular values s, ...,s,,. Prove that if T is an
invertible linear map, then T~! has singular values

1 1

P

Sn ’ 51
Suppose that T € £(V, W) and vy, ..., v,, is an orthonormal basis of V. Let
S1, ---» 5, denote the singular values of T.
(a) Prove that |[To||? + - + [Tv,|?> = s2 + - + 5,
(b) Prove that if W = V and T is a positive operator, then

(Tvy,v1) + - +(T0,,,0,,) =51 + -+ +5,,.
See the comment after Exercise 5 in Section 7A.

(a) Give an example of a finite-dimensional vector space and an operator T
on it such that the singular values of T? do not equal the squares of the
singular values of T.

(b) Suppose T € £(V) is normal. Prove that the singular values of T?
equal the squares of the singular values of T.

Suppose T;,T, € £(V). Prove that T} and T, have the same singular
values if and only if there exist unitary operators S, S, € £(V) such that
Tl = Sl TzSz.

Suppose T € £(V, W). Lets,, denote the smallest singular value of T. Prove
that s,[lvll < [|ITv| for every v € V.

Suppose T € £(V) and s; > --- > s, are the singular values of T. Prove
that if A is an eigenvalue of T, then s; > |A| > s,,.

Suppose T € £(V, W). Prove that (T*)Jr = (1%)"
Compare the result in this exercise to the analogous result for invertible

linear maps [see 7.5(f)].

Suppose T € £(V). Prove that T is self-adjoint if and only if T is self-
adjoint.

Matrices unfold
Singular values gleam like stars
Order in chaos shines

—written by ChatGPT with input haiku about SVD
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7F Consequences of Singular Value Decomposition

Norms of Linear Maps

The singular value decomposition leads to the following upper bound for ||Tv|.

(7.82 upper bound for | To||

Suppose T € £L(V, W). Let s; be the largest singular value of T. Then
1Tl < sqlfll

forallv e V.

Proof Letsy,...,s,, denote the positive
singular values of T, and let ey, ..., e, be
an orthonormal listin V and f;, ..., f,, be
an orthonormal list in W that provide a singular value decomposition of T. Thus

For a lower bound on ||Tv|, look at
Exercise 14 in Section 7E.

7.83 Tv =s.(v,eq) fi + - +5,,(v,e,) fn
for all v € V. Hence if v € V then
ITol? = s2|(v, e)* + - + 5,2 [0, e,

< 512(|<v,el>|2 4+ |<v,em)|2)

< st ol
where the last inequality follows from Bessel’s inequality (6.26). Taking square
roots of both sides of the inequality above shows that [|Tv|| < sq|lvll, as desired.

Suppose T € £(V, W) and s, is the largest singular value of T. The result

above shows that

7.84 ITo|| < s, forallv € V with |jv]| < 1.

Taking v = e, in 7.83 shows that Te; = s, f;. Because ||f1]| = 1, this implies that
ITe;ll = s;. Thus because [le;|| = 1, the inequality in 7.84 leads to the equation

7.85 max{||Tv|| : v € Vand |jv|| < 1} = s;.

The equation above is the motivation for the following definition, which defines
the norm of T to be the left side of the equation above without needing to refer to
singular values or the singular value decomposition.

(7.86 definition: norm of a linear map, |- ||

Suppose T € £(V, W). Then the norm of T, denoted by ||T||, is defined by

IT) = max{|To|| : v € V and ||[v|| < 1}.
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In general, the maximum of an infinite set of nonnegative numbers need
not exist. However, the discussion before 7.86 shows that the maximum in the
definition of the norm of a linear map T from V to W does indeed exist (and equals
the largest singular value of T).

We now have two different uses of the word norm and the notation ||-|. Our
first use of this notation was in connection with an inner product on V, when we
defined |jv|| = V/(v, v) for each v € V. Our second use of the norm notation and
terminology is with the definition we just made of |T|| for T € £(V,W). The
norm ||T|| for T € £(V, W) does not usually come from taking an inner product
of T with itself (see Exercise 21). You should be able to tell from the context and
from the symbols used which meaning of the norm is intended.

The properties of the norm on £(V, W) listed below look identical to properties
of the norm on an inner product space (see 6.9 and 6.17). The inequality in (d) is
called the triangle inequality, thus using the same terminology that we used for
the norm on V. For the reverse triangle inequality, see Exercise 1.

/7.87 basic properties of norms of linear maps )

Suppose T € £(V, W). Then

(@ Tl = 05

®) ITI=0 & T=0;

(©) ATl = |AIIT]| for all A € F;

\(d) IS+ T| <|ISI +|IT| for all S € £(V, W).

J

Proof
(a) Because ||Tv|| > 0 for every v € V, the definition of ||T| implies that || T|| > 0.

(b) Suppose ||T|| = 0. Thus To = 0 forall v € V with |jv|| < 1. If u € V with

u # 0, then u
Tu = Ju T<M) =0,

where the last equality holds because u/|ju|| has norm 1. Because Tu = 0 for
allu € V, wehave T = 0.

Conversely, if T = 0 then Tv = 0 for all v € V and hence ||T|| = 0.
(c) Suppose A € F. Then
IAT| = max{|ATv| : v € V and |jv]| < 1}
= [Almax{||Tv|| : v € V and [v|| < 1}
= AT
(d) Suppose S € £(V,W). The definition of ||S + T|| implies that there exists
v € Vsuch that o] < 1and IS + TIl = ||(S + T)v|. Now
IS+ Tl = ||(S + T)o| = ISv + Toll < [ISvll + IToll < ISI| + IITII,
completing the proof of (d).
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For S, T € £(V, W), the quantity ||S — T|| is often called the distance between
S and T. Informally, think of the condition that ||S — T|| is a small number as
meaning that S and T are close together. For example, Exercise 9 asserts that for
every T € £(V), there is an invertible operator as close to T as we wish.

/7.88 alternative formulas for || T|| h

Suppose T € £(V, W). Then
(a) |IT|| = the largest singular value of T;

() Tl = max{|Tv|l : v € V and |jv]| = 1};

\(c) |IT|| = the smallest number ¢ such that |Tv|| < c|[v| for allv € V.

J
Proof
(a) See 7.85.
(b) Letv € Vbesuchthat0 < ||| < 1. Let u = v/|[v||. Then
v IIT 4l
=[] =1 and i = [7(:2 )| = T = e,
lloll IIUII ol

Thus when finding the maximum of | Tv| with ||| < 1, we can restrict
attention to vectors in V with norm 1, proving (b).

(c) Suppose v € V and v # 0. Then the definition of || T|| implies that

2= m
ol

which implies that

7.89 1Tl < Tl

Now suppose ¢ > 0 and || Tv|| < c||v|| for all v € V. This implies that
IToll <c

for all v € V with |jv]l < 1. Taking the maximum of the left side of the
inequality above over all v € V with |[v|| < 1 shows that ||T|| < c. Thus ||T| is
the smallest number ¢ such that || Tv| < c||v|| for all v € V.

When working with norms of linear maps, you will probably frequently use
the inequality 7.89.

For computing an approximation of the norm of a linear map T given the
matrix of T with respect to some orthonormal bases, 7.88(a) is likely to be most
useful. The matrix of T*T is quickly computable from matrix multiplication.
Then a computer can be asked to find an approximation for the largest eigenvalue
of T*T (excellent numeric algorithms exist for this purpose). Then taking the
square root and using 7.88(a) gives an approximation for the norm of T (which
usually cannot be computed exactly).
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You should verify all assertions in the example below.

7.90 example: norms
e If ] denotes the usual identity operator on V, then ||| = 1.

o If T € £(F") and the matrix of T with respect to the standard basis of F"
consists of all 1’s, then ||T|| = n.

e If T € £(V) and V has an orthonormal basis consisting of eigenvectors of
T with corresponding eigenvalues A4, ..., A,,, then ||T|| is the maximum of the
numbers |A4], ..., A,

e Suppose T € £ (RS) is the operator whose matrix (with respect to the stan-
dard basis) is the 5-by-5 matrix whose entry in row j, column k is 1/ (j‘2 + k).
Standard mathematical software shows that the largest singular value of T is
approximately 0.8 and the smallest singular value of T is approximately 107°.
Thus ||T|| ~ 0.8 and (using Exercise 10 in Section 7E) | T~!|| ~ 10°. It is not
possible to find exact formulas for these norms.

A linear map and its adjoint have the same norm, as shown by the next result.

(7.91 norm of the adjoint W
tSuppose T € £(V,W). Then |T*|| = IIT|. J

Proof Suppose w € W. Then
IT*w|* = (T*w, T*w) = (TT*w,w) < |TT*w||lwll < IT)|T*w|| Il
The inequality above implies that
[T*w| < T lwll,
which along with 7.88(c) implies that ||T*|| < [|T].
Replacing T with T* in the inequality | T*|| < |||l and then using the equation
(T*)* = T shows that ||T|| < |[T*|. Thus ||T*|| = IT|l, as desired.

You may want to construct an alternative proof of the result above using
Exercise 9 in Section 7E, which asserts that a linear map and its adjoint have the
same positive singular values.

Approximation by Linear Maps with Lower-Dimensional Range

The next result is a spectacular application of the singular value decomposition.
It says that to best approximate a linear map by a linear map whose range has
dimension at most k, chop off the singular value decomposition after the first
k terms. Specifically, the linear map T, in the next result has the property that
dimrange T, = k and T;, minimizes the distance to T among all linear maps with
range of dimension at most k. This result leads to algorithms for compressing
huge matrices while preserving their most important information.
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/7.92 best approximation by linear map whose range has dimension < k h

Suppose T € £(V,W) ands; > --- > s, are the positive singular values of T.
Suppose 1 < k < m. Then

min{||T — S|| : S € £(V,W) and dimrange S < k} = s}, ;.

Furthermore, if
Tv = 51(v,eq) fi + - +5,(0,€,,,) fon

is a singular value decomposition of T and T, € £(V, W) is defined by

Tv = 51(v,e1) f1 + =+ + 50, ) fr

\for eachv € V, then dimrange T, = kand |T — Ti|l = s;, -

Proof Ifv € V then
||(T - Tk)U”2 = ”Sk+1<v9€k+1>fk+1 +oeet Sm<U,€m>fm”2
= Sk+12 |(Z), ek+1>|2 +o Tt sz |<U’ em>|2

< Sk+12<|<v, €k+l>|2 4+ oo 4+ |<v’ em>|2)
< s 2ol

Thus |IT — T,|l < sx.q. The equation (T — T}) e, 1 = Sy 1fk+1 NOW shows that
IT = Tiell = Sgs1-

Suppose S € £(V, W) and dimrange S < k. Thus Sey, ..., Se, 1, which is a
list of length k + 1, is linearly dependent. Hence there exist a4, ...,a;,,, € F, not
all 0, such that

a,5e; + - +a,,.15¢.,.1 =0.
Now ajeq + -+ + a;, 16,1 # 0 because a,, ...,a;, ., are not all 0. We have
I(T = S)(arey + -+ ﬂk+1€k+1)||2 = |T(ayey + - + ﬂk+1€k+1)”2
Isya1 f1 + -+ + S 18kp1 fiern P
st 1ayl? + o+ i g P
Siet (11 + - + a4 ?)

2 >
=Syt lageq + o+ ap gl

\%

Because a;e; + -+ + a5, 16,1 # 0, the inequality above implies that
IT =Sl = Sg41-
Thus S = T, minimizes ||T — S| among S € £(V, W) with dimrange S < k.
For other examples of the use of the singular value decomposition in best
approximation, see Exercise 22, which finds a subspace of given dimension on

which the restriction of a linear map is as small as possible, and Exercise 27,
which finds a unitary operator that is as close as possible to a given operator.
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Polar Decomposition

Recall our discussion before 7.54 of the analogy between complex numbers z
with |z| = 1 and unitary operators. Continuing with this analogy, note that every
complex number z except 0 can be written in the form

- ()
()=

where the first factor, namely, z/|z|, has absolute value 1.

Our analogy leads us to guess that every operator T € £ (V) can be written as
a unitary operator times VT*T. That guess is indeed correct. The corresponding
result is called the polar decomposition, which gives a beautiful description of an
arbitrary operator on V.

Note that if T € £(V), then T*T is a positive operator [as was shown in
7.64(a)]. Thus the operator VT*T makes sense and is well defined as a positive
operator on V.

The polar decomposition that we are about to state and prove says that every
operator on V is the product of a unitary operator and a positive operator. Thus
we can write an arbitrary operator on V as the product of two nice operators,
each of which comes from a class that we can completely describe and that we
understand reasonably well. The unitary operators are described by 7.55 if F = C;
the positive operators are described by the real and complex spectral theorems
(7.29 and 7.31).

Specifically, consider the case F = C, and suppose

T =SVT*T

is a polar decomposition of an operator T € £(V), where S is a unitary operator.
Then there is an orthonormal basis of V with respect to which S has a diagonal
matrix, and there is an orthonormal basis of V with respect to which VT*T has
a diagonal matrix. Warning: There may not exist an orthonormal basis that
simultaneously puts the matrices of both S and VT*T into these nice diagonal
forms—S may require one orthonormal basis and v T*T may require a different
orthonormal basis.

However (still assuming that F = C), if T is normal, then an orthonormal
basis of V can be chosen such that both S and v/T*T have diagonal matrices with
respect to this basis—see Exercise 31. The converse is also true: If T € £(V)
and T = SV/T*T for some unitary operator S € £(V) such that S and v'T*T both
have diagonal matrices with respect to the same orthonormal basis of V, then T
is normal. This holds because T then has a diagonal matrix with respect to this
same orthonormal basis, which implies that T is normal [by the equivalence of
(c) and (a) in 7.31].
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The polar decomposition below is valid on both real and complex inner product
spaces and for all operators on those spaces.

(7.93 polar decomposition

Suppose T € £(V). Then there exists a unitary operator S € £ (V') such that
T = SVT*T.

Proof Letsq,...,s,, be the positive singular values of T, and let ¢4, ...,¢,, and
fi» .- fn be orthonormal lists in V such that

7.94 Tv = s5(v,eq) fi + - +5,(0,€,,,) fn

for every v € V. Extend ey, ...,¢,, and fi, ..., f,, to orthonormal bases ey, ..., e,
and fi,..., f,, of V.
Define S € £(V) by

SU = <U,€1>f1 + -+ <vyen>fn
for each v € V. Then
ISvl? = ||<U>e1>f1 + o+ (v,en)fn||2

= [, + - + [0, e,

2
= [oll*.

Thus S is a unitary operator.
Applying T* to both sides of 7.94 and then using the formula for T* given by
7.77 shows that

T*Tv = s{(v,e;)e; + - +5,2(v,e,,)e,,
for every v € V. Thus if v € V, then
VT*Tv = 51(v,e;)eq + -+ +5,,(v,e,,)e,,

because the operator that sends v to the right side of the equation above is a
positive operator whose square equals T*T. Now

SVT*Tv = S(s1(v,eq)e; + - +5,,(v,e,)e,,)

=51{v,e9) f1 + - + 5,0, ,,) fom
=To,

where the last equation follows from 7.94.

Exercise 27 shows that the unitary operator S produced in the proof above is
as close as a unitary operator can be to T.

Alternative proofs of the polar decomposition directly use the spectral theorem,
avoiding the singular value decomposition. However, the proof above seems
cleaner than those alternative proofs.
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Operators Applied to Ellipsoids and Parallelepipeds

(7.95 definition: ball, B

|/

The ball in V of radius 1 centered at 0, denoted by B, is defined by

B={veV:|u <1}.

If dim V = 2, the word disk is sometimes used instead of 1
ball. However, using ball in all dimensions is less confusing.
Similarly, if dim V' = 2, then the word ellipse is sometimes
used instead of the word ellipsoid that we are about to define.

Again, using ellipsoid in all dimensions is less confusing.
You can think of the ellipsoid defined below as obtained
by starting with the ball B and then stretching by a factor of -1
s, along each fi-axis. The ball B in R2.
(5 N

7.96 definition: ellipsoid, E(s; fi, ...,S, f,,), principal axes

Suppose that f;, ..., f, is an orthonormal basis of V and s, ..., s,, are positive
numbers. The ellipsoid E(s, f1, ..., s, f,,) With principal axes s, f1, ...,s, f, is
defined by

2 2
E(Slfl""’snfn) = {Z) E V: |<’U’f2-1>| + “es + |<U,j;1>| < 1}_
51 Sn
S J

The ellipsoid notation E(s; fi, ..., s, f,,) does not explicitly include the inner
product space V, even though the definition above depends on V. However, the in-
ner product space V should be clear from the context and also from the requirement
that f1, ..., f,, be an orthonormal basis of V.

| 7.97 example: ellipsoids

V2
1L
-2 2 -2 V2
1t
2t
The ellipsoid E(2fy, f,) in R?, where The ellipsoid E(2f,, f,) in R%, where
, f» is the standard basis of R. — (L L (-1 L
fir f f1_<ﬁ,ﬁ>andf2_( \/E’fz)'
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The ellipsoid
E(4f,,3f,2f;) in R3,
where fi, f,, f5 is the
standard basis of R>.

The ellipsoid E(f, ..., f,,) equals the ball B in V for every orthonormal basis
fis s f,, of V [by Parseval’s identity 6.30(b)].

(7.98 notation: T (())

For T a function defined on V and Q) C V, define T(Q)) by

T(Q) = {Tv:v € Q}.

Thus if T is a function defined on V, then T(V) = range T.

The next result states that every invertible operator T € £ (V') maps the ball
B in V onto an ellipsoid in V. The proof shows that the principal axes of this
ellipsoid come from the singular value decomposition of T.

(7.99 invertible operator takes ball to ellipsoid \

tSuppose T € £(V) isinvertible. Then T maps the ball B in V onto an ellipsoicj
in V.

Proof Suppose T has singular value decomposition
7.100 Tv =s5.(v,eq) fi + - +5,(v,e,) f,

forall v € V;here sy, ..., s, are the singular values of T and ey, ...,¢, and fi, ..., f,,
are both orthonormal bases of V. We will show that T(B) = E(S; f1, ---,S,.f)-

First suppose v € B. Because T is invertible, none of the singular values
51, ..+, 5, equals 0 (see 7.68). Thus 7.100 implies that

2 2
(To. f1)] (To, £
—2 + .o + —2

51 51

Thus Tv € E(sq f1,-..,5,,f,). Hence T(B) C E(s; f1, -5, f,,)-

To prove inclusion in the other direction, now suppose w € E(s1 f1, ....S, f,,)-

v = <w,f1>81 Tt <w’fn>e

51 Sy
Then |jv|| < 1 and 7.100 implies that Tv = (w, f;) f; + -+ + (w, f,,) f, = w. Thus
T(B) D E(51f1-s5,f0)-

= o, e)? + - + (v, e,)* < 1.

Let

ne
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We now use the previous result to show that invertible operators take all
ellipsoids, not just the ball of radius 1, to ellipsoids.

(7.101 invertible operator takes ellipsoids to ellipsoids \

Suppose T € £(V) is invertible and E is an ellipsoid in V. Then T (E) is an
ellipsoid in V.

Proof There exist an orthonormal basis fi, ..., f,, of V and positive numbers
S15...,5, such that E = E(s; fi, ...,s, f,,). Define S € £(V) by

S(arfi + - +a,f,) = aysyfy + -+ 0,5, f
Then S maps the ball B of V onto E, as you can verify. Thus
T(E) = T(S(B)) = (TS)(B).
The equation above and 7.99, applied to T'S, show that T (E) is an ellipsoid in V.

Recall (see 3.95) that if u € V and () C V then u + Q) is defined by
u+Q={wu+w:we}.

Geometrically, the sets () and u + () look the same, but they are in different
locations.

In the following definition, if dim V' = 2 then the word parallelogram is often
used instead of parallelepiped.

/7.102 definition: P(vy, ...,v,,), parallelepiped

~

Suppose v, ..., v, is a basis of V. Let
P(vy,...,0,) = {ayvy + - +4a,0, t aq,....,a, € (0,1)}.

A parallelepiped is a set of the form u + P(vy, ...,v,) for some u € V. The
vectors vy, ..., v,, are called the edges of this parallelepiped. D

7.103 example: parallelepipeds |
1.5

U

0.5

0.3 1.3 2.3
The parallelepiped A parallelepiped in R3.
(0.3,0.5) + P((1,0),(1,1)) in R%.
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(7.104 invertible operator takes parallelepipeds to parallelepipeds W

Suppose u € V, 04, ...,v, is abasis of V, and T € £(V) is invertible. Then

T(u + P(vy,...,v,)) = Tu + P(Toy, ..., Tv,).

Proof Because T is invertible, the list Tvy, ..., Tv,, is a basis of V. The linearity
of T implies that

T(u+avy +-+a,0,) =Tu+aTo; + - +a,Tv,
forall ay,...,a, € (0,1). Thus T(u + P(vq,...,v,)) = Tu + P(Tovy, ..., Tv,).
Just as the rectangles are distinguished among the parallelograms in R?, we

give a special name to the parallelepipeds in V whose defining edges are orthogonal
to each other.

/7.1 05 definition: box )

A box in V is a set of the form
u+ P(rieq,....1,8,),
where u € Vandr,, ..., r, are positive numbers and ey, ..., ¢,, is an orthonormal

basis of V. )

o
Note that in the special case of R? each box is a rectangle, but the terminology
box can be used in all dimensions.

7.106 example: boxes |
2+

Vie Ve,

1 2
The box (1,0) + P(\/Eel, \/562), where The box P(eq,2e,,e3), where e, ¢e,, €3

_ (1 1 _(_1 1 is the standard basis of R3.
el_(ﬁ,ﬁ>and82_( ﬁ’ﬁ)'

Suppose T € £(V) is invertible. Then T maps every parallelepiped in V
to a parallelepiped in V (by 7.104). In particular, T maps every box in V to a
parallelepiped in V. This raises the question of whether T maps some boxes in
V to boxes in V. The following result answers this question, with the help of the
singular value decomposition.
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/

7.107 every invertible operator takes some boxes to boxes

N

Suppose T € £(V) is invertible. Suppose T has singular value decomposition
Tv = s1(v,eq) fi + - +5,(v,e,) f,.

where s, ...,s,, are the singular values of T and e, ...,e, and fi, ..., f,, are
orthonormal bases of V and the equation above holds for all v € V. Then T
maps the box u + P(rqeq, ..., 7,e,,) onto the box Tu + P(ry5; fi, ..., 7,5, f,,) for
all positive numbers 74, ...,7r,, and all u € V. p

Proof Ifay,...,a, € (0,1) and r4, ..., 1,, are positive numbers and u € V, then

T(u+ayrieq + - +ayrpe,) = Tu+agrisy fi + - +a,7,5, fu-

Thus T(u + P(rieq, ..., 7€) = Tu + P(ryS1 f1, oo TSy frr)-

Volume via Singular Values

Our goal in this subsection is to understand how an operator changes the volume
of subsets of its domain. Because notions of volume belong to analysis rather
than to linear algebra, we will work only with an intuitive notion of volume. Our
intuitive approach to volume can be converted into appropriate correct definitions,
correct statements, and correct proofs using the machinery of analysis.

Our intuition about volume works best in real inner product spaces. Thus the
assumption that F = R will appear frequently in the rest of this subsection.

If dimV = n, then by volume we will mean n-dimensional volume. You
should be familiar with this concept in R3. When 1 = 2, this is usually called area
instead of volume, but for consistency we use the word volume in all dimensions.
The most fundamental intuition about volume is that the volume of a box (whose
defining edges are by definition orthogonal to each other) is the product of the
lengths of the defining edges. Thus we make the following definition.

(7.108 definition: volume of a box

Suppose F = R. If u € V and r4, ..., ,, are positive numbers and ey, ..., e, is
an orthonormal basis of V, then

volume (u + P(ryey, ..., 7,€,)) =14 X =+ X T,

The definition above agrees with the familiar formulas for the area (which we
are calling the volume) of a rectangle in R? and for the volume of a box in R3. For
example, the first box in Example 7.106 has two-dimensional volume (or area) 2
because the defining edges of that box have length v/2 and v/2. The second box
in Example 7.106 has three-dimensional volume 2 because the defining edges of
that box have length 1, 2, and 1.
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To define the volume of a subset of V, approximate the
subset by a finite collection of disjoint boxes, and then add up
the volumes of the approximating collection of boxes. As we
approximate a subset of V more accurately by disjoint unions
of more boxes, we get a better approximation to the volume. E—

These ideas should remind you of how the Riemann integral  Volume of this
is defined by approximating the area under a curve by a disjoint  pail ~ sum of the
collection of rectangles. This discussion leads to the following  volumes of the
nonrigorous but intuitive definition. five boxes.

(7.109 definition: volume

Suppose F = R and Q) C V. Then the volume of (), denoted by volume (), is
approximately the sum of the volumes of a collection of disjoint boxes that
approximate Q).

We are ignoring many reasonable questions by taking an intuitive approach to
volume. For example, if we approximate () by boxes with respect to one basis,
do we get the same volume if we approximate () by boxes with respect to a
different basis? If (); and (), are disjoint subsets of V, is volume(Q); U Q),) =
volume ) + volume 2,7 Provided that we consider only reasonably nice subsets
of V, techniques of analysis show that both these questions have affirmative
answers that agree with our intuition about volume.

7.110 example: volume change by a linear map

[ 1
Suppose that T € £(R?) is defined by
Tv = 2(v,eq)eq + (v, e,)e,, where eq, e, is the
standard basis of R?. This linear map stretches
vectors along the e;-axis by a factor of 2 and

leaves vectors along the e,-axis unchanged.

The ball approximated by five boxes above Each box here has twice the width
gets mapped by T to the ellipsoid shown here. and the same height as the boxes in
Each of the five boxes in the original figure the previous figure.

gets mapped to a box of twice the width and the same height as in the original
figure. Hence each box gets mapped to a box of twice the volume (area) as in the
original figure. The sum of the volumes of the five new boxes approximates the
volume of the ellipsoid. Thus T changes the volume of the ball by a factor of 2.

In the example above, T maps boxes with respect to the basis e, e, to boxes
with respect to the same basis; thus we can see how T changes volume. In general,
an operator maps boxes to parallelepipeds that are not boxes. However, if we
choose the right basis (coming from the singular value decomposition!), then
boxes with respect to that basis get mapped to boxes with respect to a possibly
different basis, as shown in 7.107. This observation leads to a natural proof of
the following result.
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(7.1 11 volume changes by a factor of the product of the singular values w

Suppose F = R, T € £(V) is invertible, and () C V. Then

volume T (Q)) = (product of singular values of T) (volume Q).

Proof Suppose T has singular value decomposition
Tv = s1{v,eq) fi + - +5,(v,e,) f,

forallv € V, where ey, ...,e, and fi, ..., f, are orthonormal bases of V.

Approximate () by boxes of the form u + P(ryeq, ..., 7,€,), which have volume
ry x -+ x r,,. The operator T maps each box u + P(rqeq,...,7,e,) onto the box
Tu + P(r151f1, ..., 7,5, f,,), which has volume (s; X --- x'5,) (1 X =+ X ¥,,).

The operator T maps a collection of boxes that approximate () onto a collection
of boxes that approximate T ((2). Because T changes the volume of each box in a
collection that approximates () by a factor of s; x --- xs,,, the linear map T changes
the volume of () by the same factor.

Suppose T € £(V). As we will see when we get to determinants, the product
of the singular values of T equals |det T|; see 9.60 and 9.61.

Properties of an Operator as Determined by Its Eigenvalues

We conclude this chapter by presenting the table below. The context of this
table is a finite-dimensional complex inner product space. The first column of
the table shows a property that a normal operator on such a space might have.
The second column of the table shows a subset of C such that the operator has
the corresponding property if and only if all eigenvalues of the operator lie in
the specified subset. For example, the first row of the table states that a normal
operator is invertible if and only if all its eigenvalues are nonzero (this first row
is the only one in the table that does not need the hypothesis that the operator is
normal).

Make sure you can explain why all results in the table hold. For example,
the last row of the table holds because the norm of an operator equals its largest
singular value (by 7.85) and the singular values of a normal operator, assuming
F = C, equal the absolute values of the eigenvalues (by Exercise 7 in Section 7E).

properties of a normal operator eigenvalues are contained in

invertible C\{0}

self-adjoint R

skew {AeC:ReA =0}
orthogonal projection {0,1}

positive [0, o)

unitary AeC: A =1}
norm is less than 1 (AeC: A<}
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Exercises 7F

1

10

11

12
13

14

Prove that if S, T € £(V, W), then | S| — ||:r||| < IS =TI.

The inequality above is called the reverse triangle inequality.

Suppose that T € £(V) is self-adjoint or that F = Cand T € £(V) is
normal. Prove that

IT|I = max{|A| : A is an eigenvalue of T}.
Suppose T € £(V,W) and v € V. Prove that
IToll = Tl vl < T*To = |T|*v.

Suppose T € £(V,W),v € V,and |Tv|| = |IT|| |lv|l. Prove that if u € V and
(u,vy = 0, then (Tu, Tv) = 0.

Suppose U is a finite-dimensional inner product space, T € £(V, U), and
S e £(U, W). Prove that

ISTI < ISIHITI.
Prove or give a counterexample: If S, T € £(V), then ||ST| = |ITSII.

Show that defining d(S,T) = ||IS — T|| for S, T € £(V, W) makes d a metric
on £L(V,W).

This exercise is intended for readers who are familiar with metric spaces.

(a) Provethatif T € £(V)and |I — T|| < 1, then T is invertible.

(b) Suppose that S € £(V) is invertible. Prove that if T € £(V) and
IS — Tl < 1/||S7|, then T is invertible.
This exercise shows that the set of invertible operators in £(V) is an open
subset of £(V), using the metric defined in Exercise 7.

Suppose T € £(V). Prove that for every € > 0, there exists an invertible
operator S € £(V) such that 0 < ||T — §|| < e.

Suppose dimV > 1 and T € £(V) is not invertible. Prove that for every
€ > 0, there exists S € £(V) such that 0 < ||T — S| < € and S is not
invertible.

Suppose F = C and T € £(V). Prove that for every € > 0 there exists a
diagonalizable operator S € £(V) such that0 < ||IT — S| < e.

Suppose T € £(V) is a positive operator. Show that H\/TH =/IITJl.

Suppose S, T € £(V) are positive operators. Show that

IS — Tl < max{[ISI, ITI} < IS + Tl
Suppose U and W are subspaces of V such that |P;; — Pyl < 1. Prove that
dimU = dim W.
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16

17

18

19

20

21

22

23

24
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Define T € £(F°) by
T(zq,25,23) = (23,221,32y).
Find (explicitly) a unitary operator S € £(F®) such that T = Sv/T*T.

Suppose S € £(V) is a positive invertible operator. Prove that there exists
6 > 0 such that T is a positive operator for every self-adjoint operator
T e L(V)with|S—TI| < 4.

Prove that if u € V and ¢, is the linear functional on V defined by the
equation ¢,,(v) = (v, u), then |lg, || = llull.

Here we are thinking of the scalar field F as an inner product space with
(a, B) = ap for all a, p € F. Thus |¢, || means the norm of ¢, as a linear
map from V to F.

Suppose e, ..., e, is an orthonormal basis of Vand T € £(V, W).
(a) Prove that max{|[Te,, .., [ Te,ll} < ITIl < (ITeyl? + - + [ Te,I?) "
(b) Prove that||T| = (||T61||2+---+||T€n||2)1/2 ifand only if dimrange T < 1.

Here eq, ..., e, is an arbitrary orthonormal basis of 'V, not necessarily con-
nected with a singular value decomposition of T. If s4,...,s, is the list
of singular values of T, then the right side of the inequality above equals
(sf + -+ snz)l/z, as was shown in Exercise 11(a) in Section 7E.

Prove that if T € £(V, W), then |T*T]|| = IIT|>
This formula for |T*T| leads to the important subject of C*-algebras.

Suppose T € £(V) is normal. Prove that |[T¥|| = |IT|l* for every positive
integer k.

Suppose dim V > 1 and dim W > 1. Prove that the norm on £(V, W) does
not come from an inner product. In other words, prove that there does not
exist an inner product on £(V, W) such that

max{||Tv|| : v € Vand |v| <1} = (T, T)
forall T € £(V,W).

Suppose T € £L(V,W). Letn = dimV and lets; >
singular values of T. Prove that if 1 < k < n, then

\%
\%

> s, denote the

min{||T|;;|l : U is a subspace of V with dimU =k} =s,,_;,1.

Suppose T € £(V, W). Show that T is uniformly continuous with respect
to the metrics on V and W that arise from the norms on those spaces (see
Exercise 23 in Section 6B).

Suppose T € £(V) is invertible. Prove that

T
ITH =1TI7" = il is a unitary operator.
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26

27

28

29

30

31

32
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Fixu,x € Vwithu # 0. Define T € £(V) by Tv = (v,u)x foreveryv € V.
Prove that

X
VT*To = ”—'l:w,u)u

llu
foreveryv € V.

Suppose T € £(V). Prove that T is invertible if and only if there exists a
unique unitary operator S € £(V) such that T = SV T*T.

Suppose T € £(V) and 54, ..., s,, are the singular values of T. Leteq, ..., ¢,
and fi, ..., f,, be orthonormal bases of V such that
Tv = s51{v,eq) f; + -+ +5,(v,e,) f,

for all v € V. Define S € £(V) by

SU = <U,el>f1 + e+ <Ua en)fn'
(a) Show that S is unitary and |T — S| = max{ls; — 1, ...,Is, — 1]}.
(b) Show thatif E € £(V) is unitary, then ||T — E|| > ||T — S||.

This exercise finds a unitary operator S that is as close as possible (among
the unitary operators) to a given operator T.

Suppose T € £(V). Prove that there exists a unitary operator S € £(V)
such that T = VTT*S.

Suppose T € £L(V).

(a) Use the polar decomposition to show that there exists a unitary operator
S € £(V) such that TT* = ST*TS*
(b) Show how (a) implies that T and T* have the same singular values.

Suppose T € £(V), S € £(V) is a unitary operator, and R € £(V) is a
positive operator such that T = SR. Prove that R = vV T*T.

This exercise shows that if we write T as the product of a unitary operator
and a positive operator (as in the polar decomposition 7.93), then the
positive operator equals vV T*T.

Suppose F = Cand T € £(V) is normal. Prove that there exists a unitary

operator S € £(V) such that T = SvVT*T and such that S and v T*T both
have diagonal matrices with respect to the same orthonormal basis of V.

Suppose that T € £(V,W) and T # 0. Let s4,...,5,, denote the positive
singular values of T. Show that there exists an orthonormal basis e, ..., e,,

of (null T)* such that
(e(%.. )
s

m

equals the ball in range T of radius 1 centered at 0.
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Chapter 8
Operators on Complex Vector Spaces

In this chapter we delve deeper into the structure of operators, with most of the
attention on complex vector spaces. Some of the results in this chapter apply to
both real and complex vector spaces; thus we do not make a standing assumption
that F = C. Also, an inner product does not help with this material, so we return
to the general setting of a finite-dimensional vector space.

Even on a finite-dimensional complex vector space, an operator may not have
enough eigenvectors to form a basis of the vector space. Thus we will consider the
closely related objects called generalized eigenvectors. We will see that for each
operator on a finite-dimensional complex vector space, there is a basis of the vector
space consisting of generalized eigenvectors of the operator. The generalized
eigenspace decomposition then provides a good description of arbitrary operators
on a finite-dimensional complex vector space.

Nilpotent operators, which are operators that when raised to some power
equal 0, have an important role in these investigations. Nilpotent operators provide
a key tool in our proof that every invertible operator on a finite-dimensional
complex vector space has a square root and in our approach to Jordan form.

This chapter concludes by defining the trace and proving its key properties.

( standing assumptions for this chapter W

e F denotes R or C.
e V denotes a finite-dimensional nonzero vector space over F.

a N

VS-Ag 00 Hlll piaeg

\_ %

The Long Room of the Old Library at the University of Dublin, where William Hamilton
(1805-1865) was a student and then a faculty member. Hamilton proved a special case
of what we now call the Cayley—Hamilton theorem in 1853.
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8A Generalized Eigenvectors and Nilpotent Operators

Null Spaces of Powers of an Operator

We begin this chapter with a study of null spaces of powers of an operator.

(8.1 sequence of increasing null spaces

Suppose T € £(V). Then

{0} =nullT° C null T* C -+ C null TF C null TF*+1 C - .

Proof Suppose k is a nonnegative integer and v € null TX Then T*v = 0,
which implies that T**1o = T(T*v) = T(0) = 0. Thus v € null T**1. Hence
null T% C null TF*1, as desired.

The fpllowmg r.esult states that if two For similar results about decreasing
consecutive terms in the sequence of sub- sequences of ranges, see Exercises 6,
spaces above are equal, then all later 7 ;448
terms in the sequence are equal.

/8.2 equality in the sequence of null spaces h
Suppose T € £(V) and m is a nonnegative integer such that
null T = null T+ 1,
Then
Y null 7" = null T"*! = null T"*2 = null T"*3 = ... )

Proof Let k be a positive integer. We want to prove that
null T+ = null T +k+1,

We already know from 8.1 that null 7" ** C null T"**+1,
To prove the inclusion in the other direction, suppose v € null T *5*1, Then

Tm+1(TkZJ) — Tm+k+10 =0.

Hence
Tko € null 7"+ = null T

Thus T **v = T™(T*v) = 0, which means that v € null T *X This implies that
null T +%+1 C null T"*X completing the proof.

The result above raises the question of whether there exists a nonnegative
integer m such that null T = null T+, The next result shows that this equality
holds at least when m equals the dimension of the vector space on which T
operates.
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ﬁ.S null spaces stop growing

Suppose T' € £(V). Then

null TdimV = null TdimV+1 = null TdimV+2 — ...

Proof  We only need to prove that null T%™V = null T%™V+1 (by 8.2). Suppose
this is not true. Then, by 8.1 and 8.2, we have

{0} =null T C null T* C -+ C null T4™V C null T4mV+1,

where the symbol C means “contained in but not equal to”. At each of the
strict inclusions in the chain above, the dimension increases by at least 1. Thus
dimnull T4mV+1 > dim V + 1, a contradiction because a subspace of V cannot
have a larger dimension than dim V.

It is not true that V = null T @ range T for every T € £(V). However, the
next result can be a useful substitute.

8.4 V is the direct sum of null T"™V and range T4™V

Suppose T' € £(V). Then

V = null T9V @ range T4™V.

Proof Letn = dim V. First we show that
8.5 (null T") N (range T") = {0}.

Suppose v € (nullT") N (range T"). Then T"v = 0, and there exists u € V
such that v = T"u. Applying T" to both sides of the last equation shows that
T"v = T?"u. Hence T?"u = 0, which implies that T"u = 0 (by 8.3). Thus
v = T"u = 0, completing the proof of 8.5.

Now 8.5 implies that null T" + range T" is a direct sum (by 1.46). Also,

dim(null T" & range T") = dimnull T" + dimrange T" = dim V,

where the first equality above comes from 3.94 and the second equality comes
from the fundamental theorem of linear maps (3.21). The equation above implies
that null T" & range T" = V (see 2.39), as desired.

For an improvement of the result above, see Exercise 19.

8.6 example: F> = null T° @ range T° for T € £(F°)
Suppose T € £(F?) is defined by

T(Zl, 22,23) = (422, 0, 523) .
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300 Chapter 8 Operators on Complex Vector Spaces

Thennull T = {(z,0,0) : z; € F} andrange T = {(z4,0,23) : 21,23 € F}. Thus
null T nrange T # {0}. Hence null T + range T is not a direct sum. Also note that
null T + range T # F> However, we have T3 (21, 25,23) = (0,0,125z3). Thus we
see that

null T3 = {(z1,2,,0) : 2;,z, €F} and range T° = {(0,0,z3) : z3 € F}.

Hence F® = null T° @ range T%, as expected by 8.4.

Generalized Eigenvectors

Some operators do not have enough eigenvectors to lead to good descriptions of
their behavior. Thus in this subsection we introduce the concept of generalized
eigenvectors, which will play a major role in our description of the structure of an
operator.

To understand why we need more than eigenvectors, let’s examine the question
of describing an operator by decomposing its domain into invariant subspaces. Fix
T € £(V). We seek to describe T by finding a “nice” direct sum decomposition

V;Vl@...@Vm

where each V| is a subspace of V invariant under T. The simplest possible nonzero
invariant subspaces are one-dimensional. A decomposition as above in which
each V is a one-dimensional subspace of V invariant under T is possible if and
only if V has a basis consisting of eigenvectors of T (see 5.55). This happens if
and only if V has an eigenspace decomposition

8.7 V =E(A,T) @ @ E(A,,T),

where A, ..., A,, are the distinct eigenvalues of T (see 5.55).

The spectral theorem in the previous chapter shows that if V is an inner product
space, then a decomposition of the form 8.7 holds for every self-adjoint operator
if F = R and for every normal operator if F = C because operators of those types
have enough eigenvectors to form a basis of V (see 7.29 and 7.31).

However, a decomposition of the form 8.7 may not hold for more general
operators, even on a complex vector space. An example was given by the operator
in 5.57, which does not have enough eigenvectors for 8.7 to hold. Generalized
eigenvectors and generalized eigenspaces, which we now introduce, will remedy
this situation.

~

/8.8 definition: generalized eigenvector

Suppose T € £(V) and A is an eigenvalue of T. A vector v € V is called a
generalized eigenvector of T corresponding to A if v # 0 and

(T — AD*v =0

\for some positive integer k.

Linear Algebra Done Right, fourth edition, by Sheldon Axler



Section 8A  Generalized Eigenvectors and Nilpotent Operators 301

A nonzero vector v € V is a general-

) i e Generalized eigenvalues are not de-
ized eigenvector of T corresponding to A

. - fined because doing so would not lead
if and only if to anything new. Reason: if (T — AI)*
_ dmV.. _ is not injective for some positive inte-
(T—AD v=0, ger k, then T — Al is not injective, and

hence A is an eigenvalue of T.

as follows from applying 8.1 and 8.3 to
the operator T — AL

As we know, an operator on a complex vector space may not have enough
eigenvectors to form a basis of the domain. The next result shows that on a
complex vector space there are enough generalized eigenvectors to do this.

(8.9 a basis of generalized eigenvectors w

Suppose F = C and T € £(V). Then there is a basis of V consisting of
generalized eigenvectors of T.

Proof Letn = dim V. We will use induction on n. To get started, note that
the desired result holds if n = 1 because then every nonzero vector in V is an
eigenvector of T.

Now suppose 7 > 1 and the de- This step is where we use the hypothesis
sired result holds for all smaller values ./ F = C, because i F=RthenT
of dimV. Let A be an eigenvalue of T. 4y not have any eigenvalues.
Applying 8.4 to T — Al shows that

V = null(T — AI)" @ range(T — AI)".

If null(T — AI)" =V, then every nonzero vector in V is a generalized eigen-
vector of T, and thus in this case there is a basis of V consisting of generalized
eigenvectors of T. Hence we can assume that null(T — AI)" # V, which implies
that range(T — AI)" # {0}.

Also, null(T — AI)"™ # {0}, because A is an eigenvalue of T. Thus we have

0 < dimrange(T — AI)" < n.

Furthermore, range(T — AI)" is invariant under T [by 5.18 with p(z) = (z— A)"].
Let S € £(range(T — AI)") equal T restricted to range(T — AI)™. Our induction
hypothesis applied to the operator S implies that there is a basis of range (T — AI)”
consisting of generalized eigenvectors of S, which of course are generalized
eigenvectors of T. Adjoining that basis of range (T —AI)" to a basis of null(T—AI)”
gives a basis of V consisting of generalized eigenvectors of T.

If F = R and dimV > 1, then some operators on V have the property that
there exists a basis of V consisting of generalized eigenvectors of the operator,
and (unlike what happens when F = C) other operators do not have this property.
See Exercise 11 for a necessary and sufficient condition that determines whether
an operator has this property.
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302 Chapter 8 Operators on Complex Vector Spaces

8.10 example: generalized eigenvectors of an operator on c3
Define T € £(C?) by
T(z1,25,23) = (42,,0,5z3)

for each (z;,2,,25) € C° A routine use of the definition of eigenvalue shows that
the eigenvalues of T are 0 and 5. Furthermore, the eigenvectors corresponding to
the eigenvalue 0 are the nonzero vectors of the form (z;, 0, 0), and the eigenvectors
corresponding to the eigenvalue 5 are the nonzero vectors of the form (0, 0, z3).
Hence this operator does not have enough eigenvectors to span its domain C3,

We compute that T° (z,, z,, z3) = (0,0,125z5). Thus 8.1 and 8.3 imply that the
generalized eigenvectors of T corresponding to the eigenvalue O are the nonzero
vectors of the form (zq, z,, 0).

We also have (T — 51)3(21, Zy,23) = (—125z; + 300z,, —125z,,0). Thus the
generalized eigenvectors of T corresponding to the eigenvalue 5 are the nonzero
vectors of the form (0, 0, z3).

The paragraphs above show that each of the standard basis vectors of C® is a
generalized eigenvector of T. Thus C? indeed has a basis consisting of generalized
eigenvectors of T, as promised by 8.9.

If v is an eigenvector of T € £(V), then the corresponding eigenvalue A is
uniquely determined by the equation Tv = Av, which can be satisfied by only one
A € F (because v # 0). However, if v is a generalized eigenvector of T, then it
is not obvious that the equation (T — AI)¥™V = 0 can be satisfied by only one
A € F. Fortunately, the next result tells us that all is well on this issue.

ﬁj 1 generalized eigenvector corresponds to a unique eigenvalue w

Suppose T € £(V). Then each generalized eigenvector of T corresponds to
only one eigenvalue of T.

Proof Suppose v € V is a generalized eigenvector of T corresponding to eigen-
values « and A of T. Let m be the smallest positive integer such that (T —al)" v = 0.
Letn = dim V. Then

0= (T— A"
=((T—al)+ @—-MD)"v
= ) b(a = )" KT —al)ro,

k=0

where b, = 1 and the values of the other binomial coefficients b, do not matter.
Apply the operator (T — aI)™~! to both sides of the equation above, getting

0= (x— AT =al)™ 1.

Because (T — al)™~'v # 0, the equation above implies that & = A, as desired.
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We saw earlier (5.11) that eigenvectors corresponding to distinct eigenvalues
are linearly independent. Now we prove a similar result for generalized eigen-
vectors, with a proof that roughly follows the pattern of the proof of that earlier
result.

(8.12 linearly independent generalized eigenvectors W

Suppose that T € £(V). Then every list of generalized eigenvectors of T
corresponding to distinct eigenvalues of T is linearly independent.

Proof  Suppose the desired result is false. Then there exists a smallest positive
integer m such that there exists a linearly dependent list vy, ..., v,, of generalized
eigenvectors of T corresponding to distinct eigenvalues A4, ..., A, of T (note that
m > 2 because a generalized eigenvector is, by definition, nonzero). Thus there
exist a4, ...,a,, € F, none of which are 0 (because of the minimality of #1), such
that

a0y + -+ +a,0,, =0.

Letn = dim V. Apply (T — A,,,I)" to both sides of the equation above, getting
8.13 a (T =AD"+ +a, (T—A,D"v,_1=0.
Suppose k € {1, ...,m — 1}. Then
(T-A, D", #0

because otherwise v, would be a generalized eigenvector of T corresponding to
the distinct eigenvalues A, and A,,, which would contradict 8.11. However,

(T = AD)"((T = A Do) = (T = A, D" ((T = AD)"o,) = 0.

Thus the last two displayed equations show that (T — A,,I)" v, is a generalized
eigenvector of T corresponding to the eigenvalue A,. Hence

(T = A,D)"vy, . (T = A, D"0,,_4

is a linearly dependent list (by 8.13) of m — 1 generalized eigenvectors correspond-
ing to distinct eigenvalues, contradicting the minimality of m. This contradiction
completes the proof.

Nilpotent Operators

(8. 14 definition: nilpotent W

kAn operator is called nilpotent if some power of it equals 0. )

Thus an operator T € £(V) is nilpotent if and only if every nonzero vector in
V is a generalized eigenvector of T corresponding to the eigenvalue 0.
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| 8.15 example: nilpotent operators
(a) The operator T € £(F*) defined by
T(Z]’ 227 237 Z4) = (07 07 Z]’ ZZ)

is nilpotent because T? = 0.

(b) The operator on F* whose matrix (with respect to the standard basis) is

-3 9 0
-7 9 6
4 0 -6

is nilpotent, as can be shown by cubing the matrix above to get the zero matrix.

(c) The operator of differentiation on %,,(R) is nilpotent because the (m + 1)t
derivative of every polynomial of degree at most m equals 0. Note that on
this space of dimension m + 1, we need to raise the nilpotent operator to the
power m + 1 to get the 0 operator.

The next result shows that when rais- Moo fLattin v o) araars ol iog 67

ing a nilpotent operator to a power, we zero; the Latin word potens means
never need to use a power higher than the having power. Thus nilpotent literally
dimension of the space. For a slightly  means having a power that is zero.
stronger result, see Exercise 18.

(8.16 nilpotent operator raised to dimension of domain is Q W

LSuppose T € £(V) is nilpotent. Then T4MmV =0, J

Proof Because T is nilpotent, there exists a positive integer k such that TX = 0.
Thus null TF = V. Now 8.1 and 8.3 imply that null T%™" = V. Thus T4™V = 0.

\

8.17 eigenvalues of nilpotent operator

Suppose T € £(V).

(a) If T is nilpotent, then O is an eigenvalue of T and T has no other
eigenvalues.

\(b) If F = C and 0 is the only eigenvalue of T, then T is nilpotent. )

Proof

(a) To prove (a), suppose T is nilpotent. Hence there is a positive integer m such
that T = 0. This implies that T is not injective. Thus 0 is an eigenvalue
of T.
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To show that T has no other eigenvalues, suppose A is an eigenvalue of T.
Then there exists a nonzero vector v € V such that

Av = To.
Repeatedly applying T to both sides of this equation shows that
Ay =T"y = 0.
Thus A = 0, as desired.

(b) Suppose F = C and 0 is the only eigenvalue of T. By 5.27(b), the minimal
polynomial of T equals z™ for some positive integer m. Thus T™ = 0. Hence
T is nilpotent.

Exercise 23 shows that the hypothesis that F = C cannot be deleted in (b) of
the result above.

Given an operator on V, we want to find a basis of V such that the matrix of
the operator with respect to this basis is as simple as possible, meaning that the
matrix contains many 0’s. The next result shows that if T is nilpotent, then we can
choose a basis of V such that the matrix of T with respect to this basis has more
than half of its entries equal to 0. Later in this chapter we will do even better.

( )

8.18 minimal polynomial and upper-triangular matrix of nilpotent operator

Suppose T € £(V). Then the following are equivalent.

(a) T is nilpotent.

(b) The minimal polynomial of T is z"" for some positive integer .

(c) There is a basis of V with respect to which the matrix of T has the form
0 *

0 0

where all entries on and below the diagonal equal 0.

J

Proof Suppose (a) holds, so T is nilpotent. Thus there exists a positive integer
n such that T" = 0. Now 5.29 implies that z" is a polynomial multiple of the
minimal polynomial of T. Thus the minimal polynomial of T is z™ for some
positive integer m, proving that (a) implies (b).

Now suppose (b) holds, so the minimal polynomial of T is z™ for some positive
integer m. This implies, by 5.27(a), that 0 (which is the only zero of z™) is the
only eigenvalue of T. This further implies, by 5.44, that there is a basis of V with
respect to which the matrix of T is upper triangular. This also implies, by 5.41,
that all entries on the diagonal of this matrix are 0, proving that (b) implies (c).

Now suppose (c) holds. Then 5.40 implies that T4™"V" = 0. Thus T is nilpotent,
proving that (c) implies (a).
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Exercises 8A

1 Suppose T € £(V). Prove that if dim null T* = 8 and dim null T® = 9, then
dimnull T = 9 for all integers m > 5.

2 Suppose T € £(V), m is a positive integer, v € V, and T" v # 0 but
T™v = 0. Prove that v, Tv, T?v, ..., T~ v is linearly independent.
The result in this exercise is used in the proof of 8.45.
3 Suppose T € £(V). Prove that
V=nullT®rangeT <= nullT?> = null T.

4 Suppose T € £(V), A € F, and m is a positive integer such that the minimal
polynomial of T is a polynomial multiple of (z — A)™. Prove that

dimnull(T — AD)™ > m.
5 Suppose T € £(V) and m is a positive integer. Prove that

dimnull 7" < mdimnull T.
Hint: Exercise 21 in Section 3B may be useful.

6 Suppose T € £(V). Show that
V =range T° D range T' D --- D range TF D range TF*1 D ...
7 Suppose T € £(V) and m is a nonnegative integer such that
range T™ = range T"* 1
Prove that range TX = range T for all k > m.

8 Suppose T € £(V). Prove that
range T9™V = range T4™V*1 = range T4MV+2 = ...
9 Suppose T € £(V) and m is a nonnegative integer. Prove that
null 7" = null T"*! < range T" = range T"*".

10 DefineT € £ (Cz) by T(w,z) = (z,0). Find all generalized eigenvectors
of T.

11  Suppose that T € £(V). Prove that there is a basis of V consisting of
generalized eigenvectors of T if and only if the minimal polynomial of T
equals (z — Ay)---(z — A,,,) for some A4, ..., A, €F.

Assume F = R because the case F = C follows from 5.27(b) and 8.9.

This exercise states that the condition for there to be a basis of V consisting
of generalized eigenvectors of T is the same as the condition for there to be
a basis with respect to which T has an upper-triangular matrix (see 5.44).
Caution: If T has an upper-triangular matrix with respect to a basis
V1, ...,0, of 'V, then vy is an eigenvector of T but it is not necessarily true
that v,, ..., v, are generalized eigenvectors of T.
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Suppose T € £(V) is such that every vector in V is a generalized eigenvector
of T. Prove that there exists A € F such that T — Al is nilpotent.

Suppose S, T € £(V) and ST is nilpotent. Prove that TS is nilpotent.
Suppose T € £(V) is nilpotent and T # 0. Prove T is not diagonalizable.

Suppose F = Cand T € £(V). Prove that T is diagonalizable if and only if
every generalized eigenvector of T is an eigenvector of T.
For F = C, this exercise adds another equivalence to the list of conditions
for diagonalizability in 5.55.

(a) Give an example of nilpotent operators S, T on the same vector space
such that neither S + T nor ST is nilpotent.

(b) Suppose S,T € £(V) are nilpotent and ST = TS. Prove that S + T and
ST are nilpotent.

Suppose T € £(V) is nilpotent and m is a positive integer such that T = 0.
(a) ProvethatI — Tisinvertible andthat 1 —T) ' =1+ T+ - + T~ 1,
(b) Explain how you would guess the formula above.

Suppose T € £(V) is nilpotent. Prove that T *+dimrangeT —
If dimrange T < dimV — 1, then this exercise improves 8.16.

Suppose T € £(V) is not nilpotent. Show that

V = null T9mV -1 @ range T4imV -1
For operators that are not nilpotent, this exercise improves 8.4.

Suppose V is an inner product space and T € £(V) is normal and nilpotent.
Prove that T = 0.

Suppose T € £(V) is such that null T%™V =1 £ null T%™V. Prove that T is
nilpotent and that dim null T* = k for every integer k with 0 < k < dim V.

Suppose T € £(C?) is such that range T* # range T°. Prove that T is
nilpotent.

Give an example of an operator T on a finite-dimensional real vector space
such that 0 is the only eigenvalue of T but T is not nilpotent.

This exercise shows that the implication (b) = (a) in 8.17 does not hold
without the hypothesis that F = C.

For each item in Example 8.15, find a basis of the domain vector space such
that the matrix of the nilpotent operator with respect to that basis has the
upper-triangular form promised by 8.18(c).

Suppose that V is an inner product space and T € £ (V) is nilpotent. Show
that there is an orthonormal basis of V' with respect to which the matrix of T
has the upper-triangular form promised by 8.18(c).
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8B Generalized Eigenspace Decomposition

Generalized Eigenspaces

/

8.19 definition: generalized eigenspace, G(A, T) R

Suppose T € £(V) and A € F. The generalized eigenspace of T correspond-
ing to A, denoted by G(A, T), is defined by

GA,T) = {v e V: (T - AD*v = 0 for some positive integer k}.

Thus G(A, T) is the set of generalized eigenvectors of T corresponding to A,
along with the 0 vector. )

Because every eigenvector of T is a generalized eigenvector of T (take k = 1
in the definition of generalized eigenvector), each eigenspace is contained in the
corresponding generalized eigenspace. In other words, if T € £(V) and A € F,
then E(A, T) C G(A, T).

The next result implies that if T € £(V) and A € F, then the generalized
eigenspace G(A, T) is a subspace of V (because the null space of each linear map
on V is a subspace of V).

ﬁa.zo description of generalized eigenspaces w

LSuppose T € £(V)and A € F. Then G(A, T) = null(T — A)4mY, J

Proof  Suppose v € null(T — AI)%™V. The definitions imply v € G(A, T). Thus
G(A,T) 2 null(T — AV,

Conversely, suppose v € G(A, T). Thus there is a positive integer k such
that v € null(T — AI)X From 8.1 and 8.3 (with T — Al replacing T), we get
v € null(T — ADY™Y. Thus G(A, T) C null(T — AI)%™V, completing the proof.

8.21 example: generalized eigenspaces of an operator on C> |

Define T € £(C?) by
T(Zl,22,Z3) = (422, O, 523).

In Example 8.10, we saw that the eigenvalues of T are 0 and 5, and we found
the corresponding sets of generalized eigenvectors. Taking the union of those sets
with {0}, we have

G(0,T) = {(z1,25,0) : 21,2z, € C} and GG, T) ={(0,0,z5) : z3 € C}.
Note that C*= G(0,T) ® G(5,T).
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In Example 8.21, the domain space C? is the direct sum of the generalized
eigenspaces of the operator T in that example. Our next result shows that this
behavior holds in general. Specifically, the following major result shows that if
F=Cand T € £(V), then V is the direct sum of the generalized eigenspaces
of T, each of which is invariant under T and on which T is a nilpotent operator
plus a scalar multiple of the identity. Thus the next result achieves our goal of
decomposing V into invariant subspaces on which T has a known behavior.

As we will see, the proof follows from putting together what we have learned
about generalized eigenspaces and then using our result that for each operator
T € £(V), there exists a basis of V consisting of generalized eigenvectors of T.

/8.22 generalized eigenspace decomposition h

Suppose F = Cand T € £(V). Let A4, ..., A, be the distinct eigenvalues
of T. Then

(a) G(Ay, T) is invariant under T for each k = 1, ..., m;
() (T = AD)lga,, 1) is nilpotent for each k = 1, ..., m;
\(c) V=GA,T)® - &G(A,,T).

Proof
(a) Suppose k € {1,...,m}. Then 8.20 shows that
G\, T) = null(T — A L)ydmV,
Thus 5.18, withp(z) = (z—A,)%™Y, implies that G(A,, T) is invariant under T,
proving (a).

(b) Suppose k € {1,...,m}. If v € G(A, T), then (T — 4 1) Vv = 0 (by 8.20).
dim
Thus ((T = AD)Iga,. 1)) Y
proving (b).

= 0. Hence (T — AxD) g, 1) is nilpotent,

(c) To show that G(A4,T) + --- + G(A,,, T) is a direct sum, suppose
v+ +0, =0,

where each v, is in G(A,, T). Because generalized eigenvectors of T cor-
responding to distinct eigenvalues are linearly independent (by 8.12), this
implies that each v, equals 0. Thus G(A4,T) + --- + G(A,,,, T) is a direct sum
(by 1.45).

Finally, each vector in V can be written as a finite sum of generalized eigen-
vectors of T (by 8.9). Thus

V = G(/\l’ T) ® - D G(/\m, T),

proving (c).
For the analogous result when F = R, see Exercise 8.
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Multiplicity of an Eigenvalue

If Vis a complex vector space and T € £(V), then the decomposition of V pro-
vided by the generalized eigenspace decomposition (8.22) can be a powerful tool.
The dimensions of the subspaces involved in this decomposition are sufficiently
important to get a name, which is given in the next definition.

/8.23 definition: multiplicity h

e Suppose T € £(V). The multiplicity of an eigenvalue A of T is defined to
be the dimension of the corresponding generalized eigenspace G(A, T).

e In other words, the multiplicity of an eigenvalue A of T equals

dimnull(T — AI)4mV,

- J

The second bullet point above holds because G(A, T) = null(T — A)4™V (see
8.20).

| 8.24 example: multiplicity of each eigenvalue of an operator |

Suppose T € £(C?) is defined by
T(zq,25,23) = (621 + 32y + 423,625 + 223,723).

The matrix of T (with respect to the standard basis) is

6 3
0 6
0 0

NN

The eigenvalues of T are the diagonal entries 6 and 7, as follows from 5.41. You
can verify that the generalized eigenspaces of T are as follows:

G(6,T) = span((1,0,0),(0,1,0)) and G(7,T) = span((10,2,1)).

Thus the eigenvalue 6 has multiplicity 2, . ample, the multiplicity of each
and the eigenvalue 7 has multiplicity 1. eigenvalue equals the number of times
The direct sum C*> = G(6,T) & G(7,T) that eigenvalue appears on the diago-
is the generalized eigenspace decom- gl of an upper-triangular matrix rep-
position promised by 8.22. A basis resenting the operator. This behavior
of C3 consisting of generalized eigen-  always happens, as we will see in 8.31.
vectors of T, as promised by 8.9, is

(1,0,0), (0,1,0), (10,2, 1). There does not exist a basis of C> consisting of eigen-
vectors of this operator.

In the example above, the sum of the multiplicities of the eigenvalues of T
equals 3, which is the dimension of the domain of T. The next result shows that
this holds for all operators on finite-dimensional complex vector spaces.
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(8.25 sum of the multiplicities equals dim V w

Suppose F = C and T € £(V). Then the sum of the multiplicities of all
eigenvalues of T equals dim V.

Proof The desired result follows from the generalized eigenspace decomposition
(8.22) and the formula for the dimension of a direct sum (see 3.94).

The terms algebraic multiplicity and geometric multiplicity are used in some
books. In case you encounter this terminology, be aware that the algebraic multi-
plicity is the same as the multiplicity defined here and the geometric multiplicity
is the dimension of the corresponding eigenspace. In other words, if T € £(V)
and A is an eigenvalue of T, then

algebraic multiplicity of A = dimnull(T — AY™Y = dim G(A, T),
geometric multiplicity of A = dimnull(T — AI) = dimE(A, T).

Note that as defined above, the algebraic multiplicity also has a geometric meaning
as the dimension of a certain null space. The definition of multiplicity given here
is cleaner than the traditional definition that involves determinants; 9.62 implies
that these definitions are equivalent.

If Vis an inner product space, T € £(V) is normal, and A is an eigenvalue
of T, then the algebraic multiplicity of A equals the geometric multiplicity of A,
as can be seen from applying Exercise 27 in Section 7A to the normal operator
T — Al As a special case, the singular values of S € £(V, W) (here V and W are
both finite-dimensional inner product spaces) depend on the multiplicities (either
algebraic or geometric) of the eigenvalues of the self-adjoint operator S*S.

The next definition associates a monic polynomial with each operator on a
finite-dimensional complex vector space.

e D

8.26 definition: characteristic polynomial

Suppose F = Cand T € £(V). Let A4, ..., A,,, denote the distinct eigenvalues
of T, with multiplicities d, ..., d,,. The polynomial

(z = Ap)%1ee(z — A,,)m

is called the characteristic polynomial of T.

8.27 example: the characteristic polynomial of an operator |

Suppose T € £ (C3) is defined as in Example 8.24. Because the eigenvalues of
T are 6, with multiplicity 2, and 7, with multiplicity 1, we see that the characteristic
polynomial of T is (z — 6)(z — 7).
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(8.28 degree and zeros of characteristic polynomial

Suppose F = Cand T € £(V). Then

(a) the characteristic polynomial of T has degree dim V;

(b) the zeros of the characteristic polynomial of T are the eigenvalues of T.

Proof  Our result about the sum of the multiplicities (8.25) implies (a). The
definition of the characteristic polynomial implies (b).

Most texts define the characteristic polynomial using determinants (the two
definitions are equivalent by 9.62). The approach taken here, which is considerably
simpler, leads to the following nice proof of the Cayley—Hamilton theorem.

(8.29 Cayley—Hamilton theorem W

LSuppose F=C,T € £(V), and q is the characteristic polynomial of T. Then
4(T) = 0.

Proof Let A4, ..., A, be the distinct eigenvalues of T, and let d, = dim G(A,, T).
Foreachk € {1, ..., m}, we know that (T — A, 1) lea,, ) 18 nilpotent. Thus we have

(T — )Lkl)dk lca.ty =0 Arthur Cayley (1821-1895) published
k’ three mathematics papers before com-

(by 8.16) for each k € {1, ..., m}. pleting his undergraduate degree.

The generalized eigenspace decom-
position (8.22) states that every vector in V is a sum of vectors in
GMA,T),...,G(A,,, T). Thus to prove that g(T) = 0, we only need to show
that g(T) lcor,m) = 0 for each k.

Fix k € {1, ...,m}. We have

q(T) = (T — A D)% (T = A, ).

The operators on the right side of the equation above all commute, so we can
move the factor (T — A1) to be the last term in the expression on the right.
Because (T — /\kf)d"|cmk,T) = 0, we have g(T)|g(a,, 1) = 0, as desired.

The next result implies that if the minimal polynomial of an operator T € £(V)
has degree dim V (as happens almost always—see the paragraphs following 5.24),
then the characteristic polynomial of T equals the minimal polynomial of T.

G.SO characteristic polynomial is a multiple of minimal polynomial w

Suppose F = C and T € £(V). Then the characteristic polynomial of T is a
polynomial multiple of the minimal polynomial of T.

Proof The desired result follows immediately from the Cayley—Hamilton theo-
rem (8.29) and 5.29.
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Now we can prove that the result suggested by Example 8.24 holds for all
operators on finite-dimensional complex vector spaces.

(8.31 multiplicity of an eigenvalue equals number of times on diagonal

Suppose F = Cand T € £(V). Suppose vy, ...,v,, is a basis of V such that
M (T, (U1, s vn)) is upper triangular. Then the number of times that each
eigenvalue A of T appears on the diagonal of M (T, (v, ...,v,)) equals the
multiplicity of A as an eigenvalue of T.

Proof LetA =M (T, (U1, s vn)). Thus A is an upper-triangular matrix. Let
A4, ...s A, denote the entries on the diagonal of A. Thus for each k € {1, ...,n},
we have

T, = u + Aoy

for some u;, € span(vq, ..., v _1). Hence if k € {1,...,n} and A, # 0, then Tv, is
not a linear combination of Tvy, ..., Tv,_. The linear dependence lemma (2.19)
now implies that the list of those Tv; such that A, # 0 is linearly independent.

Let d denote the number of indices k € {1, ...,n} such that A, = 0. The
conclusion of the previous paragraph implies that

dimrange T > n —d.
Because n = dim V = dim null T + dim range T, the inequality above implies that
8.32 dimnullT < d.

The matrix of the operator T" with respect to the basis v4, ..., v,, is the upper-
triangular matrix A", which has diagonal entries A{’, ..., A, [see Exercise 2(b) in
Section 5C]. Because A{' = 0 if and only if A, = 0, the number of times that 0
appears on the diagonal of A" equals d. Thus applying 8.32 with T replaced with
T" we have

8.33 dimnull T" < d.

For A an eigenvalue of T, let m , denote the multiplicity of A as an eigenvalue
of T and let d, denote the number of times that A appears on the diagonal of A.
Replacing T in 8.33 with T — AI, we see that

8.34 my <d,

for each eigenvalue A of T. The sum of the multiplicities m, over all eigenvalues
A of T equals n, the dimension of V' (by 8.25). The sum of the numbers d, over
all eigenvalues A of T also equals 7, because the diagonal of A has length .

Thus summing both sides of 8.34 over all eigenvalues A of T produces an
equality. Hence 8.34 must actually be an equality for each eigenvalue A of T.
Thus the multiplicity of A as an eigenvalue of T equals the number of times that
A appears on the diagonal of A, as desired.
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Block Diagonal Matrices

To interpret our results in matrix form, Often we can understand a matrix
we make the following definition, gener- ., by thinking of it as composed
alizing the notion of a diagonal matrix.  ,¢ smaller matrices.

If each matrix A in the definition below

is a 1-by-1 matrix, then we actually have a diagonal matrix.

-~

8.35 definition: block diagonal matrix

A block diagonal matrix is a square matrix of the form
0 A,

where A, ..., A, are square matrices lying along the diagonal and all other
entries of the matrix equal 0. )

8.36 example: a block diagonal matrix |

The 5-by-5 matrix

(4) 00 00
0 2 -3
A= 0 ( 0 2 ) 00
0 00 1 7
0 00 ( 01 )
is a block diagonal matrix with
A4 0
A= A, ,
0 As

where

Ar=(4), A2=((2) _23) A3=((1) z)

Here the inner matrices in the 5-by-5 matrix above are blocked off to show how
we can think of it as a block diagonal matrix.

Note that in the example above, each of A, A,, A5 is an upper-triangular
matrix whose diagonal entries are all equal. The next result shows that with
respect to an appropriate basis, every operator on a finite-dimensional complex
vector space has a matrix of this form. Note that this result gives us many more
zeros in the matrix than are needed to make it upper triangular.
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N

/

8.37 block diagonal matrix with upper-triangular blocks

Suppose F = Cand T € £(V). Let A4, ..., A, be the distinct eigenvalues
of T, with multiplicities d;, ..., d,,,. Then there is a basis of V with respect to
which T has a block diagonal matrix of the form

Ay 0
0 A,
where each A, is a d-by-d, upper-triangular matrix of the form

Ak *
A =
0 Ak
N J
Proof - Each (T — Ail)g(a,, 1) is nilpotent (see 8.22). For each k, choose a basis
of G(A, T), which is a vector space of dimension dy, such that the matrix of
(T = AiD) g a,, 1) With respect to this basis is as in 8.18(c). Thus with respect to
this basis, the matrix of Tl 1), which equals (T — A Dl 1) + Arllga,, 1
looks like the desired form shown above for A;.

The generalized eigenspace decomposition (8.22) shows that putting together
the bases of the G(A,, T)’s chosen above gives a basis of V. The matrix of T with
respect to this basis has the desired form.

8.38 example: block diagonal matrix via generalized eigenvectors
LetT € £(C?) be defined by T(zq,25,23) = (624 + 3z, + 423, 62, + 225, 723).
The matrix of T (with respect to the standard basis) is

6 3 4
0 6 2|,
0 0 7

which is an upper-triangular matrix but is not of the form promised by 8.37.
As we saw in Example 8.24, the eigenvalues of T are 6 and 7; also,

G(6,T) = span((1,0,0),(0,1,0)) and G(7,T) = span((10,2,1)).
We also saw that a basis of C3 consisting of generalized eigenvectors of T is
(1,0,0),(0,1,0), (10,2, 1).
The matrix of T with respect to this basis is
6 3 0
0 6 0 ,
00 (7)

which is a matrix of the block diagonal form promised by 8.37.
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Exercises 8B

10

11

Define T € £(C?) by T(w,z) = (—z,w). Find the generalized eigenspaces
corresponding to the distinct eigenvalues of T.

Suppose T € £(V) is invertible. Prove that G(A, T) = G(% Tfl) for every
A e Fwith A #0.

Suppose T € £(V). Suppose S € £(V) is invertible. Prove that T and
S~1TS have the same eigenvalues with the same multiplicities.

Supposedim V > 2and T € £(V) is such that null T4mV =2 = i T4mV -1,
Prove that T has at most two distinct eigenvalues.

Suppose T € £(V) and 3 and 8 are eigenvalues of T. Let n = dim V. Prove
that V = (null T"~?) @ (range T"~2).

Suppose T € £(V) and A is an eigenvalue of T. Explain why the exponent
of z — A in the factorization of the minimal polynomial of T is the smallest
positive integer m such that (T — AI)™|g 1.1y = 0.

Suppose T € £(V) and A is an eigenvalue of T with multiplicity d. Prove
that G(A, T) = null(T — A%

If d < dim 'V, then this exercise improves 8.20.

Suppose T € £(V) and A4, ..., A, are the distinct eigenvalues of T. Prove
that

V=GA,T)e®---a&GA,,T)
if and only if the minimal polynomial of T equals (z — A;)*1---(z — A,,)"n
for some positive integers k, ..., k,,,.

The case ¥ = C follows immediately from 5.27(b) and the generalized
eigenspace decomposition (8.22); thus this exercise is interesting only when
F=R.

Suppose F = C and T € £(V). Prove that there exist D,N € £(V)
such that T = D + N, the operator D is diagonalizable, N is nilpotent, and
DN = ND.

Suppose V is a complex inner product space, ey, ..., ¢, is an orthonormal
basis of T, and T € £(V). Let Aq,..., A, be the eigenvalues of T, each
included as many times as its multiplicity. Prove that

2 2 2 2
A%+ -+ AL S ATeqll” + o + 1 Te, 1%
See the comment after Exercise 5 in Section 7A.

Give an example of an operator on C* whose characteristic polynomial
equals (z — 7)2(z — 8)2
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Give an example of an operator on C* whose characteristic polynomial
equals (z—1)(z —5)3 and whose minimal polynomial equals (z —1)(z —5)2

Give an example of an operator on C* whose characteristic and minimal
polynomials both equal z(z — 1)?(z — 3).

Give an example of an operator on C* whose characteristic polynomial equals
z(z — 1)%(z — 3) and whose minimal polynomial equals z(z — 1) (z — 3).

Let T be the operator on C* defined by T(zq,29,23,24) = (0,24,2,,23). Find
the characteristic polynomial and the minimal polynomial of T.

Let T be the operator on C° defined by
T(Z]’ 227 239 Z4’ Z57 26) = (07 Zl’ 223 0’ Z47 0) .
Find the characteristic polynomial and the minimal polynomial of T.

Suppose F = Cand P € £(V) is such that P> = P. Prove that the characteris-
tic polynomial of P is z" (z—1)", where m = dim null P and n = dim range P.

Suppose T € £(V) and A is an eigenvalue of T. Explain why the following

four numbers equal each other.

(a) The exponent of z — A in the factorization of the minimal polynomial
of T.

(b) The smallest positive integer m such that (T — AI)™ |5, 1) = 0.
(c) The smallest positive integer m such that

null(T — AD™ = null(T — A)™+1,
(d) The smallest positive integer m such that
range(T — AI)™ = range(T — AI)"+1L.

Suppose F = C and S € £(V) is a unitary operator. Prove that the constant
term in the characteristic polynomial of S has absolute value 1.

Suppose that F = C and V, ..., V,,, are nonzero subspaces of V such that
V=Vie-oV,

Suppose T € £(V) and each V| is invariant under T. For each k, let p;
denote the characteristic polynomial of Tly,. Prove that the characteristic
polynomial of T equals p;---p,,,.

Suppose p,q € P(C) are monic polynomials with the same zeros and g is a
polynomial multiple of p. Prove that there exists T € £(C%&7) such that
the characteristic polynomial of T is g and the minimal polynomial of T is p.

This exercise implies that every monic polynomial is the characteristic
polynomial of some operator.
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Suppose A and B are block diagonal matrices of the form

A, 0 B, 0
A= . B= ,
0 A, 0 B,,

where A, and B, are square matrices of the same size for each k = 1, ..., m.
Show that AB is a block diagonal matrix of the form

AB =
0 A,,B,,

Suppose F =R, T € £(V),and A € C.

(a) Show that u + iv € G(A, T¢) if and only if u — iv € G(A, Tc).

(b) Show that the multiplicity of A as an eigenvalue of T equals the
multiplicity of A as an eigenvalue of Tc.

(c) Use (b) and the result about the sum of the multiplicities (8.25) to show
that if dim V is an odd number, then T has a real eigenvalue.

(d) Use (c) and the result about real eigenvalues of T (Exercise 17 in
Section 5A) to show that if dim V is an odd number, then T has an
eigenvalue (thus giving an alternative proof of 5.34).

See Exercise 33 in Section 3B for the definition of the complexification T.
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8C Consequences of Generalized Eigenspace Decomposition

Square Roots of Operators

Recall that a square root of an operator T € £ (V) is an operator R € £(V') such
that R? = T (see 7.36). Every complex number has a square root, but not every
operator on a complex vector space has a square root. For example, the operator
on C3 defined by T(zy,25,23) = (2,,23,0) does not have a square root, as you are
asked to show in Exercise 1. The noninvertibility of that operator is no accident,
as we will soon see. We begin by showing that the identity plus any nilpotent
operator has a square root.

(8.39 identity plus nilpotent has a square root W

KSuppose T € £(V) is nilpotent. Then I + T has a square root. j

Proof Consider the Taylor series for the function v'1 + x:

8.40 V1I+x=1+a;x+a,x>+--.
We do not find an explicit formula for 1
. Because a; = 3, the formula above
the coefficients or worry about whether . . 2 .
. . implies that 1 + sisa good estimate
the infinite sum converges because we )
for V1 + x when x is small.

use this equation only as motivation.

Because T is nilpotent, T"" = 0 for
some positive integer m. In 8.40, suppose we replace x with T and 1 with I. Then
the infinite sum on the right side becomes a finite sum (because T* = 0 for all
k > m). Thus we guess that there is a square root of I + T of the form

I+a;T+a,T?> + - +a,, ;T" L

Having made this guess, we can try to choose a4, a5, ..., a,, _; such that the operator
above has its square equal to [ + T. Now

(I+a1T+ a2T2 + 113T3 Foeee am_le—l)z

=1+2a,T+ (2a, + af)T? + (2a5 + 2a1a,) T> + -

+ (2a,,_, + terms involving a,, ...,a,, _,) T"~ 1L

We want the right side of the equation above to equal I + T. Hence choose a;
such that 2a; = 1 (thus a; = 1/2). Next, choose a, such that 2a, + af = 0 (thus
a, = —1/8). Then choose a5 such that the coefficient of T® on the right side of
the equation above equals 0 (thus a5 = 1/16). Continue in this fashion for each
k = 4,...,m—1, at each step solving for a, so that the coefficient of T¥ on the right
side of the equation above equals 0. Actually we do not care about the explicit
formula for the a,’s. We only need to know that some choice of the a,’s gives a
square root of [ + T.
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The previous lemma is valid on real and complex vector spaces. However, the
result below holds only on complex vector spaces. For example, the operator of
multiplication by —1 on the one-dimensional real vector space R has no square
root.

For the proof below, we need to know that every z € C has z
a square root in C. To show this, write

z =r(cosf +isinfh), /

where r is the length of the line segment in the complex plane
from the origin to z and 6 is the angle of that line segment with 9
the positive horizontal axis. Then ’

Representation
ﬁ(cos g + isin g) of a complex
number with
is a square root of z, as you can verify by showing that the square polar
of the complex number above equals z. coordinates.
(8.41 over C, invertible operators have square roots W

Suppose V is a complex vector space and T € £(V) is invertible. Then T has
a square root.

Proof Let Aq, ..., A, be the distinct eigenvalues of T. For each k, there exists a
nilpotent operator Ty € £(G(Ay, T)) such that Tlg 1) = A + T [see 8.22(b)].
Because T is invertible, none of the A;’s equals 0, so we can write

T
T|C(/\k,T) = /\k(l + A—]{)
for each k. Because T/ A, is nilpotent, I + T, /A has a square root (by 8.39).
Multiplying a square root of the complex number A, by a square root of I + T/ A,
we obtain a square root Ry of T, 7).
By the generalized eigenspace decomposition (8.22), a typical vectorv € V
can be written uniquely in the form

U=uUp+ o+ U,

where each u; is in G(A, T). Using this decomposition, define an operator
Re L(V) by
Rv = Ryuq + - + R, u,,.

You should verify that this operator R is a square root of T, completing the proof.
By imitating the techniques in this subsection, you should be able to prove that

if V is a complex vector space and T € £(V) is invertible, then T has a k' root
for every positive integer k.
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Jordan Form

We know that if V is a complex vector space, then for every T € £(V) there is a
basis of V with respect to which T has a nice upper-triangular matrix (see 8.37).
In this subsection we will see that we can do even better—there is a basis of V
with respect to which the matrix of T contains 0’s everywhere except possibly on
the diagonal and the line directly above the diagonal.

We begin by looking at two examples of nilpotent operators.

8.42 example: nilpotent operator with nice matrix
Let T be the operator on C* defined by
T(Zl’ Zz, Zs, 24) = (O, Zl’ Zz, 23) .

Then T = 0; thus T is nilpotent. If v = (1,0,0,0), then T®v, T?v, Tv, v is a basis
of C% The matrix of T with respect to this basis is

01 00

o O O
o O O
O O =
O = O

The next example of a nilpotent operator has more complicated behavior than
the example above.

8.43 example: nilpotent operator with slightly more complicated matrix
Let T be the operator on C°® defined by
T(Zl, Zz, 23, Z4, ZS’ 26) = (0, Zl, Zz, 0, Z4, O) .

Then T3 = 0; thus T is nilpotent. In contrast to the nice behavior of the nilpotent
operator of the previous example, for this nilpotent operator there does not exist
a vector v € C®such that T°v, T*v, T3v, T?v, Tv, v is a basis of C® However, if
we take v; = (1,0,0,0,0,0), v, = (0,0,0,1,0,0), and v3 = (0,0,0,0,0,1), then
T?v,, Tvy, vy, Tv,,0,, 05 is a basis of C% The matrix of T with respect to this
basis is

o O o oo
[l el ool
OO O = O
o o o

o o O

o o oo

(50) o
000 00 (0)

Here the inner matrices are blocked off to show that we can think of the 6-by-6
matrix above as a block diagonal matrix consisting of a 3-by-3 block with 1’s on
the line above the diagonal and 0’s elsewhere, a 2-by-2 block with 1 above the
diagonal and 0’s elsewhere, and a 1-by-1 block containing 0.
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Our next goal is to show that every nilpotent operator T € £(V) behaves
similarly to the operator in the previous example. Specifically, there is a finite
collection of vectors vy, ...,v,, € V such that there is a basis of V consisting of
the vectors of the form T/vy, as k varies from 1 to 1 and j varies (in reverse order)
from O to the largest nonnegative integer m, such that T"v, # 0. With respect to
this basis, the matrix of T looks like the matrix in the previous example. More
specifically, T has a block diagonal matrix with respect to this basis, with each
block a square matrix that is 0 everywhere except on the line above the diagonal.

In the next definition, the diagonal of each A, is filled with some eigenvalue
Ay of T, the line directly above the diagonal of A, is filled with 1’s, and all other
entries in A, are O (to understand why each A, is an eigenvalue of T, see 5.41).
The A,’s need not be distinct. Also, A, may be a 1-by-1 matrix (A;) containing
just an eigenvalue of T. If each Ay is O, then the next definition captures the
behavior described in the paragraph above (recall that if T is nilpotent, then 0 is
the only eigenvalue of T).

/8.44 definition: Jordan basis

~

Suppose T € £(V). A basis of V is called a Jordan basis for T if with respect
to this basis T has a block diagonal matrix

0 A4,

in which each A; is an upper-triangular matrix of the form

A1 0
Ak = 1
0 Ay
N J

Most of the work in proving that every operator on a finite-dimensional com-
plex vector space has a Jordan basis occurs in proving the special case below
of nilpotent operators. This special case holds on real vector spaces as well as
complex vector spaces.

(8.45 every nilpotent operator has a Jordan basis w

Suppose T € £(V) is nilpotent. Then there is a basis of V that is a Jordan
basis for T.

Proof ~ We will prove this result by induction on dim V. To get started, note that
the desired result holds if dim V' = 1 (because in that case, the only nilpotent
operator is the 0 operator). Now assume that dim V' > 1 and that the desired result
holds on all vector spaces of smaller dimension.
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Let m be the smallest positive integer such that T = 0. Thus there exists
1 € Vsuch that T"~ 1y # 0. Let
U = span(u, Tu,...,T" " u).

The list u, Tu, ..., T™~'u is linearly independent (see Exercise 2 in Section 8A).
If U =V, then writing this list in reverse order gives a Jordan basis for T and we
are done. Thus we can assume that U # V.

Note that U is invariant under T. By our induction hypothesis, there is a basis
of U that is a Jordan basis for T|;;. The strategy of our proof is that we will find a
subspace W of V such that W is also invariant under T and V = U @ W. Again
by our induction hypothesis, there will be a basis of W that is a Jordan basis for
Tlyy. Putting together the Jordan bases for T|;; and Ty, we will have a Jordan
basis for T.

Let ¢ € V' be such that ¢(T™~'u) # 0. Let

W= {ve Vi (Th) :Oforeachk:O,...,m—l}.

Then W is a subspace of V that is invariant under T (the invariance holds because
if v € W then ¢(T"(Tv)) = 0 fork = 0,...,m — 1, where the case k = m — 1
holds because T = 0). We will show that V = U & W, which by the previous

paragraph will complete the proof.
To show that U + W is a direct sum, suppose v € U N W with v # 0. Because
v € U, there exist ¢y, ..., c,,_1 € F such that

v=co+c Tu+-+c, ;T" u

Let j be the smallest index such that ¢; # 0. Apply T™=7=1 to both sides of the
equation above, getting

i1y = c]-Tm‘lu,
where we have used the equation T = 0. Now apply ¢ to both sides of the
equation above, getting

@(T" 17 10) = c;p(T™~'u) # 0.
The equation above shows that v ¢ W. Hence we have proved that U N W = {0},

which implies that U + W is a direct sum (see 1.46).
To show that U @ W = V, define S: V — F" by

Sv = (qo(v),q)(TU),...,q)(Tm‘lv)>.
Thus null S = W. Hence
dimW = dimnull S = dim V — dimrange S > dimV — m,

where the second equality comes from the fundamental theorem of linear maps
(3.21). Using the inequality above, we have

dim(Ue W) =dimU +dimW >m+ (dimV —m) = dim V.
Thus U @ W = V (by 2.39), completing the proof.
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Now the generalized eigenspace de- .10 1ordan (1838-1922) pub-
composition allows us to extend the pre-  jicn0d a proof of 8.46 in 1870.

vious result to operators that may not be
nilpotent. Doing this requires that we deal with complex vector spaces.

(8.46 Jordan form

Suppose F = C and T € £(V). Then there is a basis of V that is a Jordan
basis for T.

Proof Let A4, ..., A, be the distinct eigenvalues of T. The generalized eigenspace
decomposition states that

V = G()Ll,T) ® - b G()Lm’ T)?

where each (T — A.l) | AT) 18 nilpotent (see 8.22). Thus 8.45 implies that some
basis of each G(Ay, T) is a Jordan basis for (T — A.I) laa,, - Put these bases
together to get a basis of V that is a Jordan basis for T.

Exercises 8C

1 Suppose T € £(C?) is the operator defined by T(z;,2,,23) = (25,23,0).
Prove that T does not have a square root.

2 Define T € £(F°) by T(x1, X, X3,X4,X5) = (2%, 3x3, =Xy, 4x5,0).

(a) Show that T is nilpotent.
(b) Find a square root of [ + T.

3 Suppose V is a complex vector space. Prove that every invertible operator
on V has a cube root.

4 Suppose V is a real vector space. Prove that the operator —I on V has a
square root if and only if dim V is an even number.

5 Suppose T € £(C?) is the operator defined by T(w, z) = (—w —z, 9w+ 5z).
Find a Jordan basis for T.

6 Find a basis of #,(R) that is a Jordan basis for the differentiation operator
D on P,(R) defined by Dp = p".

7 Suppose T € £(V) is nilpotent and vy, ..., v,, is a Jordan basis for T. Prove
that the minimal polynomial of T is z”*!, where m is the length of the
longest consecutive string of 1’s that appears on the line directly above the
diagonal in the matrix of T with respect to vy, ..., v,,.

8 Suppose T € £(V) and vy, ...,v,, is a basis of V that is a Jordan basis for T.
Describe the matrix of T? with respect to this basis.
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9

10

11

12

13

14

Suppose T € £ (V) is nilpotent. Explain why there exist v, ...,v,, € V and
nonnegative integers m., ..., m,, such that (a) and (b) below both hold.

(@ T™oy,...,Tvy,vq,...,T"v,,...,Tv,,v, is a basis of V.

(b) T™m+ly, = ... = Ty, = 0.

Suppose T € £(V) and vy, ...,v,, is a basis of V that is a Jordan basis for T.
Describe the matrix of T with respect to the basis v,, ..., v; obtained by
reversing the order of the v’s.

Suppose T € £(V). Explain why every vector in each Jordan basis for T is
a generalized eigenvector of T.

Suppose T € £(V) is diagonalizable. Show that M (T) is a diagonal matrix
with respect to every Jordan basis for T.

Suppose T € £(V) is nilpotent. Prove that if v, ..., v,, are vectors in V and
my, ..., M, are nonnegative integers such that

T"™vy, ..., Tvy,0q,..., T, ...,Tv,, v, is a basis of V

and
TmlJrlv1 I — Tm,1+1vn =0,

then T™vy, ..., T™v,, is a basis of null T.
This exercise shows that n = dimnull T. Thus the positive integer n that

appears above depends only on T and not on the specific Jordan basis
chosen for T.

Suppose F = C and T € £(V). Prove that there does not exist a direct sum
decomposition of V into two nonzero subspaces invariant under T if and
only if the minimal polynomial of T is of the form (z — A)%™" for some
AeC.
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8D Trace: A Connection Between Matrices and Operators

We begin this section by defining the trace of a square matrix. After developing
some properties of the trace of a square matrix, we will use this concept to define
the trace of an operator.

(8.47 definition: trace of a matrix W

Suppose A is a square matrix with entries in F. The trace of A, denoted tr A,
is defined to be the sum of the diagonal entries of A.

| 8.48 example: trace of a 3-by-3 matrix |

Suppose
3 -1 =2
A=|3 2 -3
1 2 0

The diagonal entries of A, which are shown in red above, are 3, 2, and 0. Thus
trA=3+2+0=25.

Matrix multiplication is not commutative, but the next result shows that the
order of matrix multiplication does not matter to the trace.

(8.49 trace of AB equals trace of BA

Suppose A is an m-by-n matrix and B is an n-by-m matrix. Then

tr(AB) = tr(BA).

Proof  Suppose
Ay o A

R Bia By
A= : : , B= : :
Am,l Am,n Bn,l Bn,m
The j" term on the diagonal of the m-by-m matrix AB equals Yho1 Aj By, ;- Thus
m n
tr(AB) = ) > A By,
j=1k=1
n m
= 2. 2 B
k=1j=1

n
= Y (k™ term on diagonal of the n-by-n matrix BA)
K=1

= tr(BA),

as desired.
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We want to define the trace of an operator T € £(V) to be the trace of the
matrix of T with respect to some basis of V. However, this definition should not
depend on the choice of basis. The following result will make this possible.

ﬁ.SO trace of matrix of operator does not depend on basis

Suppose T € £(V). Suppose Uy, ..., u,, and vy, ..., v, are bases of V. Then
tr M (T, (uy, ..., u,)) = tr M (T, (vq, ..., 0,)).

Proof LetA = M (T, (uy, ...,u,)) and B = M (T, (vy,...,v,)). The change-of-
basis formula tells us that there exists an invertible n-by-n matrix C such that
A = C71BC (see 3.84). Thus

trA =t((C7B)C)
=r(C(C'B))
=u((cc)B)
= trB,

where the second line comes from 8.49.

Because of 8.50, the following definition now makes sense.

/8.51 h

definition: trace of an operator

Suppose T € £(V). The trace of T, denoted tr T, is defined by
T = tw M(T, (vq,...,9,)),

where v, ..., v,, is any basis of V. )

Suppose T € £(V) and A is an eigenvalue of T. Recall that we defined the
multiplicity of A to be the dimension of the generalized eigenspace G(A, T) (see
8.23); we proved that this multiplicity equals dimnull(T — AI)¥™V (see 8.20).
Recall also that if V is a complex vector space, then the sum of the multiplicities
of all eigenvalues of T equals dim V' (see 8.25).

In the following result, the sum of the eigenvalues “with each eigenvalue
included as many times as its multiplicity” means that if A4, ..., A, are the distinct
eigenvalues of T with multiplicities d, ..., d,,,, then the sum is

dl/\l + -+ dm)\m.

Or if you prefer to work with a list of not-necessarily-distinct eigenvalues, with
each eigenvalue included as many times as its multiplicity, then the eigenvalues
could be denoted by A4, ..., A, (where n equals dim V) and the sum is

A+ 4+ A
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(8.52 on complex vector spaces, trace equals sum of eigenvalues w

Suppose F = C and T € £(V). Then tr T equals the sum of the eigenvalues
of T, with each eigenvalue included as many times as its multiplicity.

Proof There is a basis of V with respect to which T has an upper-triangular
matrix with the diagonal entries of the matrix consisting of the eigenvalues of T,
with each eigenvalue included as many times as its multiplicity—see 8.37. Thus
the definition of the trace of an operator along with 8.50, which allows us to use a
basis of our choice, implies that tr T equals the sum of the eigenvalues of T, with
each eigenvalue included as many times as its multiplicity.

8.53 example: trace of an operator on c?
Suppose T € £(C?) is defined by
T(zq,25,23) = (321 — 2y — 223,321 + 22y — 323,21 + 22,).

Then the matrix of T with respect to the standard basis of C3 is

3 -1 -2
3 2 -3
1 2 0

Adding up the diagonal entries of this matrix, we see that tr T = 5.

The eigenvalues of T are 1, 2 + 3i, and 2 — 3i, each with multiplicity 1, as
you can verify. The sum of these eigenvalues, each included as many times as its
multiplicity, is 1 + (2 + 3i) + (2 — 3i), which equals 5, as expected by 8.52.

The trace has a close connection with the characteristic polynomial. Suppose
F=C,Te £(V),and Ay, ..., A, are the eigenvalues of T, with each eigenvalue
included as many times as its multiplicity. Then by definition (see 8.26), the
characteristic polynomial of T equals

(z—=Ay)(z—=A,).

Expanding the polynomial above, we can write the characteristic polynomial of T
in the form

2" — (A + A ANZTT e+ (=D (AA).

The expression above immediately leads to the next result. Also see 9.65,
which does not require the hypothesis that F = C.

(8.54 trace and characteristic polynomial W

Suppose F = Cand T € £(V). Let n = dim V. Then tr T equals the negative
of the coefficient of z*~! in the characteristic polynomial of T.
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The next result gives a nice formula for the trace of an operator on an inner
product space.

8.55 trace on an inner product space

Suppose V is an inner product space, T € £(V), and e, ..., e,, is an orthonor-
mal basis of V. Then

trT = (Tey,eq) + - + (Te,,e,).

Proof The desired formula follows from the observation that the entry in row k,
column k of M (T, (ey, ...,e,)) equals (Tey, ;) [use 6.30(a) with v = Tey].

The algebraic properties of the trace as defined on square matrices translate
to algebraic properties of the trace as defined on operators, as shown in the next
result.

ﬁ3.56 trace is linear

The function tr: £(V) — F is a linear functional on £ (V') such that
tr(ST) = tr(TS)
forall S, T € £(V).

Proof Choose a basis of V. All matrices of operators in this proof will be with
respect to that basis. Suppose S, T € £(V).
If A € F, then

tr(AT) = t M(AT) = tr(AM(T)) = Au M(T) = At T,

where the first and last equalities come from the definition of the trace of an
operator, the second equality comes from 3.38, and the third equality follows
from the definition of the trace of a square matrix.

Also,

r(S+T) =t M(S+T) = r(M(S)+M(T)) =tr M(S) +tur M(T) = r S+t T,
where the first and last equalities come from the definition of the trace of an
operator, the second equality comes from 3.35, and the third equality follows
from the definition of the trace of a square matrix. The two paragraphs above

show that tr: £(V) — F is a linear functional on £(V).
Furthermore,

tr(ST) = tr M (ST) = tr(M(S) M(T)) = tre(M(T) M (S)) = tr M(TS) = tr(TS),

where the second and fourth equalities come from 3.43 and the crucial third
equality comes from 8.49.

The equations tr(ST) = tr(TS) and tr] = dim V uniquely characterize the
trace among the linear functionals on £(V)—see Exercise 10.
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The equation tr(ST) = tr(TS) leads
to our next result, which does not hold on
infinite-dimensional vector spaces (see

Chapter 8 Operators on Complex Vector Spaces

The statement of the next result does
not involve traces, but the short proof
uses traces. When something like this

Exercise 13). However, additional hy-  happens in mathematics, then usually
potheseson S, T, and V lead to an infinite- ¢ good definition lurks in the back-
dimensional generalization of the result = ground.

below, with important applications to

quantum theory.

ﬁ%.57 identity operator is not the difference of ST and TS

LThere do not exist operators S, T € £(V) such that ST — TS = L.

NG

Proof Suppose S,T € £(V). Then

tr(ST — TS) = tr(ST) — tr(TS) =0,

where both equalities come from 8.56. The trace of I equals dim V, which is not 0.
Because ST — TS and I have different traces, they cannot be equal.

Exercises 8D

Suppose V is an inner product space and v,w € V. Define an operator
T € £(V) by Tu = (u,v)w. Find a formula for tr T.

Suppose P € £(V) satisfies P? = P. Prove that
tr P = dimrange P.

Suppose T € £(V) and T° = T. Prove that the real and imaginary parts of
tr T are both integers.

Suppose V is an inner product space and T € £(V). Prove that
rT* =tT.

Suppose V is an inner product space. Suppose T € £(V) is a positive
operator and tr T = 0. Prove that T = 0.

Suppose V is an inner product space and P,Q & £(V) are orthogonal
projections. Prove that tr(PQ) > 0.

Suppose T € £(C®) is the operator whose matrix is

51 -12 -21
60 —40 -28
57 —68 1

Someone tells you (accurately) that —48 and 24 are eigenvalues of T. Without
using a computer or writing anything down, find the third eigenvalue of T.
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8
9

10

11

12

Prove or give a counterexample: If S, T € £(V), then tr(ST) = (tr S)(tr T).

Suppose T € £(V) is such that tr(ST) = O forall S € £(V). Prove that
T =0.

Prove that the trace is the only linear functional 7: £(V) — F such that
7(ST) = T(TS)

forall S,T € £(V)and t(I) = dim V.
Hint: Suppose that vy, ...,v,, is a basis of V. For j,k € {1,...,n}, define
P; € L(V) by P; x(ayvy + -+ + a,v,,) = a,v;. Prove that
T(Pix) = {1 lf] =k
0 ifj+k
Then for T € £(V), use the equation T = Y} _; Z]'.l: L M(D); P i t0
show that T(T) = trT.

Suppose V and W are inner product spaces and T € £(V, W). Prove that if
ey, ..., e, is an orthonormal basis of V and f, ..., f,,, is an orthonormal basis
of W, then
n m
w(T*T) = ) ) KTe f)I2
k=1j=1

The numbers (Tey, fj) are the entries of the matrix of T with respect to the

orthonormal bases ey, ...,e,, and fi, ..., f,,. These numbers depend on the

bases, but tr(T*T) does not depend on a choice of bases. Thus this exercise

shows that the sum of the squares of the absolute values of the matrix entries

does not depend on which orthonormal bases are used.

Suppose V and W are finite-dimensional inner product spaces.

(a) Prove that (S, T) = tr(T*S) defines an inner product on £(V, W).

(b) Suppose ey, ...,e, is an orthonormal basis of V and f,, ..., f,, is an or-
thonormal basis of W. Show that the inner product on £(V, W) from
(a) is the same as the standard inner product on F*", where we identify
each element of £(V, W) with its matrix (with respect to the bases just
mentioned) and then with an element of F"".

Caution: The norm of a linear map T € L(V, W) as defined by 7.86 is not
the same as the norm that comes from the inner product in (a) above. Unless
explicitly stated otherwise, always assume that ||T|| refers to the norm as
defined by 7.86. The norm that comes from the inner product in (a) is called
the Frobenius norm or the Hilbert-Schmidt norm.

13 Find S,T € £(P(F)) such that ST — TS = I.

Hint: Make an appropriate modification of the operators in Example 3.9.

This exercise shows that additional hypotheses are needed on S and T to
extend 8.57 to the setting of infinite-dimensional vector spaces.
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Chapter 9
Multilinear Algebra and Determinants

We begin this chapter by investigating bilinear forms and quadratic forms on a
vector space. Then we will move on to multilinear forms. We will show that the
vector space of alternating n-linear forms has dimension one on a vector space of
dimension 7. This result will allow us to give a clean basis-free definition of the
determinant of an operator.

This approach to the determinant via alternating multilinear forms leads to
straightforward proofs of key properties of determinants. For example, we will see
that the determinant is multiplicative, meaning that det(ST) = (detS)(det T) for
all operators S and T on the same vector space. We will also see that T is invertible
if and only if det T # 0. Another important result states that the determinant of
an operator on a complex vector space equals the product of the eigenvalues of
the operator, with each eigenvalue included as many times as its multiplicity.

The chapter concludes with an introduction to tensor products.

( standing assumptions for this chapter W

e F denotes R or C.
e V and W denote finite-dimensional nonzero vector spaces over F.

a N

VS-Ag 00 usmyds [siueq

\_ %

The Mathematical Institute at the University of Géttingen. This building opened in 1930,
when Emmy Noether (1882—-1935) had already been a research mathematician and
Saculty member at the university for 15 years (the first eight years without salary).
Noether was fired by the Nazi government in 1933. By then Noether and her
collaborators had created many of the foundations of modern algebra, including an
abstract algebra viewpoint that contributed to the development of linear algebra.

332
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9A Bilinear Forms and Quadratic Forms

Bilinear Forms

A bilinear form on V is a function from V x V to F that is linear in each slot
separately, meaning that if we hold either slot fixed then we have a linear function
in the other slot. Here is the formal definition.

/9.1 definition: bilinear form w

A bilinear form on V is a function B: Vx V — F such that

v B(v,u) and ©ve~— B(u,0)

\are both linear functionals on V for every u € V.

For example, if Vis a real inner prod- g, 011 st the term linear functional,
uct space, then the function that takes an used in the definition above, means
ordered pair (u,v) € Vx Vto (w,0)is 4 finear function that maps into the
a bilinear form on V. If V' is a nonzero  scalar field F. Thus the term bilinear
complex inner product space, then this  functional would be more consistent
function is not a bilinear form because  terminology than bilinear form, which
the inner product is not linear in the sec- = unfortunately has become standard.
ond slot (complex scalars come out of the
second slot as their complex conjugates).

If F = R, then a bilinear form differs from an inner product in that an inner
product requires symmetry [meaning that S(v,w) = S(w,v) for all v,w € V]
and positive definiteness [ meaning that S(v, v) > 0 for all v € V\{0}], but these
properties are not required for a bilinear form.

9.2 example: bilinear forms |
e The function B: F° x F° — F defined by

B((x1,%2,%3), (Y1, Y2-Y3)) = X1¥p — 5XpY3 + 231/
is a bilinear form on F°.

e Suppose A is an n-by-n matrix with A; ; € F in row j, column k. Define a
bilinear form 4 on F" by

Ba((xrs s X))y s oo Y)) = Z Z Aj KXYk
k=1j=1

The first bullet point is a special case of this bullet point with n = 3 and

01 0
A= 0 0 =5
2 0 0
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e Suppose V is a real inner product space and T € £(V). Then the function
B: VxV — R defined by

Bu,v) = (u, To)
is a bilinear form on V.
e If n is a positive integer, then the function 8: ?,(R) x ?,(R) — R defined by
Bp.g) =p2)-9'(3)
is a bilinear form on 7, (R).
e Suppose ¢, T € V' Then the function f: Vx V — F defined by
pu,v) = @) - T(v)
is a bilinear form on V.

e More generally, suppose that ¢y, ...,¢,, 71,....,T,, € V" Then the function
B: Vx V — F defined by

Bu,v) = @1 (u) - 71 (V) + - + @, () - T,(V)

is a bilinear form on V.

A bilinear form on V is a function from V' x V to F. Because V x V is a vector
space, this raises the question of whether a bilinear form can also be a linear map
from Vx V to F. Note that none of the bilinear forms in 9.2 are linear maps except
in some special cases in which the bilinear form is the zero map. Exercise 3 shows
that a bilinear form 8 on V is a linear map on Vx V only if § = 0.

(9.3 definition: V@ W

tl’he set of bilinear forms on V is denoted by V2, J

With the usual operations of addition and scalar multiplication of functions,
V@ is a vector space.

For T an operator on an n-dimensional vector space V and a basis e, ..., ¢,
of V, we used an n-by-n matrix to provide information about T. We now do the
same thing for bilinear forms on V.

~

/9.4 definition: matrix of a bilinear form, M (p)

Suppose B is a bilinear form on V and ey, ..., e, is a basis of V. The matrix of
B with respect to this basis is the n-by-n matrix M () whose entry M (f) o
in row j, column k is given by

If the basis eq,...,e, is not clear from the context, then the notation
M(B, (eq, ..., e,) ) is used.
\ ( n ) /
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Recall that F»" denotes the vector space of n-by-n matrices with entries in F
and that dim F»" = n? (see 3.39 and 3.40).

( 9.5 dimV® = (dimV)? w
tuppose ey, ...,e, is a basis of V. Then the map 8 — M (B) is an isomorphismj

of V@ onto F”" Furthermore, dim V® = (dim V)2

Proof The map B — M (B) is clearly a linear map of V® into F**". For A € F™",
define a bilinear form 8, on V by
n n
Ba(xieq + -+ +x,8,, Y161 + -+ Yue,) = kzl AzlAj,kxjyk
-1j=
forxy, ..., %, Y1, ...y, € F (if V.= F"ande,, ..., e, is the standard basis of F", this
B4 is the same as the bilinear form f3 4 in the second bullet point of Example 9.2).
The linear map B — M (B) from V® to F-" and the linear map A — B, from
F"" to V@ are inverses of each other because B,z = B for all € V@ and
M(By) = Aforall A € F»", as you should verify.
Thus both maps are isomorphisms and the two spaces that they connect have
the same dimension. Hence dim V® = dimF*" = n? = (dim V)2

Recall that C' denotes the transpose of a matrix C. The matrix C" is obtained
by interchanging the rows and the columns of C.

9.6 composition of a bilinear form and an operator

Suppose § is a bilinear form on V and T € £(V). Define bilinear forms «
and p on V by

a(u,v) = B(u,Tv) and p(u,v) = B(Tu,v).

Letey, ...,e, be a basis of V. Then

S M) = M@B)MT) and M(p) = M(T)'M(B).

Proof Ifj,k € {1,...,n}, then

M(a); o = alej, )
= ﬁ(e]-, Tey)

= (e, mi_lM(T)m,k &)

Z ﬁ(ej’ em) M(T)m,k
m=1

(M(,B)]V[(T))],’k.
Thus M (a) = M (B) M (T). The proof that M (p) = M (T)' M (B) is similar.
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The result below shows how the matrix of a bilinear form changes if we change
the basis. The formula in the result below should be compared to the change-
of-basis formula for the matrix of an operator (see 3.84). The two formulas are
similar, except that the transpose C' appears in the formula below and the inverse
C~! appears in the change-of-basis formula for the matrix of an operator.

/9.7 change-of-basis formula )

Suppose B € V. Suppose e;, ...,e, and f,, ..., f,, are bases of V. Let

A=M(B,(e1,..e,)) and B =M(B, (fi,.es f))
and C = M (L, (eq,...e,), (f1, s f,,)). Then

—Ct
\_ A = C'BC. Y,

Proof  The linear map lemma (3.4) tells us that there exists an operator T € £ (V)
such that Tf, = e, foreach k = 1, ..., n. The definition of the matrix of an operator
with respect to a basis implies that

M(T, (f1, - fu)) =C.
Define bilinear forms «, p on V by
a(u,v) = f(u,To) and pu,v) = a(Tu,v) = B(Tu,Tv).
Then ﬂ(ej,ek) = ,B(Tfj, Tf) = p(fj,fk) forall j,k € {1, ...,n}. Thus

A= M(,O, (fp 9fn))
= CtM(DCy (fl""’fn))
= C'BC,

where the second and third lines each follow from 9.6.

9.8 example: the matrix of a bilinear form on P,(R) |
Define a bilinear form S on %, (R) by B(p,q) = p(2) - 4'(3). Let
A=M(B, (1,x—2,(x=3)%)) and B=M(B, (1,x,x?))
and C = M (I, (1,x — 2, (x —3)?), (1,x,x?)). Then

010 01 6 1 -2 9
A= 0 0 O and B=| 0 2 12 and C=| 0 1 -6
010 0 4 24 0 0 1

Now the change-of-basis formula 9.7 asserts that A = C'BC, which you can verify
with matrix multiplication using the matrices above.
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Symmetric Bilinear Forms

(2) )

9.9 definition: symmetric bilinear form, Vg,

A bilinear form p € V@ is called symmetric if

p(u,w) = p(w,u)

for all u,w € V. The set of symmetric bilinear forms on V is denoted by Vb(yzl)][1

/

9.10 example: symmetric bilinear forms |
e If V is a real inner product space and p € V@ is defined by
p(u,w) = (u,w),
then p is a symmetric bilinear form on V.
e Suppose V is a real inner product space and T € £(V). Define p € V@ by
o(u,w) = (u, Tw).

Then p is a symmetric bilinear form on V if and only if T is a self-adjoint
operator (the previous bullet point is the special case T = I).

e Suppose p: L(V) x £(V) — F is defined by
(5, T) = tr(ST).

Then p is a symmetric bilinear form on £ (V') because trace is a linear functional
on £(V) and tr(ST) = tr(TS) for all S, T € £L(V); see 8.56.

@.11 definition: symmetric matrix w

LA square matrix A is called symmetric if it equals its transpose. )

An operator on V may have a symmetric matrix with respect to some but not all
bases of V. In contrast, the next result shows that a bilinear form on V has a sym-
metric matrix with respect to either all bases of V or with respect to no bases of V.

/

9.12 symmetric bilinear forms are diagonalizable

Suppose p € V@, Then the following are equivalent.
(a) pis a symmetric bilinear form on V.

(b) M(p, (eq,....e,)) is a symmetric matrix for every basis e;, ...,e,, of V.

(c) M(p, (eq,...,e,)) is a symmetric matrix for some basis ey, ..., e, of V.

\(d) M(p, (eq, ...,e,)) is a diagonal matrix for some basis ey, ..., e, of V.

J
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Proof First suppose (a) holds, so p is a symmetric bilinear form. Suppose
eq,....e, isabasis of Vand j,k € {1,...,n}. Then p(ej, ep) = pleg, e]-) because p
is symmetric. Thus M (p, (E15ees en)) is a symmetric matrix, showing that (a)
implies (b).

Clearly (b) implies (c).

Now suppose (c) holds and ey, ..., e, is a basis of V such that M (p, (e;, ..., e,,))
is a symmetric matrix. Suppose u,w € V. There exist a4, ...,a,, b4, ...,b, € F
such that u = aqe; + --- +a,¢, and w = bye; + --- + b,e,,. Now

Il
e}
N
=
=
=
D
SN——r~”

p(u, w)

I
1=
1=
D
&
=)
>
K
o

j=1k=1
-y i abpo (e ¢))
j=1k=1
(3 - 00)
= p(w, u),

where the third line holds because M (p) is a symmetric matrix. The equation
above shows that p is a symmetric bilinear form, proving that (c) implies (a).

At this point, we have proved that (a), (b), (c) are equivalent. Because every
diagonal matrix is symmetric, (d) implies (c). To complete the proof, we will
show that (a) implies (d) by induction on n = dim V.

If n = 1, then (a) implies (d) because every 1-by-1 matrix is diagonal. Now
suppose n > 1 and the implication (a) = (d) holds for one less dimension.
Suppose (a) holds, so p is a symmetric bilinear form. If p = 0, then the matrix of
o with respect to every basis of V is the zero matrix, which is a diagonal matrix.
Hence we can assume that p # 0, which means there exist u,w € V such that
p(u,w) # 0. Now

20(u,w) = p(u + w,u +w) — p(u,u) — p(w, w).

Because the left side of the equation above is nonzero, the three terms on the right
cannot all equal 0. Hence there exists v € V such that p(v,v) # 0.

LetU = {u € V : p(u,v) = 0}. Thus U is the null space of the linear
functional u — p(u, v) on V. This linear functional is not the zero linear functional
because v & U. Thus dimU = n — 1. By our induction hypothesis, there is a
basis eq, ..., e, _; of U such that the symmetric bilinear form p|; ;; has a diagonal
matrix with respect to this basis.

Because v & U, thelistey, ...,e,_1,vis abasis of V. Suppose k € {1, ...,n—1}.
Then p(e,v) = 0 by the constructlon of U. Because p is symmetric, we also
have p(v, ;) = 0. Thus the matrix of p with respectto ey, ...,e, _,v is a diagonal
matrix, completing the proof that (a) implies (d).
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The previous result states that every symmetric bilinear form has a diagonal
matrix with respect to some basis. If our vector space happens to be a real inner
product space, then the next result shows that every symmetric bilinear form has
a diagonal matrix with respect to some orthonormal basis. Note that the inner
product here is unrelated to the bilinear form.

(9.1 3 diagonalization of a symmetric bilinear form by an orthonormal basis\

Suppose V is a real inner product space and p is a symmetric bilinear form on
V. Then p has a diagonal matrix with respect to some orthonormal basis of V.

Proof Let fy, ..., f, be an orthonormal basis of V. Let B = M (p, (f1, ..., f,,))-
Then B is a symmetric matrix (by 9.12). Let T € £(V) be the operator such that
M(T, (f1,--, fu)) = B. Thus T is self-adjoint.

The real spectral theorem (7.29) states that T has a diagonal matrix with respect
to some orthonormal basis e;, ...,e, of V. Let C = M (L, (eq,...,e,.), (f1s s fy))-
Thus C~1BC is the matrix of T with respect to the basis e;, ..., ¢, (by 3.84). Hence
C~!'BC is a diagonal matrix. Now

M(p, (ey,...,e,)) = C'BC = C~'BC,

where the first equality holds by 9.7 and the second equality holds because C is a
unitary matrix with real entries (which implies that C~ = C'; see 7.57).

Now we turn our attention to alternating bilinear forms. Alternating multilinear
forms will play a major role in our approach to determinants later in this chapter.

9.14 definition: alternating bilinear form, V;ﬁ) A
A bilinear form &« € V? is called alternating if

a(v,v) =0
for all v € V. The set of alternating bilinear forms on V is denoted by V;lzt). )

9.15 example: alternating bilinear forms |
e Suppose n > 3 and a: F" x F" — F is defined by
(g, ey X))y Yoo Y)) = X1Yp = XYy + X1Y3 — X3Y1.-
Then « is an alternating bilinear form on F",
e Suppose ¢, T € V" Then the bilinear form « on V defined by
a(u,w) = @(u) T(w) — ¢(w) T(u)

is alternating.
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The next result shows that a bilinear form is alternating if and only if switching
the order of the two inputs multiplies the output by —1.

/

9.16 characterization of alternating bilinear forms W

A bilinear form « on V is alternating if and only if

a(u,w) = —a(w, u)

for all u,w € V.
\ora u,w

Proof First suppose that « is alternating. If u,w € V, then
0=a(u+w,u+w)
=a(u,u) +a(u,w) +a(w,u) + a(w,w)

=a(u,w) +a(w,u).

Thus a(u, w) = —a(w, u), as desired.
To prove the implication in the other direction, suppose a(u,w) = —a(w, u)
for all u,w € V. Then a(v,v) = —a(v,v) for all v € V, which implies that

a(v,v) = 0forall v € V. Thus « is alternating.

Now we show that the vector space of bilinear forms on V is the direct sum of
the symmetric bilinear forms on V' and the alternating bilinear forms on V.

917 V@ =V eV

The sets Vs(yzr)n and V;lzt) are subspaces of V®. Furthermore,

VO =VGh e V.

alt

Proof The definition of symmetric bilinear form implies that the sum of any
two symmetric bilinear forms on V' is a symmetric bilinear form on V, and every
scalar multiple of any symmetric bilinear form on V is a symmetric bilinear form
on V. Also, the zero bilinear form is in Vs(yzl% Thus Vs(yzl% is a subspace of V2,
Similarly, the verification that V;ﬁ) is a subspace of V@ is straightforward.

Next, we want to show that V® = V&, + V. To do this, suppose g € V.
Define p,a € V@ by

Bu,w) + B(w, u)

p(usw) = 5 and DC(M,ZU) — IB(uv w) ;‘B(w,l/l)

Thenp € Vinanda € VY, and B = p + a. Thus V@ = V), + V.

Finally, to show that the intersection of the two subspaces under consideration
equals {0}, suppose B € V§y2r)11 NVP Ifu,we V,then9.16 implies that

alt

B(u,w) = —B(w,u) = —P(u, w)
and hence B(u,w) = 0. Thus 8 = 0. Hence V® = Vi), @ VS (by 1.46).

alt

Linear Algebra Done Right, fourth edition, by Sheldon Axler



Section 9A  Bilinear Forms and Quadratic Forms 341

Quadratic Forms

(9.18 definition: quadratic form associated with a bilinear form, qg

For f a bilinear form on V, define a function gz: V' — F by g5(v) = p(v,0).
A function g: V — F is called a quadratic form on V if there exists a bilinear
form § on V such that g = g.

Note that if § is a bilinear form, then g4 = 0 if and only if f is alternating.

| 9.19 example: quadratic form
Suppose B is the bilinear form on R® defined by

B((x1. %2, X3), (Y1, Y2, ¥3)) = X1¥1 — 4x1Y5 + 8x1y3 — 3x3Y5.
Then g is the quadratic form on R? given by the formula

2 2
qp (X1, X, X3) = X{ — 4x1Xp + 8x1x3 — 3x3.

The quadratic form in the example above is typical of quadratic forms on F”,
as shown in the next result.

/

9.20 quadratic forms on F"

o

Suppose 7 is a positive integer and g is a function from F” to F. Then g
is a quadratic form on F" if and only if there exist numbers A; ; € F for
j.k € {1, ...,n} such that

G(X1, s Xyy) = kZ Z kX Xk

\for all (xq,...,x,) € F".

J

Proof  First suppose g is a quadratic form on F”. Thus there exists a bilinear form
p on F" such that g = g4. Let A be the matrix of § with respect to the standard
basis of F". Then for all (xq, ..., x,,) € F", we have the desired equation

GOy, e X)) = B ey X)) (X150 X)) = Z Z Aj XX

k=1j=1

Conversely, suppose there exist numbers A]-’ « € Fforj,k € {1,...,n} such that
n n
G(xX1, s X)) = Z Z Aj kXX
k=1j=1
for all (xq,...,x,) € F". Define a bilinear form  on F" by

ﬁ((xl’ ---,xn)’ (]/1, ""yn Z Z A] k

k=1j=1

Then g = gp, as desired.
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Although quadratic forms are defined in terms of an arbitrary bilinear form,
the equivalence of (a) and (b) in the result below shows that a symmetric bilinear
form can always be used.

/

9.21 characterizations of quadratic forms

N

Suppose g: V — F is a function. The following are equivalent.

(a) g is a quadratic form.

(b) There exists a unique symmetric bilinear form p on V such that g = g,
(c) q(Av) = /\2q(v) for all A € F and all v € V, and the function
(u,w) = q(u +w) —q(u) — q(w)
is a symmetric bilinear form on V.

(d) g(2v) = 4q(v) for all v € V, and the function
(u,w) = q(u +w) — gq(u) — g(w)

is a symmetric bilinear form on V.

\ J

Proof  First suppose (a) holds, so ¢ is a quadratic form. Hence there exists a
bilinear form f such that g = g5. By 9.17, there exist a symmetric bilinear form p
on V and an alternating bilinear form « on V such that 8 = p + a. Now

g=4q =4qp + 90 = 4qp-
If o' € V& also satisfies Gy =g, thenq, _, = 0;thus o' —p € Von NV

alt

which implies that p” = p (by 9.17). This completes the proof that (a) implies (b).
Now suppose (b) holds, so there exists a symmetric bilinear form p on V such
thatg = ¢,. If A € Fand v € V then

q(Av) = p(Av, Av) = Ap(v, Av) = A?p(v,v) = A%q(v),
showing that the first part of (c) holds.
If u,w € V, then
qgu+w) —qu) —q(w) = p(u +w,u +w) — p(u,u) — p(w,w) = 20U, w).
Thus the function (u, w) — gq(u+w)—q(u) —g(w) equals 2p, which is a symmetric
bilinear form on V, completing the proof that (b) implies (c).

Clearly (c) implies (d).
Now suppose (d) holds. Let p be the symmetric bilinear form on V defined by

g(u +w) — q(u) — q(w)
5 i

p(u,w) =
If v € V, then

0(v,0) = 9(2v) — @) —q@) _ 49@) —29(@) _

2 2
Thus g = q,,, completing the proof that (d) implies (a).

q(v).
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9.22 example: symmetric bilinear form associated with a quadratic form |
Suppose g is the quadratic form on R® given by the formula
G(xq, X9, X3) = X7 — 4x1%, + 8x1x53 — 3x2

A bilinear form 8 on R® such that g = qp is given by Example 9.19, but this
bilinear form is not symmetric, as promised by 9.21(b). However, the bilinear
form p on R® defined by

(1, %0, X3), (Y1, Y2: Y3)) = X1¥1 — 21y, — 20001 + 4xyy3 + 4xzy; — 3335
is symmetric and satisfies g = g,

The next result states that for each quadratic form we can choose a basis such
that the quadratic form looks like a weighted sum of squares of the coordinates,

meaning that there are no cross terms of the form x;x; with j # k.

N

/9.23 diagonalization of quadratic form

Suppose g is a quadratic form on V.
(a) There exist a basis ey, ...,e,, of Vand A4, ..., A,, € F such that
g(xieq + -+ x,8,) = Axf + - + A,x,2
for all x4, ...,x,, € F.

(b) If F = R and V is an inner product space, then the basis in (a) can be
\_ chosen to be an orthonormal basis of V. )

Proof
(a) There exists a symmetric bilinear form p on V such thatg = ¢q o (by 9.21). Now
there exists a basis ey, ..., e, of V such that M(p, (615 eees en)) is a diagonal
matrix (by 9.12). Let A4, ..., A,, denote the entries on the diagonal of this
matrix. Thus
(e;,e.) = Ay it =k
P9 =00 ifj 2k
forallj,k € {1,...,n}. If x,...,x,, € F, then
q(xqeq + - +x,e,) = p(x1eq + -+ + X6, X181 + - + Xx,€,,)
n n
DIPITVIONN
k=1j=1
= /\1x12 + e+ )Lnxnz,
as desired.

(b) Suppose F = R and V is an inner product space. Then 9.13 tells us that the
basis in (a) can be chosen to be an orthonormal basis of V.
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Exercises 9A

1

Prove that if  is a bilinear form on F, then there exists ¢ € F such that
B(x,y) = cxy
forall x,y € F.

Let n = dim V. Suppose S is a bilinear form on V. Prove that there exist
@1seees P> Ty 0> T,, € V' such that

Bu,v) = @ (u) - 71 (V) + - + @, (u) - T, (V)
forall u,v € V.

This exercise shows that if n = dim 'V, then every bilinear form on V is of
the form given by the last bullet point of Example 9.2.

Suppose B: Vx V — F is a bilinear form on V and also is a linear functional
on Vx V. Prove that 8 = 0.

Suppose V is a real inner product space and § is a bilinear form on V. Show
that there exists a unique operator T € £ (V) such that

B(u,v) = (u, Tv)

forallu,v e V.

This exercise states that if V is a real inner product space, then every
bilinear form on V is of the form given by the third bullet point in 9.2.

Suppose S is a bilinear form on a real inner product space Vand T is the
unique operator on V such that B(u,v) = (u,Tv) for all u,v € V (see
Exercise 4). Show that § is an inner product on V if and only if T is an
invertible positive operator on V.

Prove or give a counterexample: If p is a symmetric bilinear form on V, then
{veV:pmv) =0}
is a subspace of V.

Explain why the proof of 9.13 (diagonalization of a symmetric bilinear form
by an orthonormal basis on a real inner product space) fails if the hypothesis
that F = R is dropped.

Find formulas for dim Vg(yzr)n and dim V;lzt) in terms of dim V.

Suppose that # is a positive integer and V = {p € P, (R) : p(0) = p(1)}.
Definex: Vx V — R by

1
a(p.q) = fo P

Show that « is an alternating bilinear form on V.
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10 Suppose that n is a positive integer and
V={pe?P,R):p0) =p@d) and p’'(0) = p’'(1)}.
Define p: VxV — R by

1 1
otp.) = | py.

Show that p is a symmetric bilinear form on V.
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9B Alternating Multilinear Forms

Multilinear Forms

(9.24 definition: V™

For m a positive integer, define V™ by

VMt =Vx..-xV.

m times

Now we can define m-linear forms as a generalization of the bilinear forms
that we discussed in the previous section.

~

9.25 definition: m-linear form, V", multilinear form

e For m a positive integer, an m-linear form on V is a function g: V" — F
that is linear in each slot when the other slots are held fixed. This means
that for each k € {1, ...,m} and all u,, ..., u,, € V, the function

V> BQUp, oy Up_ 150y Uy 1 ees Upy)
is a linear map from V to F.
e The set of m-linear forms on V is denoted by V™),
o A function f is called a multilinear form on V if it is an m-linear form on V

for some positive integer . )

In the definition above, the expression S(uy, ..., Uy_1,0, U 1, ..., U,,) Means
B(v,uy,...,u,,) if k =1 and means B(uy, ..., u,,_,,v) if k = m.

A 1-linear form on V is a linear functional on V. A 2-linear form on V is
a bilinear form on V. You can verify that with the usual addition and scalar
multiplication of functions, V™ is a vector space.

9.26 example: m-linear forms
e Suppose a, p € V2. Define a function B: V* - F by

B(v1,0,,03,04) = a(0q,0,) p(03,0y4).
Then g € V&
e Define B: (ﬁ(V))m — F by
IB(Tl’ seey Tﬂl) == tl"(Tl---Tm).

Then § is an m-linear form on £(V).
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Alternating multilinear forms, which we now define, play an important role as
we head toward defining determinants.

~

. . (m)
9.27 definition: alternating forms, V!

Suppose m is a positive integer.

e An me-linear form « on V is called alternating if a (v, ...,v,,) = 0 whenever
Uy, .., Uy, is @ list of vectors in V with v; = vy for some two distinct values
of jand kin {1, ..., m}.

o V" = {x € VU™ : g is an alternating m-linear form on V}.

alt /
You should verify that V™ is a subspace of V. See Example 9.15 for

alt
examples of alternating 2-linear forms. See Exercise 2 for an example of an
alternating 3-linear form.
The next result tells us that if a linearly dependent list is input to an alternating

multilinear form, then the output equals 0.

(9.28 alternating multilinear forms and linear dependence

Suppose m is a positive integer and « is an alternating m-linear form on V. If
01, ..., Uy, is a linearly dependent list in V, then

a(vq,...,0,,) = 0.

Proof Suppose vy, ..., v,, is a linearly dependent list in V. By the linear depen-
dence lemma (2.19), some v is a linear combination of v, ..., v, _;. Thus there
exist by, ..., b, _q such that v, = byvy + -+ + by _1v,_1. Now

k=1
(V1 e Vyyy) = uc(vl,...,vk_1, Z ijj,vk+1,...,vm>
j=1
k=1
= Z b]-zx(vl,...,vk_l,v]-,vk+1,...,vm)
j=1
=0.

The next result states that if m > dim V, then there are no alternating m-linear
forms on V other than the function on V" that is identically 0.

(9.29 no nonzero alternating m-linear forms for m > dim V \

LSuppose m > dim V. Then 0 is the only alternating m-linear form on V. j

Proof Suppose that « is an alternating m-linear form on V and v4, ...,v,, € V.
Because m > dim V, this list is not linearly independent (by 2.22). Thus 9.28
implies that (v, ...,v,,) = 0. Hence « is the zero function from V™ to F.
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Alternating Multilinear Forms and Permutations

(9.30 swapping input vectors in an alternating multilinear form

Suppose m is a positive integer, « is an alternating m-linear form on V, and
01, .-, Uy, is a list of vectors in V. Then swapping the vectors in any two slots
of a(vy, ...,v,,) changes the value of « by a factor of —1.

Proof Putv; + v, in both the first two slots, getting
0=a(v) +0,,01 +03,03,...,7,,).

Use the multilinear properties of « to expand the right side of the equation above
(as in the proof of 9.16) to get

& (0Vy, 01,03, ..., Vpy) = —&(V1, 05,03, ..., V) .

Similarly, swapping the vectors in any two slots of (v, ...,v,,) changes the
value of « by a factor of —1.

To see what can happen with multiple swaps, suppose « is an alternating
3-linear form on V and v4,v,,v53 € V. To evaluate a(vs,v;,v,) in terms of
w(vq,v,,03), start with a(vs,v1,v,) and swap the entries in the first and third
slots, getting a(v5, v1,v,) = —&(v,, V1, 03). Now in the last expression, swap the
entries in the first and second slots, getting

&(03,01,0p) = —0(Vy,0q,03) = &(0q1,05,0V3).

More generally, we see that if we do an odd number of swaps, then the value of «
changes by a factor of —1, and if we do an even number of swaps, then the value
of « does not change.

To deal with arbitrary multiple swaps, we need a bit of information about
permutations.

-~

9.31 definition: permutation, perm m

~

Suppose m is a positive integer.

e A permutation of (1,...,m) is a list (j,...,j,,) that contains each of the
numbers 1, ..., m exactly once.

e The set of all permutations of (1, ...,m) is denoted by perm m.

/

For example, (2,3,4,5,1) € perm5. You should think of an element of
perm m as a rearrangement of the first m positive integers.

The number of swaps used to change a permutation (jy, ..., J,,) to the stan-
dard order (1, ...,m) can depend on the specific swaps selected. The following
definition has the advantage of assigning a well-defined sign to every permutation.
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/

9.32 definition: sign of a permutation

~

The sign of a permutation (f;, ..., ,,) is defined by
Sign(j]7 ""jm) = (_1)1\]9

where N is the number of pairs of integers (k, ) with 1 < k < ¢ < m such
\that k appears after { in the list (jy, ..., j,,)- y

Hence the sign of a permutation equals 1 if the natural order has been changed
an even number of times and equals —1 if the natural order has been changed an
odd number of times.

9.33 example: signs

e The permutation (1, ...,m) [no changes in the natural order] has sign 1.
e The only pair of integers (k, £) with k < £ such that k appears after { in the list
(2,1,3,4) is (1,2). Thus the permutation (2,1, 3,4) has sign —1.

e In the permutation (2, 3, ..., m, 1), the only pairs (k, ) with k < € that appear
with changed order are (1,2), (1,3), ..., (1, m). Because we have m — 1 such
pairs, the sign of this permutation equals (—1)" "1,

ﬁ).34 swapping two entries in a permutation w

Swapping two entries in a permutation multiplies the sign of the permutation
by —1.

Proof Suppose we have two permutations, where the second permutation is
obtained from the first by swapping two entries. The two swapped entries were
in their natural order in the first permutation if and only if they are not in their
natural order in the second permutation. Thus we have a net change (so far) of 1
or —1 (both odd numbers) in the number of pairs not in their natural order.

Consider each entry between the two swapped entries. If an intermediate entry
was originally in the natural order with respect to both swapped entries, then it
is now in the natural order with respect to neither swapped entry. Similarly, if
an intermediate entry was originally in the natural order with respect to neither
of the swapped entries, then it is now in the natural order with respect to both
swapped entries. If an intermediate entry was originally in the natural order with
respect to exactly one of the swapped entries, then that is still true. Thus the net
change (for each pair containing an entry between the two swapped entries) in the
number of pairs not in their natural order is 2, —2, or 0 (all even numbers).

For all other pairs of entries, there is no change in whether or not they are in
their natural order. Thus the total net change in the number of pairs not in their
natural order is an odd number. Hence the sign of the second permutation equals
—1 times the sign of the first permutation.
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/9.35 permutations and alternating multilinear forms R
Suppose m is a positive integer and a € V;IT). Then
&0 5 s 0 ) = (SN, +ees fin) ) A (D15 we0s V)
for every list v, ...,v,, of vectors in V and all (jy, ...,j,,) € permm. )

Proof Suppose vy,...,v,, € V and (ji,....j,,) € permm. We can get from
(f1s s Jm) to (1,...,m) by a series of swaps of entries in different slots. Each such
swap changes the value of « by a factor of —1 (by 9.30) and also changes the sign
of the remaining permutation by a factor of —1 (by 9.34). After an appropriate
number of swaps, we reach the permutation 1, ..., m, which has sign 1. Thus the
value of « changed signs an even number of times if sign(jy, ...,j,,) = 1 and an
odd number of times if sign(jy, ..., j,,) = —1, which gives the desired result.

Our use of permutations now leads in a natural way to the following beautiful
formula for alternating n-linear forms on an n-dimensional vector space.

“

9.36 formula for (dim V)-linear alternating forms on V

>

Let n = dim V. Suppose ey, ..., ¢, is a basis of V and vy, ...,v,, € V. For each
ke {1,...,n}, let by 4, ...,b, , € F be such that

n
Uk = Z b]-’ke]-.
j=1
Then

(0, .y 0y) = (g, -.er€y) Z (Sign(yseoes fu) ) 017005 0

(j1s--2]y) € permn

for every alternating n-linear form « on V.

Proof Suppose « is an alternating n-linear form « on V. Then

n n
“(vl""’vﬂ) = D‘(Z bjl’lejl"”7 Z b‘n-’qejlr)
ji=1 ja=1
n n
= ) ) biahy ade. e
]1:1 ]nzl

= > bj 10y (e s

(j15-++s]n) € permn
= 0(eys s y) Z (sign(jl,...,]'n))b].hl...bjmm

where the third line holds because ae ;... € ) = 0if jj, ..., j, are not distinct
integers, and the last line holds by 9.35.
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The following result will be the key to our definition of the determinant in the
next section.

(9.37 dim V™) =1 W

LThe vector space V;ldtimv) has dimension one. J

Proof Letn = dim V. Suppose « and «” are alternating n-linear forms on V with
a # 0. Letey, ...,e, be such that a(e,, ...,e,,) # 0. There exists ¢ € F such that

a'(eq,..esby,) = crleq,....e,).

Furthermore, 9.28 implies that e, ..., ¢, is linearly independent and thus is a basis
of V.
Suppose vy, ..., v, € V. Let b; ; be as in 9.36 for j,k = 1,...,n. Then

&' (01, ...,0,) = &' (€, ..., €,) Z (sign(jl,...,jn))bjl’l---b]-mn

(j15-+s]n) Epermn

= ca(ey, ... e,) > (sign(iys - j) ) by 17 0

(F1sees jn) Epermn

= ca(Vq,...,0,),

where the first and last lines above come from 9.36. The equation above implies
that ' = ca. Thus a’,a is not a linearly independent list, which implies that
dim V) < 1.

To complete the proof, we only need to show that there exists a nonzero
alternating n-linear form « on V (thus eliminating the possibility that dim V;l'tl)
equals 0). To do this, let ey, ..., e,, be any basis of V, and let ¢4, ...,p, € V' be
the linear functionals on V that allow us to express each element of V as a linear

combination of ey, ..., e,,. In other words,
n
v=) 9

j=1
for every v € V (see 3.114). Now for vy, ...,v,, € V, define
938  a(vy,...,0,) = Y (Sign(y, oer i) @, (V1) @; (V).

(j1s++-r]yy) EpErmn

The verification that « is an n-linear form on V is straightforward.

To see that « is alternating, suppose vy, ...,v, € V with v; = v,. For each
(j15---»J,) € permn, the permutation (j,, j;, /3, ..., ,,) has the opposite sign. Be-
cause v; = U,, the contributions from these two permutations to the sum in 9.38
cancel either other. Hence « (v, vy, 03, ...,7,,) = 0. Similarly, a(vy, ...,v,,) = 0if
any two vectors in the list vy, ..., v, are equal. Thus « is alternating.

Finally, consider 9.38 with each v, = ¢;. Because ¢;(e;) equals 0 if j # k and
equals 1 if j = k, only the permutation (1, ...,72) makes a nonzero contribution to

the right side of 9.38 in this case, giving the equation « (e, ...,e,,) = 1. Thus we
have produced a nonzero alternating n-linear form « on V, as desired.
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Earlier we showed that the value of The formula 9.38 used in the last proof
an alternating multilinear form applied 1, construct a nonzero alternating n-
to a linearly dependent list is 0; see 9.28.  jinear form came from the formula in
The next result provides a converse of 9,36, and that formula arose naturally
9.28 for n-linear multilinear forms when  from the properties of an alternating
n = dim V. In the following result, the = multilinear form.
statement that « is nonzero means (as
usual for a function) that « is not the function on V" that is identically 0.

/

9.39 alternating (dim V)-linear forms and linear independence

o

Let n = dim V. Suppose « is a nonzero alternating n-linear form on V and
eq,-..,e, is a list of vectors in V. Then

waeq,....e,) #0

if and only if e, ..., ¢,, is linearly independent. )
Proof  First suppose «(e;, ...,e,,) # 0. Then 9.28 implies that e, ..., e,, is linearly
independent.

To prove the implication in the other direction, now suppose e, ..., ¢, is linearly
independent. Because n = dim V, this implies that e, ..., ¢,, is a basis of V (see
2.38).

Because « is not the zero n-linear form, there exist v4, ...,v, € V such that
a(vq,...,0,,) # 0. Now 9.36 implies that a(eq, ...,e,) # 0.

Exercises 9B

1 Suppose m is a positive integer. Show that dim V™ = (dim V)™
2 Supposen >3 and a: F" x F* x F" — F is defined by
(g5 ey ), Yo eees Y)s (21, 000 2) )
= X1Y22Z3 — Xol123 — X3l2Z1 — X1Y3Zp T X3Y12Zp * XoY3Z1.
Show that « is an alternating 3-linear form on F".

3 Suppose m is a positive integer and « is an m-linear form on V such that

a(vy, ..., v,,) = 0 whenever vy, ...,v,, is a list of vectors in V with v; = v; 4

for some j € {1, ...,m —1}. Prove that « is an alternating m-linear form on V.
4 Prove or give a counterexample: If « € V;ﬁ), then

{(v1,05,03,04) € V* 1 a(vy,0,,05,04) = 0}

is a subspace of V4
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Suppose m is a positive integer and § is an m-linear form on V. Define an
m-linear form « on V by

A(Vqy ey Uyy) = Z (sign(jl,...,jm))ﬁ(vh,...,v]-m)

(Jpseees jm) € permm

for vy, ...,v,, € V. Explain why « € V.

Suppose m is a positive integer and § is an m-linear form on V. Define an
m-linear form « on V by

(V1 ey Uyyy) = Z IB(Uh’""UJ’m)

(j1""’jr;1>6permm
for vy, ...,v,, € V. Explain why
oc(vkl, ...,vkm) = &(0q, ..., Uy,)
forall v,,...,v,, € Vand all (ki,...,k,,) € permm.

Give an example of a nonzero alternating 2-linear form « on R® and a linearly
independent list v;,v, in R® such that a(v;,v,) = 0.

This exercise shows that 9.39 can fail if the hypothesis that n = dim V is
deleted.
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9C Determinants

Defining the Determinant

The next definition will lead us to a clean, beautiful, basis-free definition of the
determinant of an operator.

/9.40 definition: ar N

Suppose that m is a positive integer and T € £(V). For a € Vg(d”t1 ), define
ar € VP by
ar(vq, .y 0,,) = a(Toq, ..., T0,,)

for each list v, ..., v,, of vectors in V.

/

Suppose T € £(V). Ifa € Vgt”) and vy, ..., v, is a list of vectors in V with

v; = vy for some j # k, then Tv; = Tv, which implies that ar(vy, ..., v,,) =

a(Tvq,...,Tv,,) = 0. Thus the function « — a is a linear map of V;l’?) to itself.
We know that dim V;ﬁimv) = 1 (see 9.37). Every linear map from a one-

dimensional vector space to itself is multiplication by some unique scalar. For

the linear map o — ar, we now define det T to be that scalar.

/9.41 h

definition: determinant of an operator, det T

Suppose T € £(V). The determinant of T, denoted by det T, is defined to be
the unique number in F such that

ar = (detT) «

for all « € VdimV),
\ alt j

9.42 example: determinants of operators |
Letn = dim V.

e If ] is the identity operator on V, then a; = a for all & € V;lrl’). Thus det] = 1.

e More generally, if A € F, thenay; = A"a foralla € V;l’:). Thus det(AI) = A™.

e Still more generally, if T € £(V)and A € F, then a; = A"ap = A" (detT)
for all & € V. Thus det(AT) = A" detT.

e Suppose T € £(V) and there is a basis e, ..., e, of V consisting of eigenvectors
of T, with corresponding eigenvalues A4, ..., A,. If a € V;ﬁ), then

ar(eg, ... 8,) = a(Aqeq, ..., Ae,) = (A A aleq, -...e,).

If o # 0, then 9.39 implies a(eq, ...,¢e,) # 0. Thus the equation above implies

detT = Ay A,
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Our next task is to define and give a formula for the determinant of a square
matrix. To do this, we associate with each square matrix an operator and then
define the determinant of the matrix to be the determinant of the associated
operator.

(9.43 definition: determinant of a matrix, det A

Suppose that n is a positive integer and A is an n-by-n square matrix with
entries in F. Let T € £(F") be the operator whose matrix with respect to
the standard basis of F” equals A. The determinant of A, denoted by det A, is
defined by det A = det T.

9.44 example: determinants of matrices

e If [ is the n-by-n identity matrix, then the corresponding operator on F” is the
identity operator I on F”. Thus the first bullet point of 9.42 implies that the
determinant of the identity matrix is 1.

e Suppose A is a diagonal matrix with A,,..., A, on the diagonal. Then the
corresponding operator on F” has the standard basis of F” as eigenvectors,
with eigenvalues A4, ..., A,,. Thus the last bullet point of 9.42 implies that
detA = A AL

For the next result, think of each list vy, ..., v, of n vectors in F" as a list of
n-by-1 column vectors. The notation ( vy o U, ) then denotes the n-by-n

square matrix whose k" column is v, foreachk =1,...,n.

ﬁa.45 determinant is an alternating multilinear form w

Suppose that 7 is a positive integer. The map that takes a list vy, ...,v,, of
vectors in F” to det( (NI ) is an alternating n-linear form on F”".

Proof Letey,...,e, be the standard basis of F"and suppose vy, ..., v,, is a list of
vectors in F”. Let T € £(F") be the operator such that Te, = v, fork = 1, ..., n.

Thus T is the operator whose matrix with respect to e, ..., e,, is ( v o U, )
Hence det( vy o U, ) = det T, by definition of the determinant of a matrix.
Let « be an alternating n-linear form on F” such that a(ey, ...,e,,) = 1. Then
det( v, U, ) =detT
= (detT) a(ey,...,e,)
=a(Teq,...,Te,)
= &(0q,...,0,),

where the third line follows from the definition of the determinant of an operator.
The equation above shows that the map that takes a list of vectors vy, ..., v, in F”"
to det( vy U, ) is the alternating n-linear form « on F”".
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The previous result has several important consequences. For example, it
immediately implies that a matrix with two identical columns has determinant 0.
We will come back to other consequences later, but for now we want to give a
formula for the determinant of a square matrix. Recall that if A is a matrix, then
A]-, « denotes the entry in row j, column k of A.

GAG formula for determinant of a matrix w

Suppose that 7 is a positive integer and A is an n-by-n square matrix. Then

detA = > (SigN(yseer i) ) A1 A e

(j1»++-2]n) € permn

Proof Apply 9.36 with V = F” and ¢4, ..., ¢, the standard basis of F* and « the
alternating n-linear form on F” that takes v, ...,v,, to det( [T ) [see

9.45]. If each v, is the k™ column of A, then each b; x in 9.36 equals A; . Finally,

a(eq,....e,) = det( e ey, ) =det] = 1.

Thus the formula in 9.36 becomes the formula stated in this result.

9.47 example: explicit formula for determinant
e If A is a 2-by-2 matrix, then the formula in 9.46 becomes
detA =A; 1Ay 5 — Ay 1A .
e If A is a 3-by-3 matrix, then the formula in 9.46 becomes
detA =A; 1A; 2A3 3 — Ag 1 Aq 2433 — A3 142241 3
— A1 1Az 240 3 + Az 1A Ay 3 + Ay 143 24, 3.

The sum in the formula in 9.46 contains n! terms. Because n! grows rapidly as
n increases, the formula in 9.46 is not a viable method to evaluate determinants
even for moderately sized n. For example, 10! is over three million, and 100! is
approximately 10'°8, leading to a sum that the fastest computer cannot evaluate.
We will soon see some results that lead to faster evaluations of determinants than
direct use of the sum in 9.46.

ﬁa.48 determinant of upper-triangular matrix w

Suppose that A is an upper-triangular matrix with A4, ..., A,, on the diagonal.
Then detA = A=+ A,,.

Proof If (jy,...,j,) € permn with (ji,....j,) # (1,...,n), then j, > k for some
k € {1,...,n}, which implies that A]»k’k = 0. Thus the only permutation that
can make a nonzero contribution to the sum in 9.46 is the permutation (1, ..., n).
Because Ay = Ay for each k = 1, ..., n, this implies that detA = A;---A,,.
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Properties of Determinants

Our definition of the determinant leads to the following magical proof that the
determinant is multiplicative.

(9.49 determinant is multiplicative

(a) Suppose S,T € £(V). Then det(ST) = (detS)(detT).

(b) Suppose A and B are square matrices of the same size. Then

det(AB) = (det A)(det B)

Proof
(a) Letn = dim V. Suppose « € Vél’:) and vq, ...,v, € V. Then
agr(vq,...,0,) = a(STvq,...,STv,)
= (detS)a(Tvy,...,Tv,)
= (detS)(detT)a(vq,...,v,),
where the first equation follows from the definition of a¢r, the second equation

follows from the definition of det S, and the third equation follows from the
definition of det T. The equation above implies that det(ST) = (det S)(detT).

(b) LetS,T € £(F")besuchthat M (S) = Aand M (T) = B, where all matrices
of operators in this proof are with respect to the standard basis of F”. Then
M(ST) = M(S)M(T) = AB (see 3.43). Thus

det(AB) = det(ST) = (detS)(detT) = (det A)(detB),

where the second equality comes from the result in (a).

The determinant of an operator determines whether the operator is invertible.

ﬁ).SO invertible < nonzero determinant w

LAn operator T € £(V) is invertible if and only if det T # 0. Furthermore, ifJ

T is invertible, then det(T~') = ==.

Proof  First suppose T is invertible. Thus TT~! = I. Now 9.49 implies that
1= det] = det(TT™") = (det T)(det(T) ).

Hence det T # 0 and det(T~!) is the multiplicative inverse of det T.

To prove the other direction, now suppose detT # 0. Suppose v € V and
v # 0. Letv,e,,...,e, be abasis of Vand leta € V;ﬁl) be such that « # 0. Then
a(v, ey, ...,e,) # 0 (by 9.39). Now

a(To, Te,,...,Te,) = (detT)ua(v,e,, ...,e,) # 0.
Thus Tv # 0. Hence T is invertible.
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An n-by-n matrix A is invertible (see 3.80 for the definition of an invertible
matrix) if and only if the operator on F” associated with A (Via the standard basis
of F") is invertible. Thus the previous result shows that a square matrix A is
invertible if and only if det A # 0.

(9.51 eigenvalues and determinants w

Suppose T € £(V) and A € F. Then A is an eigenvalue of T if and only if
det(AI —T) = 0.

Proof The number A is an eigenvalue of T if and only if T — Al is not invertible
(see 5.7), which happens if and only if AI — T is not invertible, which happens if
and only if det(Al — T') = 0 (by 9.50).

Suppose T € £(V) and S: W — V is an invertible linear map. To prove that
det(S7ITS) = det T, we could try to use 9.49 and 9.50, writing

det(S7ITS) = (detS~!)(det T)(det S)
=detT.

That proof works if W = V, but if W # V then it makes no sense because the
determinant is defined only for linear maps from a vector space to itself, and S
maps W to V, making det S undefined. The proof given below works around this
issue and is valid when W # V.

9.52 determinant is a similarity invariant

Suppose T € £(V) and S: W — Vis an invertible linear map. Then
det(S7!TS) = det T.

Proof Letn = dimW = dim V. Suppose T € W{". Define « € V_}!’ by
a(vq,...,0,) = (S0, ..., 10,)
for vy, ...,v,, € V. Suppose wy, ..., w,, € W. Then
Tgarg(Wy, ..y w,) = (S TSwy, ..., S TSw,,)

= a(TSw,, ..., TSw,)
= ap(Swq, ..., Sw,)
= (detT)a(Swy, ..., Sw,)
= (detT) T(wyq,...,w,).

The equation above and the definition of the determinant of the operator S™'TS
imply that det(S™'TS) = detT.
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For the special case in which V = F* and ey, ..., ¢, is the standard basis of F”,
the next result is true by the definition of the determinant of a matrix. The left
side of the equation in the next result does not depend on a choice of basis, which
means that the right side is independent of the choice of basis.

9.53 determinant of operator equals determinant of its matrix

Suppose T € £(V) and ¢4, ..., e, is a basis of V. Then
detT = det M (T, (eq, ....e,)).

Proof Let fi, ..., f, be the standard basis of F”. Let S: F* — V be the linear map
such that Sf, = ¢, for each k = 1,...,n. Thus M (S, (f1, ... f). (€1, --.,€,,) ) and
M(S7L, (eq, ..vey), (f1, s f)) both equal the n-by-n identity matrix. Hence

9.54 M(STITS, (fiseos £)) = M(T, (eq,...e,)),
as follows from two applications of 3.43. Thus
detT = det(S7'TS)
=det M (S7'TS, (f1,..s f))
= det M (T, (eq, ....e,)),

where the first line comes from 9.52, the second line comes from the definition of
the determinant of a matrix, and the third line follows from 9.54.

The next result gives a more intuitive way to think about determinants than the
definition or the formula in 9.46. We could make the characterization in the result
below the definition of the determinant of an operator on a finite-dimensional
complex vector space, with the current definition then becoming a consequence
of that definition.

/

9.55 if F = C, then determinant equals product of eigenvalues

N

Suppose F = Cand T € £(V). Then det T equals the product of the eigen-
values of T, with each eigenvalue included as many times as its multiplicity. )

Proof There is a basis of V with respect to which T has an upper-triangular
matrix with the diagonal entries of the matrix consisting of the eigenvalues of T,
with each eigenvalue included as many times as its multiplicity—see 8.37. Thus
9.53 and 9.48 imply that det T equals the product of the eigenvalues of T, with
each eigenvalue included as many times as its multiplicity.

As the next result shows, the determinant interacts nicely with the transpose of
a square matrix, with the dual of an operator, and with the adjoint of an operator

on an inner product space.
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/

9.56 determinant of transpose, dual, or adjoint

(a) Suppose A is a square matrix. Then det A* = det A.
(b) Suppose T € £(V). ThendetT’ = detT.
(c) Suppose V is an inner product space and T € £(V). Then

det(T*) = detT.
\_ (") J

Proof

(a) Let n be a positive integer. Define a: (F")" — F by

&(Vq, ..., ;) :det(( vy o U, )t)

for all v4,...,v,, € F". The formula in 9.46 for the determinant of a matrix
shows that & is an n-linear form on F".

Suppose vy, ...,v, € F" and v; = vy for some j # k. If B is an n-by-n matrix,

t
then ( v O, ) B cannot equal the identity matrix because row j and
t t
row k of ( vy o U, ) B are equal. Thus( (BT ) is not invertible,
which implies that « (v, ...,v,) = 0. Hence « is an alternating n-linear form
on F".

Note that « applied to the standard basis of F" equals 1. Because the vector
space of alternating n-linear forms on F” has dimension one (by 9.37), this
implies that « is the determinant function. Thus (a) holds.

(b) The equation det T" = det T follows from (a) and 9.53 and 3.132.

(c¢) Pick an orthonormal basis of V. The matrix of T* with respect to that basis is
the conjugate transpose of the matrix of T with respect to that basis (by 7.9).
Thus 9.53, 9.46, and (a) imply that det(T*) = det T.

-

9.57 helpful results in evaluating determinants

N

(a) If either two columns or two rows of a square matrix are equal, then the
determinant of the matrix equals 0.

(b) Suppose A is a square matrix and B is the matrix obtained from A by
swapping either two columns or two rows. Then det A = — det B.

(c) If one column or one row of a square matrix is multiplied by a scalar, then
the value of the determinant is multiplied by the same scalar.

(d) If a scalar multiple of one column of a square matrix is added to another
column, then the value of the determinant is unchanged.

(e) If a scalar multiple of one row of a square matrix is added to another row,
then the value of the determinant is unchanged. )
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Proof All the assertions in this result follow from the result that the maps
(2T det( v o T, )and Vqs..0s 0y P det( (2T )t are both
alternating n-linear forms on F” [see 9.45 and 9.56(a)].

For example, to prove (d) suppose vy, ...,v,, € F* and ¢ € F. Then

det( U1 +C0y Uy D, )
=det( V1 Uy U, )+cdet( Uy Uy U3 T, )
=det( V1 Uy U, )

where the first equation follows from the multilinearity property and the second
equation follows from the alternating property. The equation above shows that
adding a multiple of the second column to the first column does not change the
value of the determinant. The same conclusion holds for any two columns. Thus
(d) holds.

The proof of (e) follows from (d) and from 9.56(a). The proofs of (a), (b), and
(c) use similar tools and are left to the reader.

For matrices whose entries are concrete numbers, the result above leads to a
much faster way to evaluate the determinant than direct application of the formula
in 9.46. Specifically, apply the Gaussian elimination procedure of swapping
rows [by 9.57(b), this changes the determinant by a factor of —1], multiplying
a row by a nonzero constant [by 9.57(c), this changes the determinant by the
same constant], and adding a multiple of one row to another row [by 9.57(e), this
does not change the determinant] to produce an upper-triangular matrix, whose
determinant is the product of the diagonal entries (by 9.48). If your software keeps
track of the number of row swaps and of the constants used when multiplying a
row by a constant, then the determinant of the original matrix can be computed.

Because a number A € F is an eigenvalue of an operator T € £(V) if and
only if det(Al — T) = 0 (by 9.51), you may be tempted to think that one way
to find eigenvalues quickly is to choose a basis of V, let A = M (T), evaluate
det(AI — A), and then solve the equation det(Al — A) = 0 for A. However, that
procedure is rarely efficient, except when dim V' = 2 (or when dim V' equals 3 or
4 if you are willing to use the cubic or quartic formulas). One problem is that the
procedure described in the paragraph above for evaluating a determinant does not
work when the matrix includes a symbol (such as the A in AI — A). This problem
arises because decisions need to be made in the Gaussian elimination procedure
about whether certain quantities equal 0, and those decisions become complicated
in expressions involving a symbol A.

Recall that an operator on a finite-dimensional inner product space is unitary
if it preserves norms (see 7.51 and the paragraph following it). Every eigenvalue
of a unitary operator has absolute value 1 (by 7.54). Thus the product of the
eigenvalues of a unitary operator has absolute value 1. Hence (at least in the case
F = C) the determinant of a unitary operator has absolute value 1 (by 9.55). The
next result gives a proof that works without the assumption that F = C.
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G.SS every unitary operator has determinant with absolute value 1

Then |det S| = 1.

N S

LSuppose V is an inner product space and S € £(V) is a unitary operator.

Proof Because S is unitary, I = S*S (see 7.53). Thus
1 = det(5*S) = (det S*)(detS) = (det S)(detS) = |det S|%

where the second equality comes from 9.49(a) and the third equality comes from
9.56(c). The equation above implies that |[det S| = 1.

The determinant of a positive operator on an inner product space meshes well
with the analogy that such operators correspond to the nonnegative real numbers.

(9.59 every positive operator has nonnegative determinant W

Suppose V is an inner product space and T € £(V) is a positive operator.
Then det T > 0.

Proof By the spectral theorem (7.29 or 7.31), V has an orthonormal basis con-
sisting of eigenvectors of T. Thus by the last bullet point of 9.42, det T equals a
product of the eigenvalues of T, possibly with repetitions. Each eigenvalue of T is
a nonnegative number (by 7.38). Thus we conclude that detT > 0.

Suppose V is an inner product space and T € £(V). Recall that the list of
nonnegative square roots of the eigenvalues of T*T (each included as many times
as its multiplicity) is called the list of singular values of T (see Section 7E).

(9.60 |det T| = product of singular values of T

Suppose V is an inner product space and T € £(V). Then

ldet T| = y/det(T*T) = product of singular values of T.

Proof We have
det T/? = (detT)(det T) = (det(T*) ) (det T) = det(T*T),

where the middle equality comes from 9.56(c) and the last equality comes from
9.49(a). Taking square roots of both sides of the equation above shows that
ldet T| = \/det(T*T).

Let sy, ...,s, denote the list of singular values of T. Thus s ...,s, is the
list of eigenvalues of T*T (with appropriate repetitions), corresponding to an
orthonormal basis of V consisting of eigenvectors of T*T. Hence the last bullet
point of 9.42 implies that

det(T*T) = sf-s,2

Thus |det T| = s;---s,,, as desired.
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An operator T on a real inner product space changes volume by a factor of the
product of the singular values (by 7.111). Thus the next result follows immediately
from 7.111 and 9.60. This result explains why the absolute value of a determinant
appears in the change of variables formula in multivariable calculus.

(9.61 T changes volume by factor of |det T|

Suppose T € £(R") and Q) C R" Then

volume T'(Q)) = |det T|(volume Q)).

For operators on finite-dimensional complex vector spaces, we now connect
the determinant to a polynomial that we have previously seen.

(9.62 if ¥ = C, then characteristic polynomial of T equals det(z] — T)

Suppose F = Cand T € £(V). Let A4, ..., A, denote the distinct eigenvalues
of T, and let d,, ..., d,, denote their multiplicities. Then

det(z - T) = (z — /\1)‘11...(2 _ Am)dm.

Proof There exists a basis of V with respect to which T has an upper-triangular
matrix with each A, appearing on the diagonal exactly d, times (by 8.37). With
respect to this basis, zI — T has an upper-triangular matrix with z — A, appearing
on the diagonal exactly d, times for each k. Thus 9.48 gives the desired equation.

Suppose F = C and T € £(V). The characteristic polynomial of T was
defined in 8.26 as the polynomial on the right side of the equation in 9.62. We
did not previously define the characteristic polynomial of an operator on a finite-
dimensional real vector space because such operators may have no eigenvalues,
making a definition using the right side of the equation in 9.62 inappropriate.

We now present a new definition of the characteristic polynomial, motivated
by 9.62. This new definition is valid for both real and complex vector spaces.
The equation in 9.62 shows that this new definition is equivalent to our previous
definition when F = C (8.26).

o )

9.63 definition: characteristic polynomial

Suppose T € £(V). The polynomial defined by

z - det(zl — T)

is called the characteristic polynomial of T.

J

The formula in 9.46 shows that the characteristic polynomial of an opera-
tor T € £(V) is a monic polynomial of degree dim V. The zeros in F of the
characteristic polynomial of T are exactly the eigenvalues of T (by 9.51).
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Previously we proved the Cayley—Hamilton theorem (8.29) in the complex
case. Now we can extend that result to operators on real vector spaces.

(9.64 Cayley—Hamilton theorem W

LSuppose T € £(V) and q is the characteristic polynomial of T. Then q(T) = OJ

Proof If F = C, then the equation g(T) = 0 follows from 9.62 and 8.29.

Now suppose F = R. Fix a basis of V, and let A be the matrix of T with
respect to this basis. Let S be the operator on C™V such that the matrix of S
(with respect to the standard basis of CY™V) is A. For all z € R we have

q(z) = det(zl = T) = det(zl — A) = det(zl - S).

Thus g is the characteristic polynomial of S. The case F = C (first sentence of
this proof) now implies that 0 = g(S) = g(A) = q(T).

The Cayley—Hamilton theorem (9.64) implies that the characteristic polyno-
mial of an operator T € £(V) is a polynomial multiple of the minimal polynomial
of T (by 5.29). Thus if the degree of the minimal polynomial of T equals dim V,
then the characteristic polynomial of T equals the minimal polynomial of T. This
happens for a very large percentage of operators, including over 99.999% of
4-by-4 matrices with integer entries in [—100, 100] (see the paragraph following
5.25).

The last sentence in our next result was previously proved in the complex case
(see 8.54). Now we can give a proof that works on both real and complex vector
spaces.

9.65 characteristic polynomial, trace, and determinant

Suppose T € £(V). Let n = dim V. Then the characteristic polynomial of T
can be written as

zZ" — (trT)z" =1 + o + (=1)"(det T).

Proof The constant term of a polynomial function of z is the value of the poly-
nomial when z = 0. Thus the constant term of the characteristic polynomial of T
equals det(—T), which equals (—1)" det T (by the third bullet point of 9.42).

Fix a basis of V, and let A be the matrix of T with respect to this basis. The
matrix of zI — T with respect to this basis is zI — A. The term coming from the
identity permutation {1, ..., n} in the formula 9.46 for det(zI — A) is

(Z - Al’l)“‘(z - An’n).

The coefficient of z” ~ ! in the expression above is —(A; | ++++A,, ,,), which equals
—trT. The terms in the formula for det(zI — A) coming from other elements of
perm 7 contain at most 7 — 2 factors of the form z — A, and thus do not contribute
to the coefficient of z” ~1 in the characteristic polynomial of T.

Linear Algebra Done Right, fourth edition, by Sheldon Axler



Section 9C  Determinants 365

In the result below, think of the The next result was proved by Jacques
columns of the ﬂ-by-i’l matrix A as ele- Hadamard (1865-1963) in 1893.
ments of F”. The norms appearing below
then arise from the standard inner product on F". Recall that the notation R_; in
the proof below means the k™ column of the matrix R (as was defined in 3.44).

(9.66 Hadamard’s inequality

Suppose A is an n-by-n matrix. Let vy, ..., v,, denote the columns of A. Then

n

det Al < [ T ol
k=1

Proof If A is not invertible, then det A = 0 and hence the desired inequality
holds in this case.

Thus assume that A is invertible. The QR factorization (7.58) tells us that
there exist a unitary matrix Q and an upper-triangular matrix R whose diagonal
contains only positive numbers such that A = QR. We have

|det A| = |det Q| |det R|
= |detR|

Il
—

Ry x

-~
1]
-

::]:

< IR. &l

=~
1l
Jun

Il
—

IQR 4l

-~
Il

1

ogll,

—

k

where the first line comes from 9.49(b), the second line comes from 9.58, the
third line comes from 9.48, and the fifth line holds because Q is an isometry.

Il
-

To give a geometric interpretation to Hadamard’s inequality, suppose F = R.
LetT € £(R”) be the operator such that Te, = v for each k = 1, ..., n, where
eq, ..., €, is the standard basis of R". Then T maps the box P(ey, ...,¢,) onto the
parallelepiped P (v, ...,v,) [see 7.102 and 7.105 for a review of this notation
and terminology]. Because the box P(ey, ...,e,) has volume 1, this implies (by
9.61) that the parallelepiped P(vy, ..., v,,) has volume |det T|, which equals |det Al.
Thus Hadamard’s inequality above can be interpreted to say that among all paral-
lelepipeds whose edges have lengths |[v4], ..., [[,]l, the ones with largest volume
have orthogonal edges (and thus have volume HZ: 1 el ).

For a necessary and sufficient condition for Hadamard’s inequality to be an
equality, see Exercise 18.

Linear Algebra Done Right, fourth edition, by Sheldon Axler



366 Chapter 9  Multilinear Algebra and Determinants

The matrix in the next result is called the Vandermonde matrix. Vandermonde
matrices have important applications in polynomial interpolation, the discrete
Fourier transform, and other areas of mathematics. The proof of the next result is
a nice illustration of the power of switching between matrices and linear maps.

/9.67 determinant of Vandermonde matrix )
Suppose n > 1 and B4, ..., B, € F. Then
1 By B o BT
N
det = [[ ®-8.
1<j<k<n
\_ 1 :Bn IBnZ nn_1 /

Proof Let1,z,...,z" ! be the standard basis of P,_1(F)andletey,...,e, denote
the standard basis of F”. Define a linear map S: 7, _,(F) — F" by

Sp = (p(B1)s - P(By))-

Let A denote the Vandermonde matrix shown in the statement of this result.

Note that
A=M(S, (Lz,...2" 1), (e1,..ne,)).

LetT: ?,_,(F) - P,_,(F) be the operator on P, _(F) such that T1 = 1

and
TZF = (z = B1)(z = Bp)(z — By)

fork=1,..,n—1.Let B=M(T,(1,z,....2" "), (1,z,...,2"~")). Then B is an
upper-triangular matrix all of whose diagonal entries equal 1. Thus det B = 1 (by
9.48).

Let C = M (ST, (1,z,...,2" 1), (e, ....¢,) ). Thus C = AB (by 3.81), which
implies that

det A = (det A)(detB) = detC.

The definitions of C, S, and T show that C equals

1 0 0 0
1 Bo—5B 0 0
1 Bs—pB1 (B3—B1)(Bs—p2) - 0

1 ﬂn - 161 (ﬂn _151)(:871 _52) (ﬁn - ﬁl)(ﬂn —,32)‘“([371 - ,Bn—l)
Now detA = detC = n (Bx — B;), where we have used 9.56(a) and 9.48.

1<j<k<n
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Exercises 9C

10

11

Prove or give a counterexample: S,T € £(V) = det(S+T) = detS+detT.

Suppose the first column of a square matrix A consists of all zeros except
possibly the first entry A ;. Let B be the matrix obtained from A by deleting
the first row and the first column of A. Show that det A = A, ; detB.

Suppose T € £(V) is nilpotent. Prove that det(I + T) = 1.
Suppose S € £(V). Prove that S is unitary if and only if |detS| = ||S|| = 1.
Suppose A is a block upper-triangular matrix

Aq *
A= ,
0 A

m

where each A, along the diagonal is a square matrix. Prove that
detA = (detA;)---(detA,,).

Suppose A = ( vy o U, ) is an n-by-n matrix, with v, denoting the k™
column of A. Show that if (m, ...,m,) € permn, then

det( Uy, Uy ): (sign(my, ...,m,)) det A.

Suppose T € £(V) is invertible. Let p denote the characteristic polynomial
of T and let g denote the characteristic polynomial of T~!. Prove that

g = L samey (1)

z

for all nonzero z € F.

Suppose T € £(V) is an operator with no eigenvalues (which implies that
F = R). Prove that detT > 0.

Suppose that V is a real vector space of even dimension, T € £(V), and
detT < 0. Prove that T has at least two distinct eigenvalues.

Suppose V is a real vector space of odd dimension and T € £(V). Without
using the minimal polynomial, prove that T has an eigenvalue.

This result was previously proved without using determinants or the charac-
teristic polynomial—see 5.34.

Prove or give a counterexample: If F =R, T € £(V),and detT > 0, then
T has a square root.

IfF=C Te L(V),anddetT # 0, then T has a square root (see 8.41).
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12

13

14

15

16

17

18

19

Chapter 9  Multilinear Algebra and Determinants

Suppose S, T € £(V) and S is invertible. Define p: F — F by

p(z) =det(zS —T).
Prove that p is a polynomial of degree dim V and that the coefficient of z4imV
in this polynomial is det S.

Suppose F = C, T € £(V),andn = dimV > 2. Let A,...,A,, denote
the eigenvalues of T, with each eigenvalue included as many times as its
multiplicity.

(a) Find a formula for the coefficient of z =2 in the characteristic polynomial
of Tinterms of A{,..., A,,.

(b) Find a formula for the coefficient of z in the characteristic polynomial
of Tinterms of A4, ..., A,,.

Suppose V is an inner product space and T is a positive operator on V. Prove

that
det VT = VdetT.

Suppose V is an inner product space and T € £(V). Use the polar decom-
position to give a proof that

ldet T| = y/det(T*T)
that is different from the proof given earlier (see 9.60).
Suppose T € £(V). Define g: F — F by g(x) = det(I + xT). Show that
g0 =uT
Look for a clean solution to this exercise, without using the explicit but
complicated formula for the determinant of a matrix.

Suppose a, b, c are positive numbers. Find the volume of the ellipsoid

x2 T
{(x,y,z) ER®: = + < 1}

by finding a set Q) C R® whose volume you know and an operator T on R>

such that T'(Q)) equals the ellipsoid above.

Suppose that A is an invertible square matrix. Prove that Hadamard’s
inequality (9.66) is an equality if and only if each column of A is orthogonal
to the other columns.

Suppose V is an inner product space, e, ..., ¢,, is an orthonormal basis of V,
and T € £(V) is a positive operator.

(a) Prove thatdetT < [T/ _,(Te ep).
(b) Prove that if T is invertible, then the inequality in (a) is an equality if
and only if e, is an eigenvector of T foreachk = 1,...,n
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20 Suppose A is an n-by-n matrix, and suppose c is such that |A; ;| < c for all
j.k € {1, ...,n}. Prove that

|det A| < ¢"n"/2

The formula for the determinant of a matrix (9.46) shows that |det A| < c"nl.
However, the estimate given by this exercise is much better. For example, if
c =1landn =100, then c"n! = 108 but the estimate given by this exercise
is the much smaller number 10'°°. If n is an integer power of 2, then the
inequality above is sharp and cannot be improved.

21 Suppose 7 is a positive integer and 6: C™" — C is a function such that
0(AB) = §(A) - 6(B)

for all A, B € C*" and 6(A) equals the product of the diagonal entries of A
for each diagonal matrix A € C™". Prove that

0(A) = detA

forall A € C™".
Recall that C'" denotes the set of n-by-n matrices with entries in C. This
exercise shows that the determinant is the unique function defined on square
matrices that is multiplicative and has the desired behavior on diagonal
matrices. This result is analogous to Exercise 10 in Section 8D, which
shows that the trace is uniquely determined by its algebraic properties.

I find that in my own elementary lectures, I have, for pedagogical reasons, pushed
determinants more and more into the background. Too often I have had the expe-
rience that, while the students acquired facility with the formulas, which are so
useful in abbreviating long expressions, they often failed to gain familiarity with
their meaning, and skill in manipulation prevented the student from going into all
the details of the subject and so gaining a mastery.

—Elementary Mathematics from an Advanced Standpoint: Geometry, Felix Klein
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9D Tensor Products

Tensor Product of Two Vector Spaces

The motivation for our next topic comes from wanting to form the product of
a vector v € V and a vector w € W. This product will be denoted by v ® w,
pronounced “v tensor w”, and will be an element of some new vector space called
V' ® W (also pronounced “V tensor W?”).

We already have a vector space V x W (see Section 3E), called the product of
V and W. However, V x W will not serve our purposes here because it does not
provide a natural way to multiply an element of V by an element of W. We would
like our tensor product to satisfy some of the usual properties of multiplication.
For example, we would like the distributive property to be satisfied, meaning that
if v1,v,,v € Vand wy,w,,w € W, then

(V1 +0,)@W=0QwW+v,@w and vV (W +W,) =0V Wy + 0V ® W,.

We would also like scalar multiplica-
tion to interact well with this new multi-
plication, meaning that

To produce ® in TgX, type \otimes.

A @ w) = (W) @w = v ® (Aw)

forall A e F,ve V,andw € W.

Furthermore, it would be nice if each basis of V when combined with each
basis of W produced a basis of V® W. Specifically, if e, ...,e,, is a basis of V
and fi, ..., f, is a basis of W, then we would like a list (in any order) consisting
of ¢; ® fi, as j ranges from 1 to m and k ranges from 1 to n, to be a basis of
V® W. This implies that dim(V ® W) should equal (dim V') (dim W). Recall that
dim(Vx W) = dim V + dim W (see 3.92), which shows that the product Vx W
will not serve our purposes here.

To produce a vector space whose dimension is (dim V') (dim W) in a natural
fashion from V and W, we look at the vector space of bilinear functionals, as
defined below.

/9.68 definition: bilinear functional on V x W, the vector space B(V, W)

~

o A bilinear functional on V x W is a function f: Vx W — F such that
v — B(v,w) is a linear functional on V for eachw € Wand w - B(v, w)
is a linear functional on W for eachv € V.

\o The vector space of bilinear functionals on V x W is denoted by B(V, W) )

If W = V, then a bilinear functional on V x W is a bilinear form; see 9.1.

The operations of addition and scalar multiplication on B(V, W) are defined
to be the usual operations of addition and scalar multiplication of functions. As
you can verify, these operations make B(V, W) into a vector space whose additive
identity is the zero function from V' x W to F.
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| 9.69 example: bilinear functionals
e Suppose ¢ € V' and T € W'. Define f: Vx W — F by B(v,w) = ¢(v) T(w).
Then g is a bilinear functional on V x W.

e Suppose v € Vand w € W. Define : V'x W — F by (¢, T) = ¢(©) T(w).
Then g is a bilinear functional on V'x W',

e Define f: Vx V' — F by B(v, ¢) = ¢(v). Then S is a bilinear functional on
Vx V.

e Suppose ¢ € V' Define : Vx £(V) - Fby f(v,T) = ¢(Tv). Then fisa
bilinear functional on Vx £(V).

e Suppose m and n are positive integers. Define : F™"xF"" — Fby B(A,B) =
tr(AB). Then B is a bilinear functional on F"™" x F"™.

(9.70 dimension of the vector space of bilinear functionals w

biim BV, W) = (dim V) (dim W). J

Proof Letey,...,e,, be abasis of Vand fi, ..., f, be a basis of W. For a bilinear

functional g € B(V, W), let M (B) be the m-by-n matrix whose entry in row j,

column k is ﬁ(e]-,fk). The map B — M (B) is a linear map of B(V, W) into F"™".
For a matrix C € F"™", define a bilinear functional S on V x W by

Bclarey + -+ +aye,, by fy + - +b,f,) = Z Z Cj,kajbk
k=1j=1
foray,...,a,,,bq,...,b, € F.

The linear map § — M (B) from B(V, W) to F">" and the linear map C — B
from F™" to B(V, W) are inverses of each other because B, = p for all
B € B(V,W)and M (B.) = C for all C € F"™", as you should verify.

Thus both maps are isomorphisms and the two spaces that they connect have the
same dimension. Hence dim B(V, W) = dimF"™" = mn = (dim V) (dim W).

Several different definitions of V® W appear in the mathematical literature.
These definitions are equivalent to each other, at least in the finite-dimensional
context, because any two vector spaces of the same dimension are isomorphic.

The result above states that B(V, W) has the dimension that we seek, as do
£(V,W) and F4imV-dmW Thyg it may be tempting to define V® W to be B(V, W)
or £(V, W) or FiimV.dimW  Hawever, none of those definitions would lead to a
basis-free definition of v @ w forv € Vand w € W.

The following definition, while it may seem a bit strange and abstract at first,
has the huge advantage that it defines v ® w in a basis-free fashion. We define
V ® W to be the vector space of bilinear functionals on V' x W' instead of the
more tempting choice of the vector space of bilinear functionals on V' x W.
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/9.71 definition: tensor product, V@ W, v ® w A

e The tensor product V® W is defined to be B(V', W").

e Forv € Vand w € W, the tensor product v ® w is the element of V@ W
defined by

(v ®w)(p, T) = ¢(v) T(W)
for all (p, 7) € V'x W'
N or all (¢, 7) X

J

We can quickly prove that the definition of V@ W gives it the desired dimension.

(9.72 dimension of the tensor product of two vector spaces \

kdim(V@ W) = (dim V) (dim W). )

Proof Because a vector space and its dual have the same dimension (by 3.111),
we have dimV’ = dimV and dimW’ = dim W. Thus 9.70 tells us that the
dimension of B(V’, W’) equals (dim V') (dim W).

To understand the definition of the tensor product v ® w of two vectors v € V
and w € W, focus on the kind of object it is. An element of V® W is a bilinear
functional on V'x W', and in particular it is a function from V’'x W’ to F. Thus for
each element of V'x W/, it should produce an element of F. The definition above
has this behavior, because v ® w applied to a typical element (¢, T) of V'x W’
produces the number ¢(v) T(w).

The somewhat abstract nature of v ® w should not matter. The important point
is the behavior of these objects. The next result shows that tensor products of
vectors have the desired bilinearity properties.

/9.73 bilinearity of tensor product

Suppose v, v1,v, € V and w,w;,w, € Wand A € F. Then
(V1 +0) QW= QW+, @w and v (W +wW,) =V W, +0® W,

and

g
Proof  Suppose (¢, T) € V'x W'. Then

A @ w) = (Av) @w = v ® (Aw). )

((01 +v5) @ W) (9, T) = @(v; + v,) T(W)
= @(vy) T(W) + @(vy) T(w)
= (01 @ W) (¢, T) + (v, @ W) (¢, T)
= (0, @W+ v, @ W) (P, T).

Thus (v; +7,) W =0, W + 7V, ® W.
The other two equalities are proved similarly.
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Lists are, by definition, ordered. The order matters when, for example, we
form the matrix of an operator with respect to a basis. For lists in this section
with two indices, such as {¢; ® fi};=1,. m:k=1,...» i the next result, the ordering
does not matter and we do not specify it—just choose any convenient ordering.

The linear independence of elements of V. ® W in (a) of the result below
captures the idea that there are no relationships among vectors in V® W other
than the relationships that come from bilinearity of the tensor product (see 9.73)
and the relationships that may be present due to linear dependence of a list of
vectors in V or a list of vectors in W.

/9.74 basis of V@ W h

Suppose ey, ..., e, is a list of vectors in V and fi, ..., f,, is a list of vectors in W.

(a) Ifeyq,....e, and fi, ..., f, are both linearly independent lists, then

{6]- ® fk}j: 1,..mk=1,...n
is a linearly independent listin V® W.

(b) If eq,...,e, is a basis of V and f, ..., f,, is a basis of W, then the list
{ej ® fi}j=1,...m:k=1,..n isabasisof V@ W. y

Proof  To prove (a), suppose ey, ..., e, and fi, ..., f,, are both linearly independent
lists. This linear independence and the linear map lemma (3.4) imply that there
exist ¢, ..., ¢, € V' and 74, ..., T,, € W' such that

1 ifj=k, 1 ifj=k,
#5€0) {0 itk 5o {o if j # k,

where j,k € {1,...,m} in the first equation and j,k € {1,...,n} in the second
equation.

Suppose {4; i};—1,...m:k=1,...n iS @ list of scalars such that

.....

n m

9.75 Y. ) (e ® f) =0.

k=1j=1
Note that (¢; ® fi) (@ar, Ty) equals 1if j = M and k = N, and equals 0 otherwise.
Thus applying both sides of 9.75 to (¢,4, Tn) shows that a), 5 = 0, proving that
{¢; ® fi}j=1....m:k=1,...n is linearly independent.
Now (b) follows from (a), the equation dim V® W = (dim V') (dim W) [see
9.72], and the result that a linearly independent list of the right length is a basis
(see 2.38).

Every element of V® W is a finite sum of elements of the form v ® w, where
v € Vand w € W, as implied by (b) in the result above. However, if dimV > 1
and dim W > 1, then Exercise 4 shows that

{fvew: (v,w) e Vx W} + Ve W.
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9.76 example: fensor product of element of ¥ with element of F"

Suppose m and n are positive integers. Let ey, ..., ¢, denote the standard basis
of F" and let f,, ..., f,, denote the standard basis of F”. Suppose

v=(v,..,0,) €EF" and w= (wy,..,w,) €F"

Then

v®w:<ivj€j>®(iwkfk>

=1 k=1

YD ww e ® fi).

k=1j=1

Thus with respect to the basis {¢; ® fi};=1,. m:k=1,.., Of F" ® F" provided
by 9.74(b), the coeflicients of v ® w are the numbers {v;wi}i_ 1, ik=1,...n- If
instead of writing these numbers in a list, we write them in an m-by-n matrix with

Wy in row j, column k, then we can identify v ® w with the m-by-n matrix

01 w1 b ZJl wn

Uy = Uy Wy

See Exercises 5 and 6 for practice in using the identification from the example
above.

We now define bilinear maps, which differ from bilinear functionals in that
the target space can be an arbitrary vector space rather than just the scalar field.

9.77 definition: bilinear map

A bilinear map from V x W to a vector space U is a functionT': Vx W — U
such that v — T'(v,w) is a linear map from V to U for each w € W and
w — I['(v,w) is a linear map from W to U for each v € V.

| 9.78 example: bilinear maps

e Every bilinear functional on V' x W is a bilinear map from Vx W to F.

e The function': Vx W —» V® W defined by I'(v, w) = v ® w is a bilinear map
from Vx Wto V@ W (by 9.73).

e The function I': £L(V) x £L(V) - £(V) defined by ['(S, T) = ST is a bilinear
map from £(V) x £(V) to £L(V).

e The function I': Vx £(V, W) —» W defined by I'(v, T) = Tv is a bilinear map
from Vx £(V, W) to W.
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Tensor products allow us to convert bilinear maps on Vx W into linear maps on
V® W (and vice versa), as shown by the next result. In the mathematical literature,
(a) of the result below is called the “universal property” of tensor products.

/

9.79 converting bilinear maps to linear maps

N

Suppose U is a vector space.

(a) Suppose I': Vx W — U is a bilinear map. Then there exists a unique
linearmap I': V® W — U such that

f(v R w) =I'(v,w)

for all (v, w) € Vx W.

(b) Conversely, suppose T: V® W — U is a linear map. Then there exists a
unique bilinear map T#: Vx W — U such that

T*(v,w) = T(v @ w)

Y for all (v, w) € Vx W. )

Proof Lete,...,e,, beabasisof Vandlet f,, ..., f,, be a basis of W. By the linear
map lemma (3.4) and 9.74(b), there exists a unique linear map [:VeW - U
such that R
r(ej ® fi) =T(e;, fi)
forallj € {1,....m}and k € {1, ...,n}.
Now suppose (v, w) € Vx W. There exist a,, ...,a,,,bq, ..., b, € F such that
v=ay6; + - +a,e,andw = b, f; +---+0,f, Thus

Tvew) = f( Yoy (a;by) (e; ® fk))

k=1j=1

Z Z ajbkf(ej ® fi)

k=1j=1

n

Z Z ﬂjbkr(ej, fk)

k=1j=1

=TI'(v,w),

as desired, whereAthe second line holds because T is linear, the third line holds by
the definition of T', and the fourth line flolds because I'is bilinear.

The uniqueness of the linear map I satisfying I'(v ® w) = I'(v, w) follows
from 9.74(b), completing the proof of (a).

To prove (b), define a function T#: Vx W — Uby T#(v,w) = T (v® w) for all
(v, w) € Vx W. The bilinearity of the tensor product (see 9.73) and the linearity
of T imply that T# is bilinear.

Clearly the choice of T* that satisfies the conditions is unique.
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To prove 9.79(a), we could not just define f(v Qw) =T (v,w) forallv e V
and w € W (and then extend I’ linearly to all of V® W) because elements of
V' ® W do not have unique representations as finite sums of elements of the form
v ® w. Our proof used a basis of V and a basis of W to get around this problem.

Although our construction of I"in the proof of 9.79(a) depended on a basis of
V and a basis of W,Athe equation I'(v ® w) = I'(v, w) that holds for all v € V and
w € W shows that I' does not depend on the choice of bases for V and W.

Tensor Product of Inner Product Spaces

The result below features three inner products—one on V® W, one on V, and one
on W, although we use the same symbol (-, -) for all three inner products.

/

9.80 inner product on tensor product of two inner product spaces

\

Suppose V and W are inner product spaces. Then there is a unique inner
product on V'® W such that

(0@ w,u ® x) = (v, U){w, x)

\forallv,uEVandw,er. )

Proof ~ Suppose ey, ...,¢,, is an orthonormal basis of V and fi, ..., f,, is an ortho-
normal basis of W. Define an inner product on V® W by

n m n m n m
9.81 <Z 2. bk ® fis ), ) i ® fk> = 2. ) b
k=1j=1 k=1j=1 k=1j=1
The straightforward verification that 9.81 defines an inner producton V@ W
is left to the reader [use 9.74(b)].
Suppose that v,u € V and w,x € W. Let vy,...,0,, € F be such that
v = vyeq + -+ + U,e,,, With similar expressions for u, w, and x. Then

m n m n
(V@ W, U@ Xx) = <Z vie; ® Z wkfkv Z u;e; ® Z xkfk>
j=1 k=1 j=1 k=1

n m n m
= Z vwe; ® fi, Z Z Uixee; ® fi
k=1j=1 k=1j=1
n m
= Z Z vjuiwkxk
k=1j=1
m n
j=1 k=1
= (v, u){w, x)

There is only one inner product on V® W such that (v@w, u®x) = (v, u){w, x)
for all v,u € V and w, x € W because every element of V® W can be written as
a linear combination of elements of the form v ® w [by 9.74(b)].
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The definition below of a natural inner product on V® W is now justified by
9.80. We could not have simply defined (v ® w, u ® x) to be (v, u){w, x) (and then
used additivity in each slot separately to extend the definition to V® W) without
some proof because elements of V® W do not have unique representations as
finite sums of elements of the form v ® w.

(o O

9.82 definition: inner product on tensor product of two inner product spaces

Suppose V and W are inner product spaces. The inner product on V® W is
the unique function (-, -) from (V@ W) x (V® W) to F such that

(W w,u®x) = (v,u)yw,Xx)

\forallv,ueVandw,xEW. )

Take u = v and x = w in the equation above and then take square roots to
show that
lv® wl = llovllllwl

forallv € Vandallw € W.

The construction of the inner product in the proof of 9.80 depended on an
orthonormal basis ey, ..., e, of V and an orthonormal basis f1, ..., f,, of W. Formula
9.81 implies that {¢; ® fi};j=1, . m:k=1,...n is @ doubly indexed orthonormal list in
V® W and hence is an orthonormal basis of V® W [by 9.74(b)]. The importance
of the next result arises because the orthonormal bases used there can be different
from the orthonormal bases used to define the inner product in 9.80. Although
the notation for the bases is the same in the proof of 9.80 and in the result below,
think of them as two different sets of orthonormal bases.

/9.83 orthonormal basis of V@ W )

Suppose V and W are inner product spaces, and ey, ..., ,, is an orthonormal
basis of V and fi, ..., f,, is an orthonormal basis of W. Then

{6’]- ® fk}jzl,...,m;k= 1,...,n

\13 an orthonormal basis of V@ W. )

Proof  We know that {¢; ® fi};—1,. m:k=1,...n is @ basis of V& W [by 9.74(b)].
Thus we only need to verify orthonormality. To do this, suppose j, M € {1, ...,m}
and k, N € {1, ...,n}. Then

(€; ® frem ® fn) = e en)fir fn) = {

Hence the doubly indexed list {¢; ® fi}i=1, . m:k=1
basis of V@ W.

1 ifj=Mandk =N,
0 otherwise.
. is indeed an orthonormal

.....

See Exercise 11 for an example of how the inner product structure on V@ W
interacts with operators on V and W.
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Tensor Product of Multiple Vector Spaces

We have been discussing properties of the tensor product of two finite-dimensional
vector spaces. Now we turn our attention to the tensor product of multiple finite-
dimensional vector spaces. This generalization requires no new ideas, only some
slightly more complicated notation. Readers with a good understanding of the
tensor product of two vector spaces should be able to make the extension to the
tensor product of more than two vector spaces.

Thus in this subsection, no proofs will be provided. The definitions and the
statements of results that will be provided should be enough information to enable
readers to fill in the details, using what has already been learned about the tensor
product of two vector spaces.

We begin with the following notational assumption.

(9.84 notation: V, ..., V,, W

For the rest of this subsection, m denotes an integer greater than 1 and
Vi, ..., V,, denote finite-dimensional vector spaces.

The notion of an m-linear functional, which we are about to define, generalizes
the notion of a bilinear functional (see 9.68). Recall that the use of the word
“functional” indicates that we are mapping into the scalar field F. Recall also that

the terminology “m-linear form” is used in the special case V; = --- = V,, (see
9.25). The notation B(V,, ..., V,,) generalizes our previous notation B(V, W).
g N

9.85 definition: m-linear functional, the vector space B(Vy, ..., V,,)

e An m-linear functional on V; x --- x V, is a function g: V; x ---xV,, - F
that is a linear functional in each slot when the other slots are held fixed.

e The vector space of m-linear functionals on V; x --- x V,, is denoted by
BViy.s V). )

| 9.86 example: m-linear functional |
Suppose ¢, € V,' for each k € {1,...,m}. Define f: V; x --- x V,, - F by
ﬁ(vl’ “"Um) = @1(01) X X q)m(vm)'

Then f is an m-linear functional on V; x --- x V.

The next result can be proved by imitating the proof of 9.70.

(9.87 dimension of the vector space of m-linear functionals W

blimB(Vl,...,Vm) = (dimV;) x --- x (dim V). J
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Now we can define the tensor product of multiple vector spaces and the tensor
product of elements of those vector spaces. The following definition is completely
analogous to our previous definition (9.71) in the case m = 2.

/9.88 definition: tensor product, V; ® .- ® V,,, v; ® --- ® v,,, )

e The tensor product V; ® -+ ® V,,, is defined to be B(V, ..., V).

e Forv, € V,,...,v,, € V,, the tensor product v; ® -+ ® v,, is the element
of V; ® -+ ® V,, defined by

(1@ ® Um)(%’ 9009 ¢m) = ¢1(vl)"'§0m(vm)
9 for all (¢q,....,9,,) € V| x - x V.

J

The next result can be proved by following the pattern of the proof of the
analogous result when m = 2 (see 9.72).

(9.89 dimension of the tensor product w

@im(Vl ® - ®V,) = (dimV})-(dimV,,). )

Our next result generalizes 9.74.

(9.90 basisof V1 ® - ®V,,

k

Suppose dim Vj, = n; and e, .-s €y, i8 @ basis of Vi for k = 1,...,m. Then

1 m
{eil ® - Q® e].m}l-l =1,..,055,=1,..., i

isabasisof V; ® - ® V,,,.

Suppose m = 2 and e], ...,e, is a basis of V; and ef, ..., e}, is a basis of V.

Then with respect to the basis {¢} ®€?}; _1_u,.j,=1....n, in the result above, the
coeflicients of an element of V; ® V, can be represented by an n,-by-r, matrix that
contains the coefficient of e]-l1 ® ejz2 in row j;, column j,. Thus we need a matrix,
which is an array specified by two indices, to represent an element of V; ® V.

If m > 2, then the result above shows that we need an array specified by m
indices to represent an arbitrary element of V; ® --- ® V,,,. Thus tensor products
may appear when we deal with objects specified by arrays with multiple indices.

The next definition generalizes the notion of a bilinear map (see 9.77). As
with bilinear maps, the target space can be an arbitrary vector space.

9.91 definition: m-linear map

An m-linear map from V; x --- x V, to a vector space U is a function
I': V; x..-xV, — U thatis a linear map in each slot when the other slots are
held fixed.
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The next result can be proved by following the pattern of the proof of 9.79.

/9.92 converting m-linear maps to linear maps )

Suppose U is a vector space.

(a) Suppose thatI': V; x --- x V,, — U is an m-linear map. Then there exists
a unique linear map I': V; ® --- ® V,, — U such that

f(vl ® - ®v,) =I©,..0,)

for all (vy,...,v,,) € V; x -+ x V.

(b) Conversely, suppose T: V; ® - ® V,, — U is a linear map. Then there
exists a unique m-linear map T#: V; x --- x V,, — U such that

T*(vy, ..., 0,,) = T(0; ® - ® V)

for all (v, ...,v,,) € V; x--- x V.

J

See Exercises 12 and 13 for tensor products of multiple inner product spaces.

Exercises 9D

1 Supposev € Vand w € W. Prove that v ® w = 0 if and only if v = 0 or
w=0.

2 Give an example of six distinct vectors vy, v,, U3, Wy, W,, W5 in R> such that
QW +0, @W, +73 @ wy =0

but none of v; ® wy, v, ® Wy, V3 ® Wy is a scalar multiple of another element
of this list.

3 Suppose that v4, ..., v,, is a linearly independent list in V. Suppose also that
w1, ..., W, is a list in W such that

1w+ +7, 0w, =0.
Prove that w; = --- = w,, = 0.
4 Suppose dimV > 1 and dim W > 1. Prove that
{fvew: (v,w) € Vx W}

is not a subspace of V@ W.
This exercise implies that if dimV > 1 and dim W > 1, then

fvew: (v,w) e Vx W} Ve W.
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Suppose m and n are positive integers. For v € F”* and w € F", identify
v ® w with an m-by-n matrix as in Example 9.76. With that identification,
show that the set

{fvew:veF"and w € F"}

is the set of m-by-n matrices (with entries in F) that have rank at most one.

Suppose m and n are positive integers. Give a description, analogous to
Exercise 5, of the set of m-by-n matrices (with entries in F) that have rank
at most two.

Suppose dim V > 2 and dim W > 2. Prove that
{1 @w; +v, ®w, :vy,v, € Vand wy, w, € W £ VR W.
Suppose v, ...,v,, € V and wy, ...,w,, € W are such that
QW+ +7, w, =0.

Suppose that U is a vector space and I': Vx W — U is a bilinear map. Show
that
I'(vy,wy) + - +T' (v, w,) =0.

Suppose S € £(V)and T € £(W). Prove that there exists a unique operator
on V® Wthattakesv @ wto Sy ® Twforallv € Vand w € W.

In an abuse of notation, the operator on V® W given by this exercise is
often called S ® T.

Suppose S € £L(V)and T € £(W). Prove that S® T is an invertible operator
on V® W if and only if both S and T are invertible operators. Also, prove
that if both S and T are invertible operators, then (S® T)™! = S! @ T,
where we are using the notation from the comment after Exercise 9.

Suppose V and W are inner product spaces. Prove that if S € £(V) and
T € L(W), then (S® T)* = S* ® T* where we are using the notation from
the comment after Exercise 9.

Suppose that Vi, ..., V,,, are finite-dimensional inner product spaces. Prove
that there is a unique inner product on V; ® --- ® V,,, such that

(U1 @+ ® Uy, Uy @ +++ ® Uyy,) = (U, Uy )+{Upy, Uy,)

for all (vq,...,v,,) and (uq,...,u,,) in V; x -+ x V.

Note that the equation above implies that
[ ® -+ ®@ Uyl = U]l X ==+ X [,

forall (vq,...,v,,) € Vi x - x V.
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Suppose that Vi, ..., V,, are finite-dimensional inner product spaces and
V, ® --- ® V,, is made into an inner product space using the inner product
from Exercise 12. Suppose ef, ..., e,’fk is an orthonormal basis of V; for each
k =1, ...,m. Show that the list
1 m
{ejl ® " ®e] }j1:1 """ nl;“';]'m:1 """ Ny

m

is an orthonormal basisof V; ® --- ® V,,,.
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real vector space, 13 subspace, 18
reverse triangle inequality, 129, 193, subtraction of complex numbers, 4
204 sum, see addition
Riesz representation theorem, 205, 210, Sum of subspaces, 19
216, 224, 225 Supreme Court, 210
Riesz, Frigyes, 205 surjective, 62
row rank of a matrix, 77, 114, 239 SVD, see singular value decomposition
Sylvester, James, 181
scalar, 4 symmetric bilinear form, 337
scalar multiplication, 9, 12 symmetric matrix, 269, 337

i tient , 100
1 quotient space tensor product, 372, 379

Through the Looking Glass, 11
trace

of a matrix, 326

of an operator, 327

of linear maps, 55

of matrices, 71
Schmidt pair, 278
Schmidt, Erhard, 200, 278
Schur’s theorem, 204
Schur, Issai, 204
Schwarz, Hermann, 189

translate, 99
transpose of a matrix, 77, 231

triangle inequality, 121, 190, 281
self-adjoint operator, 233

tuple, 5
Shelley, Mary Wollstonecraft, 50 two-sided ideal, 58
sign of a permutation, 349
simultaneous diagonalization, 176 unit circle in C, 262, 269
simultaneously upper triangularizable, —unitary matrix, 263
178 unitary operator, 260
singular matrix, 91 University of Dublin, 297
singular value decomposition University of Gottingen, 332
of adjoint, 275 upper-triangular matrix, 155-160, 264,

of linear map, 273 267,314

of pseudoinverse, 275 Vandermonde matrix, 366

singular values, 271, 362

vector, 8, 12
skew operator, 240, 247, 269 vector space, 12
span, 29 volume, 292, 363
spans, 29 of a box, 291

spectral theorem, 245, 246
square matrix, 91 zero of a polynomial, 122
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